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Abstract

Mathematical programming-based methods are widely used to generate separating

boundaries in two-group classification problems. Nonlinear separating boundaries may

have better classification performance than linear separating boundaries, but these re-

quire a pre-specification of a nonlinear functional form. This contribution proposes

a novel pairwise-frontier-based classification (PFC) method to approximate nonlinear

separating boundaries, without predetermining a nonlinear functional form. It consists

of two steps that explicitly consider and focus on overlap. The first step is to identify

the overlap. Importantly, this contribution proposes to construct frontiers based on

background knowledge of classification, thus ensuring that their intersection (i.e., over-

lap) is not increased by blindly applying commonly used axioms. Depending on the

axioms applied, pairwise frontiers can be either convex or nonconvex. The second

step minimizes identified overlaps by allowing training observations to be misclassified,

but all training observations that have been correctly classified must remain correctly

classified. The PFC method with hard frontiers is then extended to the one with soft

frontiers. The applicability of the proposed PFC methods is illustrated by simulation

studies and real-life data sets. The results show that the proposed method is compet-

itive with some well-established classifiers in the literature and even performs better

with unbalanced data sets.
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1 Introduction

A classification aims to determine whether an observation belongs to a particular group by

evaluating a set of attributes. As an important and widely studied topic, its applications

include but are not limited to costumer churn (e.g., De Caigny, Coussement, De Bock, and

Lessmann (2020)), fraud and failure detection (e.g., Zhao, Ouenniche, and De Smedt (2024);

De Bock, Coussement, and Lessmann (2020)), credit scoring (e.g., Lessmann, Baesens,

Seow, and Thomas (2015); Farbmacher, Löw, and Spindler (2022)), medical diagnosis (e.g.,

Merdan, Barnett, Denton, Montie, and Miller (2021)), etc. Numerous techniques and meth-

ods have been proposed, such as statistical methods, support vector machines, artificial

neural networks, decision trees and ensemble classifiers. A comprehensive review of statist-

ical and data mining techniques used for classification can be found in Kotsiantis, Zaharakis,

and Pintelas (2007) and Silva (2017). For expository clarity, this contribution focuses on the

two-group classification problem.

Mathematical programming-based (MP-based) classifiers have been given considerable

attention since their introduction by Freed and Glover (1981). The basic idea of the MP-

based classifier is to determine a separating boundary such that the two groups of training

observations lie on opposite sides of the separating boundary. If the convex (C) hulls of

the two groups do not intersect, then these two groups are linearly separable, i.e., the sep-

arating boundary is simply a hyperplane. Sometimes, even though the groups of training

observations are distinct, their C hulls may intersect (i.e., there is an overlap). Alternatively,

when the training groups themselves are not well distinguished, their C hulls naturally inter-

sect. In both cases, nonlinear hypersurfaces are believed to provide better separation than

hyperplanes. However, generating nonlinear hypersurfaces requires a pre-specification of a

nonlinear function form. It is not impossible, but very difficult to predetermine a nonlinear

functional form to fit for a real application.

Given the basic idea of MP-based classifiers, this contribution is also interested in determ-

ining a separating boundary that best separates the two groups. Moreover, the boundary is

expected to be nonlinear, but without a predetermined nonlinear functional form. To meet

this goal, the Data Envelopment Analysis (DEA) method, which generates a C piecewise

linear frontier, is of interest. The DEA method is a linear programming model evaluating the

efficiency of observations by projecting these onto a C piecewise linear frontier. It is widely

applied in production economics and finance (see recent surveys and historical developments

in Ouenniche, Carrales, Tone, and Fukuyama (2017) and Emrouznejad, Banker, and Neralic

(2019), respectively). Despite its popularity in production and finance, the DEA method
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has not been very widely used as a classification tool up to now.

Troutt, Rai, and Zhang (1996) is the first application of DEA as a classification tool

known to us. They propose to use the C piecewise linear frontier generated from a base

group of training observations as a separating boundary. This idea of employing a C frontier

as a separating boundary has been adapted by proposing alternative objective functions

(Seiford and Zhu, 1998), incorporating various data types (e.g., Leon and Palacios (2009),

Yan and Wei (2011)) and has been applied in different application areas (e.g., Pendharkar,

Rodger, and Yaverbaum (1999); Pendharkar, Khosrowpour, and Rodger (2000); Pendharkar

(2002)). All the above classification methods employ a single C frontier as the separating

boundary. To some extent, they only utilize the information of the selected base group. For

this reason, they can not recognize the overlap between the two groups.

To fully utilize the information from both groups for better classification, Chang and

Kuo (2005, 2008) propose to train a pair of C frontiers each of which envelops a group

of training observations. The trained pair of C frontiers jointly determines a nonlinear

separating boundary. We refer to these classification methods as Pairwise-Frontier-based

Classification (PFC) methods with C frontiers.

In PFC methods with C frontiers, the intersection of pairwise frontiers is identified as

overlap. In the existing literature on PFC methods, some researchers have chosen to elim-

inate overlap during the training process (Chang and Kuo, 2005, 2008; Kuo, 2013). With

this treatment, the overlap is completely removed, but at the cost of misclassifying some

otherwise correctly classified training observations. Other researchers choose not to do any-

thing with the overlap during training, but classify the overlap using other classification

methods during testing, e.g., a cost-sensitive nearest neighbourhood approach (Pendharkar,

2011), membership functions (Pendharkar, 2012), interaction or Minimum Sum of Deviations

(MSD) method (Pendharkar and Troutt, 2014), probabilistic DEA techniques (Pendharkar,

2018), among others. With this treatment, the DEA efficiency measurement is only used to

identify the overlap, but it is not used to predict the group membership of a new observation.

Regardless of these various treatments on the overlap, all existing PFC methods are con-

structed and inspired by the geometrical advantages of the DEA model, i.e., approximating

the nonlinear separating boundary without predetermining a nonlinear functional form. In

general, there is a lack of reflection on the relation between the axioms implied by construct-

ing a nonlinear frontier and the background knowledge of classification. The only exception

that we are aware of is that Jin, Kerstens, and Van de Woestyne (2024) have explored the

correspondence of axioms when applying frontier-based classification methods to anomaly
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detection. However, only a single frontier is employed in this work. Furthermore, to the

best of our knowledge, no study has been conducted to examine how the different mixes of

axioms affect the overlap.

Therefore, the first purpose of this contribution is to explore the correspondence of the

axioms in the context of two-group classification and their influence on overlap. First, the

axiom of free disposability corresponds to a monotonous relation between the attributes

and the group membership. This monotonicity relation determines the relative positions of

the pairwise frontiers and therefore greatly affects the magnitude of the overlap. In many

applications, the monotonicity relation is often an implicit assumption rather than an explicit

one. To address this situation, a MSD model is proposed to establish a monotonous relation

with less overlap. Second, the convexity axiom corresponds to the substitution relation

between attributes. All existing PFC methods adhere to the convexity axiom. However, if

no substitution relation is given in advance, then the convexity axiom should be relaxed.

This allows for the construction of a pair of nonconvex (NC) frontiers based on the Free

Disposal Hull (FDH) model proposed by Deprins, Simar, and Tulkens (1984). Compared to

the C frontiers, the NC frontiers envelop the groups of training observations more tightly.

Therefore, the overlap resulting from the NC frontiers is normally smaller. Exploring the

correspondence of the axioms aims to ensure that the identified overlap is not meaninglessly

increased by the implementation of inappropriate axioms.

Second, this contribution aims to handle the identified overlap from two perspectives. On

the one hand, the overlap is minimized during training, but to the extent that all training

observations that are already correctly classified remain correctly classified. An algorithm is

proposed to realize this minimization. After the overlap is minimized, a new PFC method

with soft frontiers is constructed. On the other hand, a directional distance function (DDF)

measure is introduced to determine the positions of an observation relative to the frontiers.

Specifically, based on the comparison of the corresponding DDF measurements, a classific-

ation decision for the overlap can be designed. In this way, the group membership of the

observations in the overlap is inferred from the DDF measurement itself without additional

reliance on any other classification methods.

Third, this contribution also aims at offering the first empirical analysis on evaluating the

classification performance of the PFC methods with unbalanced data sets. Fundamentally,

the PFC method should be less vulnerable to unbalanced data sets. In the PFC method,

the separating boundary is determined by pairs of hard or soft frontiers. The hard frontier

of a group is independently determined by the training observations of that group, and more

specifically, only the portion of the training observations that lie on the frontier contribute
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to its determination. The soft frontier of a group is slightly influenced by the training

observations of the other group, but only if those training observations are located in the

overlap. Therefore, when confronted with unbalanced data sets, the PFC method should be

able to better balance the performance on the minority group and the majority group.

This contribution unfolds as follows. In Section 2, the intuitive idea of a PFC method

is illustrated with a two-dimensional geometric example. Section 3 details the models and

procedures for constructing a general PFC method. In Section 4 the proposed PFC methods

are evaluated both with simulation data and with a real-life data set. Finally, Section 5

concludes with a summary of the contributions and a discussion of potential future research.

2 Geometric Illustration

Consider an illustrative example with two groups, each with 100 training observations. In

Figures 1-3, the training observations from Group 1 and Group 2 are represented by red

crosses and blue dots, respectively. Every training observation is characterized by two at-

tributes, i.e., a1 and a2. The monotonicity relation of the attributes shows that a1 is an

input-type attribute and a2 is an output-type attribute. This monotonicity relation is re-

flected in the relative values of the attributes in the different groups: in particular, the

observations in Group 2 generally take smaller values of a1 and larger values of a2 than the

observations in Group 1.

Figure 1 depicts an ideal example when two groups of training observations do not really

intersect. They can be well separated by a pair of NC-hard frontiers as depicted in Figure

1(a). All the training observations from Group 1 are situated below the NC-hard frontier 1,

indicated by the dotted polylines. By contrast, all the training observations from Group 2

are situated above the NC-hard frontier 2, indicated by the dashed polylines.

The NC-hard frontiers in Figure 1(a) are determined by the training observations and the

axiom of free disposability. The axiom of free disposability is determined by the monotonicity

relation of attributes, but is reflected differently in the two groups. For training observations

from Group 1, the axiom of free disposability implies that neither an increase in a1 nor a

decrease in a2 results in the corresponding observation being classified to Group 2. Thus,

the NC-hard frontier 1 consists of the training observations with smallest a1 and largest a2 in

Group 1. By contrast, for training observations from Group 2, the axiom of free disposability

implies that neither a decrease in a1 nor an increase in a2 results in the corresponding
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observation being classified to Group 1. Thus, the NC-hard frontier 2 consists of the training

observations with largest a1 and smallest a2 in Group 2. In this case, a pair of NC frontiers is

produced. These frontiers are referred to as hard frontiers, because all training observations

from each group are used to construct the corresponding frontier.
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2

Obs. from Group 1
Obs. from Group 2
NC-Hard Frontier 1
NC-Hard Frontier 2

(a) Separable with NC-hard frontiers
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Obs. from Group 1
Obs. from Group 2
C-Hard Frontier 1
C-Hard Frontier 2
Overlap

(b) Nonseparable with C-hard frontiers

Figure 1: An ideal example with two non-intersecting groups

In the literature on PFC methods, the convexity axiom is generally accepted without

justifying its necessity. As shown in Figure 1(b), if also a convexity axiom is imposed, then

a pair of C-hard frontiers is produced. The C-hard frontiers now have an intersection, i.e.,

there is overlap, while there is no overlap between the two training groups themselves. In

this sense, the a priori imposition of an additional convexity axiom can lead to overlap, which

is potentially detrimental to the classification performance.

While Figure 1 illustrates an ideal example where the training groups are well character-

ized and can be separated by pairwise NC-hard frontiers, in most applications the training

groups themselves are not that well distinguished. In these cases, the training groups in-

evitably overlap, either with the NC-hard frontiers or with the C-hard frontiers, as shown

in Figures 2(a) and 3(a), respectively. The identified overlap is the intersection of pairwise

frontiers, indicated by the gray filled area in Figures 2 and 3. In this example, the overlap

under C is larger than under NC. We return to this observation in Proposition 3.2.

To minimize the identified overlap, we propose to exclude some of the training observa-

tions while constructing the frontiers, i.e., allow these to be misclassified during training. An

algorithm is proposed to produce soft frontiers that realize a minimum overlap. Note that

only training observations in the identified overlap are allowed to be misclassified. All other

training observations outside the overlap are to remain correctly classified, i.e., these always

remain within the corresponding frontier.
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(a) NC-hard frontiers
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Figure 2: A realistic example with two intersecting groups: NC case
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(a) C-hard frontiers
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(b) C-soft frontiers

Figure 3: A realistic example with two intersecting groups: C case

The results for the NC and C cases are shown in Figures 2(b) and 3(b), respectively.

For the NC case, 1 training observation from Group 1 and 4 training observations from

Group 2 are identified as those that should be excluded. The overlap is then removed at

the cost of misclassifying just 5 training observations. Similarly for the C case, the overlap

is largely decreased at the cost of misclassifying 3 training observation from Group 1 and 3

training observations from Group 2. After excluding the training observations that should

be misclassified, the soft frontiers are constructed from the remaining training observations.

With the constructed pairwise frontiers, the group membership of a new observation

can now be determined by its relative location to these frontiers. There are four situations

depending on the relative locations. Figure 4 visualizes the situations. First, if a new

observation is located within frontier 1 and beyond frontier 2, then it is classified to Group

1. In Figure 4, this situation corresponds to the region below soft frontier 1 labeled with

G1. Second, if a new observation is located within frontier 2 and beyond frontier 1, then
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it is classified to Group 2. In Figure 4, this situation corresponds to the region above soft

frontier 2 labeled with G2. Third, if a new observation is located beyond both frontiers, then

it is located in the gap. In Figure 4, this situation corresponds to the region between the

soft frontier 1 and the soft frontier 2 labeled with Ggap. Its group membership needs to be

determined based on which frontier it is closest to. Fourth, if a new observation is located

within both frontiers, then it is located in the overlap. In Figure 4(b), it is the region where

the soft frontier 1 and the soft frontier 2 intersect, labeled by Goverlap. Its group membership

needs to be determined based on which frontier it is farthest from.
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Obs. classified to Group 2
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1
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(a) Pairwise NC-soft frontiers
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(b) Pairwise C-soft frontiers

Figure 4: Classification results with pairwise frontiers

The eventual separating boundary is jointly determined by the pairwise frontiers, as

shown in Figure 4. The observations marked with red crosses are classified to Group 1, while

the observations marked with blue circles are classified to Group 2.

3 Pairwise-Frontier-Based Classification: A Proposal

3.1 Problem Description

A two-group classification problem aims at classifying an observation to either Group 1 or

Group 2. Such a classification problem is solved by learning from the historical classific-

ation information provided a priori, which consists of a set of training observations Z =

{z1, . . . , zn}. For every training observation zj, its group label I(zj), where I(zj) ∈ {1, 2},
refers to the group the training observation zj belongs to. The training observations are

exclusively classified into one of these two groups. Thus, Z = Z1 ∪ Z2 and Z1 ∩ Z2 = ∅,
where Zl (l ∈ {1, 2}) denotes the set of training observations that belong to group l, i.e.,
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Zl = {zj ∈ Z | I(zj) = l}.

The observations are evaluated by a number of attributes. The family of attributes is

represented by A = {a1, . . . , aK}. The evaluation of any observation z on attribute ak ∈ A

is represented by ak(z).

To generate the frontiers, the monotonicity relation of attributes need to be made explicit.

In some cases, the monotonicity relation of attributes is determined a priori by the decision

maker. If a smaller evaluation on attribute ak means that the corresponding observation is

more likely to belong to Group 2, then attribute ak is defined as an input-type attribute. By

contrast, if a larger evaluation on attribute ak means that the corresponding observation is

more likely to belong to Group 2, then attribute ak is defined as an output-type attribute.

In situations where the monotonicity relation for attributes is not explicitly given, we can

use the MSD model (1) proposed by Freed and Glover (1986) to differentiate the attributes.

min
αk,s

+
1,j ,s

−
2,j

∑
zj∈Z1

s+1,j +
∑
zj∈Z2

s−2,j

s.t.
∑
ak∈A

αkak(zj)− s−1,j ≤ d− η ∀zj ∈ Z1∑
ak∈A

αkak(zj) + s+2,j ≥ d ∀zj ∈ Z2

s−1,j ≥ 0, s+2,j ≥ 0, d and αk are free

(1)

where d is a threshold value. To avoid a trivial solution (where αk = 0 and d = 0) and to

have a clear separation between two groups, a small positive number η is introduced (see

Glover (1990) for details).

Solving model (1) provides each attribute with a monotonicity relation as follows. If the

optimal value α∗
k for αk is negative, then the increase on attribute ak reduces

∑
ak∈A α∗

kak(zj)

which makes zj a less favorable candidate of belonging to Group 2. This satisfies the beha-

viour of an input-type attribute. By contrast, if the optimal value α∗
k is positive, then the

increase on attribute ak makes zj more favorable of belonging to Group 2. Therefore, an

attribute ak with a positive α∗
k behaves like an output-type attribute.

Based on different monotonicity relations, the family of attributes can be exclusively

differentiated into two types, the input-type attributes reorganized into X = {x1, . . . , xm}
and the output-type attributes reorganized into Y = {y1, . . . , ys}. Note that the set of all

attributes A = X ∪ Y and K = m + s. The evaluation of observation z on attribute xi is

represented by xi(z), and its evaluation on attribute yr is represented by yr(z). Similarly,
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we introduce the notation X(z) = (x1(z), ..., xm(z)) and Y (z) = (y1(z), ..., ys(z)).

3.2 Acceptance Possibility Set and Its Estimates

In the context of classification, we introduce the Accepted Possibility Set (APS) to describe

the attainable set of a certain group.1 Specifically, it describes all possible combinations of

attribute values whose corresponding observations are accepted as members of that group.

The APS of Group l is expressed as

Tl = {(x, y) ∈ Rm × Rs | (x, y) is accepted as a member of Group l} . (2)

Let Sl denote the set of training observations that are known to belong to Group l. Then,

APS Tl can be estimated from Sl using the idea of minimal extrapolation. First, APS Tl

is estimated as the smallest set containing data that satisfy the axiom of free disposability,

denoted by T ∗
NC,l. The axiom of strong or free disposability corresponds to the monotonicity

relation of attributes. Specifically for Group 1, free disposability implies that the corres-

ponding observations with larger attributes in X and smaller attributes in Y compared to

the training observations from Group 1 are still acceptable as members of Group 1. By

contrast, for Group 2, free disposability implies that the corresponding observations with

smaller attributes in X and larger attributes in Y compared to the training observations

from Group 2 remains acceptable as members of Group 2. Thus, based on the sets S1 and

S2, respectively, the NC estimates of APSs T1 and T2 are:

T ∗
NC,1 =

(x, y) ∈ Rm × Rs |
∑
zj∈S1

λjX(zj) ≤ x,
∑
zj∈S1

λjY (zj) ≥ y,
∑
zj∈S1

λj = 1, λj ∈ {0, 1}

 , (3)

T ∗
NC,2 =

(x, y) ∈ Rm × Rs |
∑
zj∈S2

λjX(zj) ≥ x,
∑
zj∈S2

λjY (zj) ≤ y,
∑
zj∈S2

λj = 1, λj ∈ {0, 1}

 . (4)

Second, APS Tl can also be estimated as the smallest C set containing data that satisfy

the axiom of free disposability, denoted by T ∗
C,l. Comparing to the NC estimate T ∗

NC,l,

an additional convexity axiom is adopted. The convexity axiom in classification implies a

substitution relation among the attributes. In empirical applications, there may exist this

type of substitution relation. For example, in the admission to a college, the admission

1The concept of APS is derived from the Production Possibility Set (PPS) in production analysis, which
describes the attainable set of a given technology. The PPS describes producibility, whereas the APS
describes acceptability.
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decision is made based on several attributes of a candidate, including the GMAT score

and the SAT score. In evaluating a candidate, the disadvantage in the GMAT scores can

be compensated to a certain degree by the advantages in SAT. In this case, there exists

a substitution relation between the two attributes, namely the GMAT score and the SAT

score. Thus, if prior information on such a substitution relation is provided, then based on

the same observed sets S1 and S2, respectively, the C estimates of T1 and T2 are:

T ∗
C,1 =

(x, y) ∈ Rm × Rs |
∑
zj∈S1

λjX(zj) ≤ x,
∑
zj∈S1

λjY (zj) ≥ y,
∑
zj∈S1

λj = 1, λj ≥ 0

 , (5)

T ∗
C,2 =

(x, y) ∈ Rm × Rs |
∑
zj∈S2

λjX(zj) ≥ x,
∑
zj∈S2

λjY (zj) ≤ y,
∑
zj∈S2

λj = 1, λj ≥ 0

 . (6)

With an additional convexity axiom, the C estimates of T1 and T2 are no smaller than

the corresponding NC estimates. This is formalised in the following Proposition 3.1.

Proposition 3.1. T ∗
NC,1 ⊆ T ∗

C,1, T
∗
NC,2 ⊆ T ∗

C,2

The proof of this proposition and all other theoretical results is found in the Appendix A.

If an observation satisfies both the descriptions of Group 1 and Group 2, then it is located

in the overlap. The overlap is represented by the intersection of the estimates of T1 and T2.

Specifically, the overlap under the NC case is T ∗
NC,Overlap = T ∗

NC,1 ∩ T ∗
NC,2, and the overlap

under the C case is T ∗
C,Overlap = T ∗

C,1∩T ∗
C,2. The overlap under the NC case is always included

in the overlap under the C case, as shown in Proposition 3.2.

Proposition 3.2. T ∗
NC,Overlap ⊆ T ∗

C,Overlap

Corollary 3.1. T ∗
NC,Overlap = T ∗

C,Overlap ̸= ∅ if and only if T ∗
C,Overlap ̸= ∅, T ∗

NC,Overlap ̸= ∅,
T ∗
C,1 = T ∗

NC,1 and T ∗
C,2 = T ∗

NC,2.

Corollary 3.1 implies that the nonempty overlap under the NC and C cases is equal if and

only if the estimates of the APSs under the two cases are identical.

If an observation fits neither the description of Group 1 nor Group 2, then it is considered

to be located in the gap. The gap is represented by the complement of the union of the

estimates of T1 and T2 with respect to the whole attribute space Rm × Rs. Specifically,

the gap under the NC case is T ∗
NC,Gap =

(
T ∗
NC,1 ∪ T ∗

NC,2

)∁
, and the gap under the C case is

T ∗
C,Gap =

(
T ∗
C,1 ∪ T ∗

C,2

)∁
, where (.)∁ denotes the complement of a set with respect to Rm×Rs.

Proposition 3.3. T ∗
C,Gap ⊆ T ∗

NC,Gap
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Corollary 3.2. T ∗
NC,Gap = T ∗

C,Gap if and only if T ∗
C,1\T ∗

NC,1 ⊆ T ∗
NC,2 and T ∗

C,2\T ∗
NC,2 ⊆ T ∗

NC,1.

Proposition 3.3 shows that the gap under the C case is included in the gap under the NC

case. Corollary 3.2 implies that the gaps under the NC and C cases are equal if and only if

the increment from the NC estimate of one group to its C estimate is captured by the NC

estimate of the other group.

To unify expressions (3) to (6), we use the following notation to stand for the estimates

of T1 and T2 under both the NC and C cases:

T ∗
Λ,1 =

(x, y) ∈ Rm × Rs |
∑
zj∈S1

λjX(zj) ≤ x,
∑
zj∈S1

λjY (zj) ≥ y,
∑
zj∈S1

λj = 1, λj ∈ Λ

 , (7)

T ∗
Λ,2 =

(x, y) ∈ Rm × Rs |
∑
zj∈S2

λjX(zj) ≥ x,
∑
zj∈S2

λjY (zj) ≤ y,
∑
zj∈S2

λj = 1, λj ∈ Λ

 , (8)

where

(i) Λ ≡ ΛC = {λj ≥ 0} , or (ii) Λ ≡ ΛNC = {λj ∈ {0, 1}} .

Following Chambers, Chung, and Färe (1998), the directional distance function (DDF)

can be a complete function representation of the APS, i.e., an observation is in the APS if

and only if its DDF measurement is non-negative. Thus, T ∗
Λ,1 and T ∗

Λ,2 can be determined

using the following DDF measures, respectively:

DT ∗
Λ,1
(z0, g1) = sup{δΛ,1(z0) ∈ R | (X(z0), Y (z0)) + δΛ,1(z0)g1(z0) ∈ T ∗

Λ,1}, (9)

DT ∗
Λ,2
(z0, g2) = sup{δΛ,2(z0) ∈ R | (X(z0), Y (z0)) + δΛ,2(z0)g2(z0) ∈ T ∗

Λ,2}, (10)

where g1 = (gX,1, gY,1) ∈ Rm
− × Rs

+ and g2 = (gX,2, gY,2) ∈ Rm
+ × Rs

− represent the projection

directions.

To make the DDF measure more interpretable, a proportional DDF measure is introduced

in this contribution. Specifically, g1(z0) = (−|X(z0)|, |Y (z0)|) and g2(z0) = (|X(z0)|,−|Y (z0)|)
are applied for the evaluated observation z0. Note that in the classification context with po-

tentially negative attribute values, the absolute value is used for preserving a proportional

interpretation (see Kerstens and Van de Woestyne (2011) for details).

The APS estimate can be sufficiently represented using its boundary (also known as the

frontier) without the need to use all the training observations. Specifically, only training

observations with a DDF measure of 0 contribute to the construction of the corresponding

11



frontier. The proportional DDF measures represented by (9) and (10) with the appropriate

projection directions can be calculated simultaneously from model (11).

max
λj,1,δΛ,1,λj,2,δΛ,2

δΛ,1(z0) + δΛ,2(z0)

s.t.
∑
zj∈S1

λj,1xi(zj) ≤ xi(z0)− δΛ,1(z0)|xi(z0)| ∀xi ∈ X

∑
zj∈S1

λj,1yr(zj) ≥ yr(z0) + δΛ,1(z0)|yr(z0)| ∀yr ∈ Y

∑
zj∈S1

λj,1 = 1

λj,1 ∈ Λ ∀zj ∈ S1∑
zj∈S2

λj,2xi(zj) ≥ xi(z0) + δΛ,2(z0)|xi(z0)| ∀xi ∈ X

∑
zj∈S2

λj,2yr(zj) ≤ yr(z0)− δΛ,2(z0)|yr(z0)| ∀yr ∈ Y

∑
zj∈S2

λj,2 = 1

λj,2 ∈ Λ ∀zj ∈ S2

(11)

where

(i) Λ ≡ ΛC = {λj ≥ 0} , or (ii) Λ ≡ ΛNC = {λj ∈ {0, 1}} .

In the C case, model (11) is solving a linear programming (LP) problem, while it involves

solving a binary mixed integer program (BMIP) for the NC case. To speed up computa-

tions in the NC case, a fast implicit enumeration-based method is proposed by Cherchye,

Kuosmanen, and Post (2001) requiring only to compute minima of lists of ratios. Thus, the

following exact solutions are obtained for model (11) under the NC case:

δ∗ΛNC,1(z0) = max
zj∈S1

(
min
xi∈X

(
xi(z0)− xi(zj)

|xi(z0)|

)
,min
yr∈Y

(
yr(zj)− yr(z0)

|yr(z0)|

))
, (12)

δ∗ΛNC,2(z0) = max
zj∈S2

(
min
xi∈X

(
xi(zj)− xi(z0)

|xi(z0)|

)
,min
yr∈Y

(
yr(z0)− yr(zj)

|yr(z0)|

))
. (13)
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3.3 Convex and Nonconvex Hard Frontiers

In this subsection, pairwise hard frontiers are constructed to represent the APS estimates

for Group 1 and Group 2, respectively. The use of pairwise hard frontiers is sufficient to

determine a separating boundary in two cases. The first case is that of well characterized

training groups without overlap. The second case is where there is overlap but it is decided

not to do anything about it during the training process. In both cases, the frontiers are

constructed based on all the training observations of the corresponding groups and are,

therefore, called hard frontiers.

To identify the training observations that determine the hard frontiers, model (11) needs

to be solved for each observation zj ∈ Z1 ∪ Z2 with S1 = Z1 and S2 = Z2. If the DDF

measurement of the evaluated observation zj is 0, then it is collected into the corresponding

frontier set, denoted by FΛ,l (l ∈ {1, 2}). Specifically,

FΛ,1 = {zj ∈ Z1 | δ∗Λ,1(zj) = 0}, FΛ,2 = {zj ∈ Z2 | δ∗Λ,2(zj) = 0}, (14)

where δ∗Λ,1(zj) and δ∗Λ,2(zj) are the optimized DDF measurements obtained from solving

model (11).

The hard frontiers 1 and 2 are then represented by the boundaries of frontier sets FΛ,1

and FΛ,2, respectively. Note that both C or NC versions can be obtained, depending on

whether the convexity axiom is adopted or not.

Instead of using all training observations in Z1 and Z2, the group membership of a new

observation is now determined by its relative location compared to the hard frontiers. The

classification rules are detailed in Subsection 3.5.

3.4 Convex and Nonconvex Soft Frontiers

In general, when the overlap gets larger the classification ability of a classifier tends to get

worse. In this subsection, we propose to minimize the overlap that occurs during the training

process to improve the classification ability.

The overlap is minimized by allowing some of the training observations to be misclassified

with the restriction that all of the training observations that are correctly classified by the

hard frontiers remain correctly classified. Thus, pairwise soft frontiers are constructed to
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represent the APS estimates and to jointly determine a separating boundary.2 It takes two

steps to construct the soft frontiers.

Step 1: Identify the Overlap

A training observation is located in the overlap if it is simultaneously situated on or

below the frontier of Group 1 and on or below the frontier of Group 2. More specifically, it

can be represented as follows:

RΛ,0 = {zj ∈ Z | δ∗Λ,1(zj) ≥ 0 and δ∗Λ,2(zj) ≥ 0}, (15)

where δ∗Λ,1(·) and δ∗Λ,2(·) are the optimized DDF measurements solved from model (11) while

constructing the hard frontiers.

Step 2: Minimize the Overlap

To minimize the overlap determined in Step 1, we propose to exclude some training

observations while constructing the frontiers. Note that only the training observations that

are located in the overlap RΛ,0 can be considered for exclusion. Algorithm 1 (see infra) is

designed to identify the training observations that should be excluded, and yields as outputs

the soft frontier sets, namely, F̂Λ,1 and F̂Λ,2.

Model (16) is constructed to identify training observations in RΛ,0 that potentially need

to be excluded:

min
sj,1,sj,2,p

c ·
∑

zj∈RΛ,0∩Z1

s1(zj) +
∑

zj∈RΛ,0∩Z2

s2(zj)

s.t. δ∗Λ,1(zj) + s1(zj) ≥ δ∗Λ,2(zj)− s1(zj) + p ∀zj ∈ RΛ,0 ∩ Z1

δ∗Λ,2(zj) + s2(zj) ≥ δ∗Λ,1(zj)− s2(zj)− p ∀zj ∈ RΛ,0 ∩ Z2

s1(zj), s2(zj) ≥ 0

p unconstrained

(16)

where δ∗Λ,1(·) and δ∗Λ,2(·) are the optimized DDF measurements solved from model (11) while

constructing the hard frontiers.

In model (16), the weight c is used to mitigate the data imbalance. In this contribution,

we use the ratio of the cardinality of RΛ,0∩Z2 and the cardinality of RΛ,0∩Z1. The optimized

p∗ reflects a preference for a certain group. If p∗ > 0, then Group 2 is preferred. A positive

p∗ implies that the sum of deviations is minimized by having more training observations

2Similar to the terminologies of hard and soft margins in Support Vector Machine (SVM), the frontiers
constructed by allowing for misclassification are referred to as soft frontiers.

14



from Group 2 correctly classified, while a non-positive p∗ implies that the sum of deviations

is minimized by having a preference for Group 1.

Algorithm 1 Generating the soft frontier sets

Inputs: Z1, Z2, RΛ,0

1: Solve model (16), obtain the optimized values: s∗1(zj), s
∗
2(zj), p

∗

2: Generate EΛ,1 and EΛ,2 based on equation (17)

3: Let S1 = Z1 \ EΛ,1, S2 = Z2 \ EΛ,2

4: Solve model (11) for zj ∈ EΛ,1 ∪ EΛ,2, obtain δ∗Λ,1(zj), δ
∗
Λ,2(zj)

5: Generate GapΛ,1 and GapΛ,2 based on equations (18) and (19)

6: if GapΛ,1 ∪GapΛ,2 ̸= ∅, then
7: if p∗ > 0, then

8: EΛ,2 = EΛ,2 \GapΛ,2
9: Let S1 = Z1 \ EΛ,1 and S2 = Z2 \ EΛ,2

10: Solve model (11) for zj ∈ GapΛ,1, obtain δ∗Λ,1(zj), δ
∗
Λ,2(zj)

11: GapΛ,1 = {zj ∈ GapΛ,1 | δ∗Λ,1(zj) < 0 and δ∗Λ,2(zj) < 0}
12: EΛ,1 = EΛ,1 \GapΛ,1
13: else

14: EΛ,1 = EΛ,1 \GapΛ,1
15: Let S1 = Z1 \ EΛ,1 and S2 = Z2 \ EΛ,2

16: Solve model (11) for zj ∈ GapΛ,2, obtain δ∗Λ,1(zj), δ
∗
Λ,2(zj)

17: GapΛ,2 = {zj ∈ GapΛ,2 | δ∗Λ,1(zj) < 0 and δ∗Λ,2(zj) < 0}
18: EΛ,2 = EΛ,2 \GapΛ,2
19: end if

20: end if

21: Let S1 = Z1 \ EΛ,1, S2 = Z2 \ EΛ,2

22: Solve model (11) for zj ∈ (Z1 \ EΛ,1) ∪ (Z2 \ EΛ,2), obtain δ∗Λ,1(zj), δ
∗
Λ,2(zj)

23: Generate F̂Λ,1 and F̂Λ,2 based on equation (20)

Outputs: F̂Λ,1, F̂Λ,2

A training observation zj ∈ RΛ,0 ∩Z1 can be excluded if it is more in the interior of T ∗
Λ,2

rather than T ∗
Λ,1. In model (16), this is reflected in a positive s∗1(zj). Alternatively, a training

observation zj ∈ RΛ,0 ∩ Z2 can be excluded if it is more in the interior of T ∗
Λ,1 rather than

T ∗
Λ,2. In model (16), this is reflected in a positive s∗2(zj). The sets of the excluded training

observations are then represented as follows:

EΛ,1 = {zj ∈ RΛ,0 ∩ Z1|s∗1(zj) > 0}, EΛ,2 = {zj ∈ RΛ,0 ∩ Z2|s∗2(zj) > 0}. (17)

After excluding the training observations in the sets EΛ,1 ∪ EΛ,2, the overlap is minimized.

However, there may arise situations where the excluded training observations are located

beyond both frontiers. In other words, the excluded training observations are located in the

gap. To identify the excluded training observations that are located in the gap, model (11)

is solved by letting S1 = Z1 \EΛ,1 and S2 = Z2 \EΛ,2. Solving model (11) for every training

observation zj ∈ EΛ,1 ∪ EΛ,2, the optimized DDF measurements are δ∗Λ,1(zj) and δ∗Λ,2(zj).

The observations zj are collected into the gap set, denoted by GapΛ,l, if it satisfies

GapΛ,1 = {zj ∈ EΛ,1 | δ∗Λ,1(zj) ≤ 0 and δ∗Λ,2(zj) < 0}, (18)
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GapΛ,2 = {zj ∈ EΛ,2 | δ∗Λ,1(zj) < 0 and δ∗Λ,2(zj) ≤ 0}. (19)

If there are any excluded training observations located in the gap, then it means that

the overlap has been over-minimized. Then, we need to add back these excluded training

observations located in the gap provided that adding these observations back does not result

in additional overlap. In particular, the order in which gap sets GapΛ,1 and GapΛ,2 are added

is based on the group preference p∗. See steps 6-20 of Algorithm 1 for the specific procedures.

To identify the training observations that compose the soft frontiers, model (11) needs

to be solved by taking S1 = Z1 \ EΛ,1 and S2 = Z2 \ EΛ,2. Solve model (11) for every

training observation zj ∈ (Z1 \EΛ,1) ∪ (Z2 \EΛ,2). If the training observation zj has a DDF

measurement of 0, it is collected into the corresponding soft frontier sets:

F̂Λ,1 = {zj ∈ Z1 \ EΛ,1 | δ∗Λ,1(zj) = 0}, F̂Λ,2 = {zj ∈ Z2 \ EΛ,2 | δ∗Λ,2(zj) = 0}, (20)

where δ∗Λ,1(zj) and δ∗Λ,2(zj) are the optimized DDF measurements obtained from solving

model (11). All of the above is summarized in Algorithm 1.

3.5 Classification Rules

The constructed hard or soft frontiers can then be used to decide the group membership of

a new observation z0. Specifically, the group membership of a new observation z0 is decided

by its relative distances to the hard or soft frontiers. In particular, the relative distances of

(X(z0), Y (z0)) to the frontiers are obtained by solving model (11) for z0. Recall that if the

PFC method with hard frontiers is used, then S1 = FΛ,1 and S2 = FΛ,2; if the PFC method

with soft frontiers is used, then S1 = F̂Λ,1 and S2 = F̂Λ,2. The optimized DDF measurements

are δ∗Λ,1(z0) and δ∗Λ,2(z0).

The classification rules do neither distinguish between C and NC cases, nor do they

distinguish between hard and soft frontiers. The group membership is simply determined by

the magnitude of the optimized DDF measurements. Based on the magnitude of the relative

DDF measurements, the group membership of a new observation z0 is decided as follows:

Rule A.1: If δ∗Λ,1(z0) ≥ 0 and δ∗Λ,2(z0) < 0, then z0 belongs to Group 1 and I(z0) = 1;

Rule A.2: If δ∗Λ,1(z0) < 0 and δ∗Λ,2(z0) ≥ 0, then z0 belongs to Group 2 and I(z0) = 2;

Rule A.3: If δ∗Λ,1(z0) < 0 and δ∗Λ,2(z0) < 0, then the observation z0 is in the gap;

Rule A.4: If δ∗Λ,1(z0) ≥ 0 and δ∗Λ,2(z0) ≥ 0, then the observation z0 is in the overlap.
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The group membership of the observation z0 is clear and interpretable under the first two

rules. Rule A.1 illustrates that the group label of observation z0 is 1 because there exists a

training observation with smaller X and larger Y that still belongs to Group 1. Rule A.2

illustrates that the group label of observation z0 is 2 because a training observation with

larger X and smaller Y already belongs to Group 2.

If the observation z0 satisfies the conditions in rules A.3 and A.4, then the current in-

formation is insufficient to specify whether it belongs to Group 1 or Group 2. However, by

comparing the relative DDF measurements, we can give a reasonable suggestion as to which

group the observation may belong to.

Specifically, when the observation z0 is in the gap specified in Rule A.3, the closer it is

located to a frontier, the more similar it is inferred to be to that group. Therefore, z0 is

determined to belong to the group whose frontier is closest. That is, if 0 > δ∗Λ,1(z0) ≥ δ∗Λ,2(z0)

holds, then I(z0) = 1. By contrast, if δ∗Λ,1(z0) < δ∗Λ,2(z0) < 0 holds, then I(z0) = 2.

When the observation z0 is in the overlap specified in Rule A.4, the more interior it is

located within a frontier, the more similar it is inferred to be to that group. Therefore, z0 is

determined to belong to the group with the farthest frontier. That is, if δ∗Λ,1(z0) ≥ δ∗Λ,2(z0) ≥
0 holds, then I(z0) = 1. By contrast, if 0 ≤ δ∗Λ,1(z0) < δ∗Λ,2(z0) holds, then I(z0) = 2.

Classification rules A.1-A.4 are designed in a conservative way. However, in this way the

group membership of observations in gaps and overlaps (i.e., satisfying rules A.3 and A.4)

can be ambiguous. To provide a uniquely determined group membership for all observations,

the following classification rules are further designed based on some inferential information

for the observations in the gap and overlap:

Rule B.1: If δ∗Λ,1(z0) ≥ δ∗Λ,2(z0), then z0 belongs to Group 1 and I(z0) = 1;

Rule B.2: If δ∗Λ,1(z0) < δ∗Λ,2(z0), then z0 belongs to Group 2 and I(z0) = 2.

4 Experimental Analysis

4.1 Simulation Studies

In this subsection, an artificial data set is used to test the four proposed PFC methods,

namely the PFC methods with C-hard frontiers (PFC-CHard), the PFC methods with NC-

hard frontiers (PFC-NCHard), the PFC methods with C-soft frontiers (PFC-CSoft), and the
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PFC methods with NC-soft frontiers (PFC-NCSoft).

In the simulation, the observations from Groups 1 and 2 are generated from two bivariate

Normal density distributions N1(µ1,Σ1) and N2(µ2,Σ2), respectively. These two bivariate

Normal density distributions are characterized with the following parameters: µ1 = (7, 2),

Σ1 = ( 4 1
1 4 ), µ2 = (2, 7), Σ2 = ( 4 1

1 4 ). A graphical representation of the artificial data set

is depicted in Figure 5. The red diagonal crosses represent the observations belonging to

Group 1, while the blue dots represent the observations belonging to Group 2.

Figure 5: Illustration of the Simulated Data set
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Each time, the simulation generates 500 observations following N1(µ1,Σ1), and 500 ob-

servations following N2(µ2,Σ2). From the 500 observations in each group, 400 are used for

training and the remaining 100 for testing. This simulation is repeated 100 times and the

average performance is reported.

To implement the PFC methods, the monotonicity relation of attributes need to be made

explicit. However, in this simulation study, the monotonicity relation of attributes is not

explicitly given. As proposed in Section 3, the MSD model (1) can be used to differentiate

the attributes. The attribute a1 has a negative optimal weight value, while the attribute a2

has a positive one. Thus, attribute a1 should be considered as an input type and attribute

a2 as an output type.

The performance results of the four proposed PFC methods are summarized in Table

1. Columns 2-3 report the validation accuracy and the percentage of training observations

located in the overlap. Columns 4-5 report the prediction accuracy and the percentage of

testing observations located in the overlap and testing observations located in the gap. The

average CPU time for executing different PFC methods are reported in the last column.
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Horizontally, each row reports the average classification performances of a PFC method.

Table 1: Performance Results of the Simulation Study

PFC
Training Testing

CPU Time (s)
Accuracy Overlap Accuracy Overlap Gap

CHard 0.9766 0.0920 0.9740 0.0810 0.0035 15.3774

NCHard 0.9768 0.0530 0.9776 0.0389 0.0076 0.7552

CSoft 0.9818 0.0023 0.9773 0.0009 0.0105 18.6525

NCSoft 0.9887 0 0.9796 0 0.0252 1.4815

Four observations can be made from Table 1. First, a blind imposition of the convexity

axiom leads to additional overlap, but reduces the gap. From the PFC-NCHard method

to the PFC-CHard method the percentage of overlap during training increases from 5.30%

to 9.20%. This observation on overlap substantiates Proposition 3.2. As for the gap, its

percentage change is not revealed in the training process. However, the anticipated increase

in gap is reflected in the test sample, specifically from 0.35% to 0.76%. This substantiates

Proposition 3.3 to some extent.

Second, the use of soft frontiers can dramatically reduce the overlap without comprom-

ising the validation accuracy. In fact, it even improves the validation accuracy in this sim-

ulation. From the PFC-CHard method to the PFC-CSoft method, the overlap decreases

by 8.97% and the validation accuracy improves by 0.52%. For the NC case, the overlap

decreases from 5.30% to 0% and the validation accuracy improves by 1.19%.

Third, more overlap during training is indeed detrimental to the classification perform-

ance in this simulation. Put it differently, a smaller overlap during training normally trans-

lates into better performance during testing. From the PFC-CHard method to the PFC-

NCSoft method, the overlap during training keeps decreasing (from 9.20% to 0%), while the

prediction accuracy keeps improving (from 97.66% to 98.87%).

Fourth, while the PFC-NC methods would have required solving the complex BMIP

problem, the enumeration-based approach makes it much more computationally efficient.

Therefore, the PFC-C methods involve solving the LP problems with an average computa-

tional time of 17.0150 seconds. By contrast, the PFC-NC methods take an average of just

1.1184 seconds.

To sum up, the simulation results demonstrate that relaxing the unnecessary convexity

axiom can rather substantially reduce the overlap and thus improve the classification per-

formance. In addition, the use of soft frontiers can further reduce the overlap and improve
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the classification performance. Among the four proposed methods, the PFC-NCSoft method

achieves the best classification performance coupled with a good performance in terms of

computational time.

4.2 Experiments on a Real-life Data set

In this subsection, an experimental study on a real life data set is conducted to validate

the practical classification performance of the proposed PFC methods. It is worth noting

that this experimental study intends to show that the proposed PFC method can be a good

candidate for two-group classification, rather than defeating some of the well-established

classification methods already available.

4.2.1 Data Description and Experimental Design

A credit scoring data set provided by Yeh and Lien (2009) is used. This data set collects

data of 30000 credit card holders of a bank in Taiwan. All the observations are characterized

by 23 variables, including demographic characteristics, given credit limit, repayment status,

bill statement, and history of past payments.3

The data set is screened for observations that are not providing effective information.

First, if bills and payments for the last 6 months are zero, then the corresponding observa-

tions are considered as not providing effective information. Therefore, these observations are

removed from the sample. Second, if all payments in the last 5 months are delayed, but the

corresponding observations are registered as non-default, then these contradictory observa-

tions are removed from the sample. Third, if all payments in the last 5 months are made on

time, but the corresponding observations are found to be default, then these contradictory

observations are also removed from the sample. After removing 13928 observations according

to our selection criteria, the cleaned data set contains 16072 observations. The cleaned data

set contains 5492 defaulters and 10580 non-defaulters, which constitutes an unbalanced data

set. To respect the unbalanced nature of the problem, a stratified 10-fold cross-validation is

conducted.

The proposed PFC methods are designed for problems with monotonicity relations. Thus,

four attributes with monotonicity relations are extracted and constructed from the original 23

3The data set and its detailed descriptions are available at the UCI Machine Learning Repository database:
https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients.
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variables. A detailed description of these four attributes is displayed in Table 2. Specifically,

the first attribute (y1) is an output-type attribute. A larger value of y1 represents a better

credit history and therefore implies a lower probability of default. The other three attributes,

namely x1, x2 and x3, are input-type attributes. Smaller values of x1, x2, and x3 correspond

to shorter average delay in repayment, smaller overdue ratio, and smaller credit utilization

ratio, respectively. All these input-type attributes imply a lower probability of default.

Table 2: Description of the Constructed Attributes

Attributes Description

y1 Given credit limit: LIMIT BAL

x1 Average delay in repayment: Based on PAY 1 to PAY 6.
Only delayed repayment time is counted, due time repayment (i.e.,
values of -1 and -2) is not counted, and 0 is replaced by 0.5

x2 Total overdue amounts/LIMIT BAL: Based on BILL AMT1 to
BILL AMT6 and PAY AMT1 to PAY AMT6.
The overdue amount for month t is calculated by subtracting
PAY AMT(t+1) from BILL AMT(t). If the overdue amount is neg-
ative, replace it with 0.

x3 September credit utilization ratio: BILL AMT1/LIMIT BAL

In addition to the experiment on the whole cleaned data set, we are also interested in

investigating the effect of the unbalanced nature of the problem. Thus, three complementary

experiments with increased unbalanced ratios are also conducted. Specifically, the unbal-

anced ratios are 1:5, 1:10 and 1:20. Each time, the minority group randomly selects 100

defaulters from a total of 5492 defaulters, while the majority group randomly selects 500,

1000, and 2000 non-defaulters, respectively, from a total of 10580 non-defaulters. Each time,

a stratified 10-fold cross-validation is performed for each different unbalanced ratio. This pro-

cess is repeated 10 times, and the average performance is reported for different performance

measures.

The proposed four PFC methods are compared to in total eleven existing classification

methods. These eleven classification methods can be classified into two categories. One

category consists of three Data Envelopment Analysis-Discriminant Analysis (DEA-DA)

methods, namely, the basic DEA-DA (Sueyoshi, 1999), the extended DEA-DA (Sueyoshi,

2001), and the MIP DEA-DA (Sueyoshi, 2004). The DEA-DA method is essentially based

on the use of goal programming. Banker, Chang, and Cooper (2002) have argued that

researchers should avoid referring to goal programming models that parameterize prescribed
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functional forms as DEA models. This justifies why we ignore these basic DEA-DA methods

and their further developments in the methodological review supra.4 Instead, we only focus

on the three basic DEA-DA proposals of Sueyoshi (1999, 2001, 2004) in this empirical section.

The other category consists of 8 non-DEA methods, namely, MSD-DA, Two-stage MSD-DA,

linear DA, quadratic DA, logistic regression, decision tree, Gaussian SVM, and K-Nearest

Neighbour (KNN).5

The classification performance of these various classification methods is evaluated by

5 measures, namely, precision, recall, specificity, F2 score and G-mean. Among these, the

measures of precision, recall and specificity are calculated from the confusion matrix. The F2

score and G-mean are overall performance measures. The F2 score considers recall to be twice

as important as precision in calculating overall performance (Christen, Hand, and Kirielle

(2023)). This is because in the case of credit card default prediction, failing to identify

customers who will likely default is much worse than giving a false alarm with regard to

customers who will not default. G-mean is the geometric mean of recall and specificity.

4.2.2 Performance Results

The performance results of the whole cleaned data set are presented in Table 3. The first

block reports the performance results of four PFC methods. The second block report the

performance results of three DEA-DA methods. The third block report the performance

results of eight non-DEA classification methods. Columns 3-7 correspond to five performance

measures. In each column, the best result within a specific block is highlighted in bold.

Several observations can be made from the performance results reported in Table 3. First,

a comparison of the overall performance of the four proposed PFC methods reveals that the

findings of the simulation study are still valid in this experimental analysis. Specifically,

the relaxation of the convexity axiom improves the overall performance of the F2 score and

G-mean by between 7.06% and 16.73%. The adoption of soft frontiers improves the overall

performance by a more pronounced increase situated between 13.25% and 26.78%. Among

the four proposed methods, the PFC-NCSoft method achieves the best performance in terms

of both overall measures and it is well ahead of the second best PFC method.

4In the literature, DEA-DA has been methodologically refined in a variety of ways (see Lotfi and Mansouri
(2008); Boudaghi and Saen (2018) for details on successive developments). It has also been used quite widely
in empirical analysis (see Tsai, Lin, Cheng, and Lin (2009); Toloo, Farzipoor Saen, and Azadi (2015)).

5Of the 8 non-DEA methods, the code for the last six are directly exported from the Matlab Classification
Learner app. All other methods are coded in Matlab by the authors: these codes are available upon simple
request.
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Second, in terms of the performance of the different groups, from the PFC-CHard method

to the PFC-NCSoft method, the performance of identifying the defaulters continues to im-

prove dramatically, while the performance of predicting the non-defaulters deteriorates only

slightly. Specifically, from C to NC, recall increases by an average of 18.34%, while spe-

cificity decreases by an average of only 4.72%. From the hard frontiers to the soft frontiers,

recall increases by an average of 29.97%, while specificity decreases by an average of only

7.29%. Moreover, the difference between recall and specificity drops from 59.18% to 1.14%.

It implies that, from C to NC and from hard to soft frontiers, the PFC methods show a more

and more balanced performance in predicting different groups.

Table 3: The 10-fold cross validation performance on the whole data set

Precision Recall Specificity F2 G-Mean

PFC

CHard 0.8296 0.3689 0.9607 0.4150 0.5953

NCHard 0.8201 0.5430 0.9382 0.5823 0.7137

Csoft 0.7963 0.6593 0.9125 0.6828 0.7756

NCSoft 0.7350 0.8520 0.8405 0.8257 0.8462

DEA-DA

Basic 0.7621 0.7500 0.8784 0.7524 0.8117

Extended 0.7201 0.8598 0.8266 0.8277 0.8430

MIP 0.6568 0.7591 0.7940 0.7362 0.7764

Non-DEA

MSD DA 0.6606 0.9039 0.7590 0.8419 0.8283

Two-stage MSD DA 0.7214 0.8587 0.8279 0.8272 0.8432

Linear DA 0.8802 0.6890 0.9513 0.7203 0.8096

Quadratic DA 0.7983 0.7562 0.9009 0.7643 0.8254

Logitic Regression 0.8218 0.7522 0.9153 0.7651 0.8298

Decision Tree 0.8855 0.7536 0.9494 0.7768 0.8459

Gaussian SVM 0.8937 0.7566 0.9533 0.7805 0.8493

KNN 0.7730 0.7746 0.8819 0.7743 0.8265

Third, in comparison with the best performing DEA-DA method, i.e., the extended

DEA-DA method, the PFC-NCSoft method offers a more balanced performance, while being

competitive on overall performance. Specifically, the extended DEA-DA method performs

a little better in identifying defaulters, with a 0.78% higher recall. However, it deteriorates

in predicting non-defaulters, with a 1.40% lower specificity. Thus, the extended DEA-DA

method shows more difference in performance across groups.

Fourth, in comparison with the non-DEA classification methods, the PFC-NCSoft method

continues to offer a more balanced performance, while remaining competitive on overall per-

formance. Specifically, the MSD DA method has the highest F2 score (1.62% higher than

the PFC-NCSoft method), while the Gaussian SVM has the highest value of G-mean (0.3%

higher than the PFC-NCSoft method). However, the MSD DA method shows a difference
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of up to 14.49% in correctly predicting defaulters and non-defaulters (i.e., the difference

between recall and specificity). This difference for the Gaussian SVM method is even larger

and can be up to 19.68%.

Table 4: Performance results under different unbalanced ratios

Methods
G-Mean Recall Specificity

1:5 1:10 1:20 1:5 1:10 1:20 1:5 1:10 1:20

PFC

CHard 0.7768 0.7335 0.7325 0.6460 0.5700 0.5650 0.9352 0.9474 0.9548

NCHard 0.8065 0.7771 0.7681 0.7290 0.6620 0.6340 0.8934 0.9177 0.9330

CSoft 0.8314 0.8020 0.7945 0.7660 0.6930 0.6810 0.9038 0.9316 0.9278

NCSoft 0.8472 0.8429 0.8302 0.8150 0.7990 0.7500 0.8810 0.8895 0.9196

DEA-DA
Basic 0.7606 0.7346 0.7088 0.6230 0.5640 0.5150 0.9288 0.9579 0.9759

Extended 0.8226 0.8074 0.7858 0.7470 0.6890 0.6380 0.9060 0.9465 0.9687

MIP 0.7882 0.7502 0.6828 0.7710 0.7660 0.7510 0.8070 0.7402 0.6355

Non-DEA

MSD DA 0.8243 0.8188 0.8014 0.7880 0.7270 0.6730 0.8624 0.9226 0.9550

Two-stage MSD DA 0.8236 0.8075 0.7853 0.7500 0.6890 0.6370 0.9046 0.9468 0.9690

Linear DA 0.7657 0.7704 0.7803 0.6120 0.6140 0.6300 0.9588 0.9675 0.9681

Quadratic DA 0.7954 0.7839 0.7817 0.6850 0.6460 0.6350 0.9240 0.9520 0.9639

Logiatic Regression 0.7572 0.7263 0.6793 0.5950 0.5350 0.4660 0.9646 0.9871 0.9940

Decision Tree 0.7698 0.7607 0.6986 0.6360 0.6000 0.4980 0.9320 0.9657 0.9835

Gaussian SVM 0.6233 0.5669 0.4799 0.3960 0.3260 0.2320 0.9842 0.9970 0.9987

KNN 0.7747 0.7604 0.7146 0.6450 0.6010 0.5230 0.9312 0.9631 0.9785

The performance results under different unbalanced ratios are summarized in Table 4.

When confronted with unbalanced data sets, some classification methods tend to trivialize

the minority group and pursue a good overall performance by predicting the majority group

as correctly as possible. Therefore, we pay special attention to the classification perform-

ance of the default (minority) and non-default (majority) groups, corresponding to recall

and specificity, respectively. When characterizing overall performance, we report G-mean

calculated based on recall and specificity, rather than F2 scores calculated based on recall

and precision.

The first two findings related to the PFC methods derived from Table 3 are still observed

from Table 4. The last two findings have changed slightly. Specifically, in terms of the

overall performance, the PFC-NCSoft method becomes the one that consistently performs

best compared to all the other methods. Moreover, the performance superiority of the

PFC-NCSoft method increases as the unbalanced ratio increases. When focusing on recall,

the PFC-NCSoft method is also consistently the best performing model. The only minor

exception is that the recall of the MIP DEA-DA method is 0.1% higher when the unbalanced

ratio is 1:20. The specificity of the PFC-NCSoft method is not as high as the other methods,

but its difference with recall is smaller, which implies a more balanced performance.

The performance results in Table 4 are further visualized in Figure 6. The vertical axes of

Figures 6(a) and 6(b) report the G-mean and recall, respectively. The marker size in Figure

6(a) represents the differences between recall and specificity. When the marker is smaller,
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then the difference is smaller, which implies a more balanced performance. The marker size

in Figure 6(b) shows the performance difference from the best performing method. When

the marker is smaller, then the difference is smaller, indicating a better overall performance.
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Figure 6: Performance comparison under different unbalanced ratios

Three key messages can be deduced from Figure 6. First, the overall performance of the

PFC method with less overlap is less negatively affected by the increase in the unbalanced

ratio. The overlap decreases from the PFC-CHard method to the PFC-NCSoft method.

Thus, from left to right in Figure 6, the overall performance polyline for an unbalanced

ratio of 1:20 is converging with the overall performance polyline for an unbalanced ratio of

1:5. Second, under different unbalanced ratios, the PFC-NCSoft method always achieves the

best overall performance and achieves a fairly balanced performance. Third, under different

unbalanced ratios, the PFC-NCSoft method always has the best recall coupled with the best

overall performance. Note that the MIP DEA-DA method also performs well in terms of

recall, but rather poorly in terms of overall performance.

In general, the proposed PFC-NCSoft method shows a very competitive overall perform-

ance. In addition, it shows a unique advantage in the case of unbalanced data sets, i.e., it

achieves a more balanced performance in predicting two unbalanced groups.

5 Conclusions

Classification is one of the most important and challenging problems in machine learning.

Despite recent advances in the MP-based classification methods, there remains the need for

development of a simpler, automated, and interpretable method. The PFC method generates
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a nonlinear separating boundary based on part of the training observations. Moreover, the

shape of the generated separating boundary depends largely on the data and does not need

to be pre-specified. In this sense, the PFC method should be a good candidate in estimating

the separating boundary whose shape is mostly unspecified in applications. However, the

PFC method has not yet been able to prevail as a standard classification tool.

In this contribution, three methodological contributions result in the construction of

a general PFC method with competitive classification performance. First, for situations

where the monotonicity relation is not available, a MSD model is proposed to decide on the

monotonicity relation prevailing for the attributes. Second, the axiom of convexity that has

previously been blindly retained can be relaxed. By relaxing the convexity axiom, we propose

a PFC method that generates a pair of NC frontiers with, among others, substantially less

overlap. We derive some results on the relations between overlap and gap under convexity and

nonconvexity. Third, for cases where overlap exists, an algorithm is designed to minimize the

overlap so that the training observations in the overlap are classified as correctly as possible,

while all training observations that have been correctly classified remain correctly classified.

In this sense, the PFC method with hard frontiers is extended to the case of soft frontiers.

Both simulation studies and experimental analysis show that the overall performance

of the proposed PFC methods is improving from C to NC and from hard to soft frontiers

due to the effective reduction of overlap, as somehow anticipated in our theoretical results.

Experimental analysis of credit card data shows that the PFC-NCSoft method is quite com-

petitive in terms of overall performance compared to some existing classification methods.

In addition, the experimental results also demonstrate that the PFC-NCSoft method has a

unique advantage on unbalanced data sets.

There remain some directions for future investigation. Just as relaxing the convexity

axiom inherited from production theory delivers promising results, one may wonder whether

it is also possible to relax the free disposability axiom that is also inherited from production

theory, and to which extent this could further improve the classification performance of the

proposed PFC method. In production analysis, one recent attempt to relax the free dispos-

ability axiom is developed in Briec, Kerstens, and Van de Woestyne (2016) and empirically

implemented in Briec, Kerstens, and Van de Woestyne (2018). Another direction worth ex-

ploring is to test the proposed PFC methods with even more unbalanced data sets to check

the consistency of its advantage on unbalanced data. Finally, one may wonder to which

extent more robust versions of the PFC methods (e.g., order-m or order-α) would improve

the classification performance.
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Appendices: Supplementary Material

A Appendix: Proofs

Proof of Proposition 3.1:

Proof. Let (x0, y0) ∈ T ∗
NC,1, then there are weights λj0 = 1 and λj = 0 (zj ∈ S1, j ̸= j0)

such that
∑

zj∈S1
λjX(zj) ≤ x0,

∑
zj∈S1

λjY (zj) ≥ y0 and
∑

zj∈S1
λj = 1. Since λj0 = 1 and

λj = 0 (zj ∈ S1, j ̸= j0) also satisfy the constraint λj ≥ 0, (x0, y0) ∈ T ∗
C,1, thus T

∗
NC,1 ⊆ T ∗

C,1.

Using arguments paralleling the above, one can prove that T ∗
NC,2 ⊆ T ∗

C,2.

Proof of Proposition 3.2:

Proof. Using Proposition 3.1, let ∆1 = T ∗
C,1 \ T ∗

NC,1 and ∆2 = T ∗
C,2 \ T ∗

NC,2. Thus, T ∗
C,1 =

T ∗
NC,1 ∪∆1, T

∗
C,2 = T ∗

NC,2 ∪∆2, while T
∗
NC,1 ∩∆1 = ∅ and T ∗

NC,2 ∩∆2 = ∅. The overlap under

the C case, T ∗
C,Overlap, can be expressed as a union of several parts as follows:

T ∗
C,Overlap = T ∗

C,1 ∩ T ∗
C,2 = T ∗

C,1 ∩
(
T ∗
NC,2 ∪∆2

)
=

(
T ∗
C,1 ∩ T ∗

NC,2

)
∪
(
T ∗
C,1 ∩∆2

)
=

[(
T ∗
NC,1 ∪∆1

)
∩ T ∗

NC,2

]
∪
[(
T ∗
NC,1 ∪∆1

)
∩∆2

]
=

[(
T ∗
NC,1 ∩ T ∗

NC,2

)
∪
(
∆1 ∩ T ∗

NC,2

)]
∪
[(
T ∗
NC,1 ∩∆2

)
∪ (∆1 ∩∆2)

]
= T ∗

NC,Overlap ∪
(
∆1 ∩ T ∗

NC,2

)
∪
(
T ∗
NC,1 ∩∆2

)
∪ (∆1 ∩∆2) .

(A1)

Thus, T ∗
NC,Overlap ⊆ T ∗

C,Overlap.

Proof of Corollary 3.1:

Proof. We first prove that if T ∗
C,Overlap ̸= ∅, T ∗

NC,Overlap ̸= ∅, T ∗
C,1 = T ∗

NC,1 and T ∗
C,2 = T ∗

NC,2

hold, then T ∗
C,Overlap = T ∗

NC,Overlap ̸= ∅ holds.

Using Proposition 3.1, let ∆1 = T ∗
C,1\T ∗

NC,1 and ∆2 = T ∗
C,2\T ∗

NC,2. Since T
∗
C,1 = T ∗

NC,1 and

T ∗
C,2 = T ∗

NC,2, we have ∆1 = ∆2 = ∅. Correspondingly, ∆1 ∩ T ∗
NC,2, T

∗
NC,1 ∩∆2 and ∆1 ∩∆2

are all empty. With expression (A1), T ∗
C,Overlap = T ∗

NC,Overlap holds. Since T ∗
C,Overlap ̸= ∅ and

T ∗
NC,Overlap ̸= ∅, naturally T ∗

C,Overlap = T ∗
NC,Overlap ̸= ∅ holds, as desired.

We then prove that if T ∗
C,Overlap = T ∗

NC,Overlap ̸= ∅ holds, then T ∗
C,Overlap ̸= ∅, T ∗

NC,Overlap ̸=
∅, T ∗

C,1 = T ∗
NC,1 and T ∗

C,2 = T ∗
NC,2 hold.

Since T ∗
C,Overlap = T ∗

NC,Overlap ̸= ∅, T ∗
C,Overlap ̸= ∅ and T ∗

NC,Overlap ̸= ∅ naturally hold. The

A1



nonempty overlaps under the NC and the C cases can be represented as follows:

T ∗
NC,Overlap = T ∗

NC,1 ∩ T ∗
NC,2 =

{
(x, y) ∈ Rm × Rs |

∑
zj∈S1

λj,1X(zj) ≤ x ≤
∑
zj∈S2

λj,2X(zj),

∑
zj∈S1

λj,1Y (zj) ≥ y ≥
∑
zj∈S2

λj,2Y (zj),
∑
zj∈S1

λj,1 =
∑
zj∈S2

λj,2 = 1, λj,1, λj,2 ∈ {0, 1}

}
,

(A2)

T ∗
C,Overlap = T ∗

C,1 ∩ T ∗
C,2 =

{
(x, y) ∈ Rm × Rs |

∑
zj∈S1

λj,1X(zj) ≤ x ≤
∑
zj∈S2

λj,2X(zj),

∑
zj∈S1

λj,1Y (zj) ≥ y ≥
∑
zj∈S2

λj,2Y (zj),
∑
zj∈S1

λj,1 =
∑
zj∈S2

λj,2 = 1, λj,1, λj,2 ≥ 0

}
.

(A3)

Let the sets of all strongly efficient observations under the NC case in S1 and S2 be:

S ′
NC,1 =

{
zj ∈ S1 | x ≤ X(zj), y ≥ Y (zj) and x ̸= X(zj), y ̸= Y (zj) ⇒ (x, y) /∈ T ∗

NC,1

}
, (A4)

S ′
NC,2 =

{
zj ∈ S2 | x ≥ X(zj), y ≤ Y (zj) and x ̸= X(zj), y ̸= Y (zj) ⇒ (x, y) /∈ T ∗

NC,2

}
. (A5)

Moreover, T ∗
NC,Overlap is only determined by the strongly efficient observations that are

located in the overlap. Let S ′′
NC,1 and S ′′

NC,2 represent the subsets containing all strongly

efficient observations that are located in T ∗
C,Overlap. Specifically, S ′′

NC,1 = {zj ∈ S ′
NC,1 |

(X(zj), Y (zj)) ∈ T ∗
NC,Overlap}, and S ′′

NC,2 = {zj ∈ S ′
NC,2 | (X(zj), Y (zj)) ∈ T ∗

NC,Overlap}.

Instead of using all the training observations in S1 and S2, the estimates T ∗
NC,Overlap and

T ∗
C,Overlap can now be represented as follows:

T ∗
NC,Overlap =

{
(x, y) ∈ Rm × Rs |

∑
zj∈S′′

NC,1

λj,1X(zj) ≤ x ≤
∑

zj∈S′′
NC,2

λj,2X(zj),

∑
zj∈S′′

NC,1

λj,1Y (zj) ≥ y ≥
∑

zj∈S′′
NC,2

λj,2Y (zj),
∑

zj∈S′′
NC,1

λj,1 =
∑

zj∈S′′
NC,2

λj,2 = 1, λj,1, λj,2 ∈ {0, 1}

}
,

(A6)

T ∗
C,Overlap =

{
(x, y) ∈ Rm × Rs |∑

zj∈S′′
NC,1

λj,1X(zj) +
∑

zj∈S′
NC,1\S

′′
NC,1

λj,1X(zj) ≤ x ≤
∑

zj∈S′′
NC,2

λj,2X(zj) +
∑

zj∈S′
NC,2\S

′′
NC,2

λj,2X(zj),

∑
zj∈S′′

NC,1

λj,1Y (zj) +
∑

zj∈S′
NC,1\S

′′
NC,1

λj,1Y (zj) ≥ y ≥
∑

zj∈S′′
NC,2

λj,2Y (zj) +
∑

zj∈S′
NC,2\S

′′
NC,2

λj,2Y (zj),

∑
zj∈S′′

NC,1

λj,1 +
∑

zj∈S′
NC,1\S

′′
NC,1

λj,1 =
∑

zj∈S′′
NC,2

λj,2 +
∑

zj∈S′
NC,2\S

′′
NC,2

λj,2 = 1, λj,1, λj,2 ≥ 0

}
.

(A7)
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Since T ∗
NC,Overlap ̸= ∅, there exist at least one strongly efficient observation zj0,1 ∈

S ′′
NC,1 and at least one strongly efficient observation zj0,2 ∈ S ′′

NC,2 such that the constraints

X(zj0,1) ≤ X(zj0,2) and Y (zj0,1) ≥ Y (zj0,2) are satisfied. That is, part of T ∗
NC,Overlap repres-

ented by zj0,1 and zj0,2 can be described as: T ∗
NC,Overlap(zj0,1, zj0,2) = {(x, y) ∈ Rm × Rs |

X(zj0,1) ≤ x ≤ X(zj0,2), Y (zj0,1) ≥ y ≥ Y (zj0,2)}.

Assuming that there is another strongly efficient observation zj1,1 ∈ S ′′
NC,1, then the

partial overlap under the NC and the C cases are described as follows:

T ∗
NC,Overlap (zj0,1, zj1,1, zj0,2) = {(x, y) ∈ Rm × Rs | X(zj0,1) ≤ x ≤ X(zj0,2), Y (zj0,1) ≥ y ≥ Y (zj0,2)}

∪ {(x, y) ∈ Rm × Rs | X(zj1,1) ≤ x ≤ X(zj0,2), Y (zj1,1) ≥ y ≥ Y (zj0,2)},
(A8)

T ∗
C,Overlap (zj0,1, zj1,1, zj0,2) =

⋃
λ∈[0,1]

T ∗
NC,Overlap(λzj0,1 + (1− λ)zj1,1, zj0,2)

=
⋃

λ∈[0,1]

{(x, y) ∈ Rm × Rs | λX(zj0,1) + (1− λ)X(zj1,1) ≤ x ≤ X(zj0,2), λY (zj0,1) + (1− λ)Y (zj1,1) ≥ y ≥ Y (zj0,2)}.
(A9)

Apparently, the additional strongly efficient observation zj1,1 ∈ S ′′
NC,1 makes expression

(A8) a proper subset of expression (A9). Using similar arguments, one can prove that any

additional strongly efficient observations in S ′′
NC,1 and S ′′

NC,2 leads to T ∗
NC,Overlap ⊂ T ∗

C,Overlap,

which contradicts with T ∗
NC,Overlap = T ∗

C,Overlap. Thus, there can be only one strongly efficient

observation from each group located in the overlap so that T ∗
NC,Overlap = T ∗

C,Overlap holds.

The estimates T ∗
NC,Overlap and T ∗

C,Overlap can be now expressed as follows:

T ∗
NC,Overlap = {(x, y) ∈ Rm × Rs | X(zj0,1) ≤ x ≤ X(zj0,2), Y (zj0,1) ≥ y ≥ Y (zj0,2)} (A10)

T ∗
C,Overlap =

{
(x, y) ∈ Rm × Rs |

λj0,1X(zj0,1) +
∑

zj∈S′
NC,1\{zj0,1}

λj,1X(zj) ≤ x ≤ λj0,2X(zj0,2) +
∑

zj∈S′
NC,2\{zj0,2}

λj,2X(zj),

λj0,1Y (zj0,1) +
∑

zj∈S′
NC,1\{zj0,1}

λj0,1Y (zj) ≥ y ≥ λj0,2Y (zj0,2) +
∑

zj∈S′
NC,2\{zj0,2}

λj,2Y (zj),

λj0,1 +
∑

zj∈S′
NC,1\{zj0,1}

λj,1 = λj0,2 +
∑

zj∈S′
NC,2\{zj0,2}

λj,2 = 1, λj0,1, λj0,2, λj,1, λj,2 ≥ 0

}
.

(A11)

If S ′
NC,1 \ {zj0,1} ̸= ∅ or S ′

NC,2 \ {zj0,2} ̸= ∅, then expression (A10) will be a proper subset

of expression (A11), which contradicts with T ∗
NC,Overlap = T ∗

C,Overlap. Thus, S
′
NC,1 \ {zj0,1} =

S ′
NC,2 \{zj0,2} = ∅ must be met to ensure that T ∗

NC,Overlap = T ∗
C,Overlap holds. In other words,

there should be no strongly efficient observation located outside the overlap.

A3



Summarizing the arguments above, T ∗
NC,Overlap = T ∗

C,Overlap implies that there is only one

strongly efficient observation for each group and they are located in the overlap. When there

is only one strongly efficient observation for each group, T ∗
C,1 = T ∗

NC,1 and T ∗
C,2 = T ∗

NC,2 hold.

Thus, T ∗
C,Overlap = T ∗

NC,Overlap ̸= ∅ if and only if T ∗
C,Overlap ̸= ∅, T ∗

NC,Overlap ̸= ∅, T ∗
C,1 =

T ∗
NC,1 and T ∗

C,2 = T ∗
NC,2 hold.

Proof of Proposition 3.3:

Proof. Using Proposition 3.1, let ∆1 = T ∗
C,1 \ T ∗

NC,1 and ∆2 = T ∗
C,2 \ T ∗

NC,2. That is,

T ∗
C,1 = T ∗

NC,1 ∪ ∆1, T
∗
C,2 = T ∗

NC,2 ∪ ∆2, while T ∗
NC,1 ∩ ∆1 = ∅ and T ∗

NC,2 ∩ ∆2 = ∅. With

∆1 and ∆2, we have T ∗
C,1 ∪ T ∗

C,2 =
(
T ∗
NC,1 ∪∆1

)
∪
(
T ∗
NC,2 ∪∆2

)
= T ∗

NC,1 ∪ T ∗
NC,2 ∪∆1 ∪∆2,

therefore
(
T ∗
C,1 ∪ T ∗

C,2

)
⊇

(
T ∗
NC,1 ∪ T ∗

NC,2

)
. Since

(
T ∗
C,1 ∪ T ∗

C,2

)
⊇

(
T ∗
NC,1 ∪ T ∗

NC,2

)
, define ∆ =(

T ∗
C,1 ∪ T ∗

C,2

)
\
(
T ∗
NC,1 ∪ T ∗

NC,2

)
. Correspondingly,

(
T ∗
NC,1 ∪ T ∗

NC,2

)∁
=

[(
T ∗
C,1 ∪ T ∗

C,2

)
\∆

]∁
=[(

T ∗
C,1 ∪ T ∗

C,2

)
∩∆∁

]∁
=

(
T ∗
C,1 ∪ T ∗

C,2

)∁ ∪∆. Thus, T ∗
C,Gap ⊆ T ∗

NC,Gap.

Proof of Corollary 3.2:

Proof. Using Proposition 3.1, define ∆1 = T ∗
C,1 \ T ∗

NC,1 and ∆2 = T ∗
C,2 \ T ∗

NC,2. Then,

T ∗
C,1 \ T ∗

NC,1 ⊆ T ∗
NC,2 can be expressed as ∆1 ⊆ T ∗

NC,2. Similarly, T ∗
C,2 \ T ∗

NC,2 ⊆ T ∗
NC,1 can be

expressed as ∆2 ⊆ T ∗
NC,1.

We first prove that if ∆1 ⊆ T ∗
NC,2 and ∆2 ⊆ T ∗

NC,1 hold, then T ∗
NC,Gap = T ∗

C,Gap holds.

Since ∆1 ⊆ T ∗
NC,2, we have ∆1 ∪ T ∗

NC,2 = T ∗
NC,2. Correspondingly with ∆2 ⊆ T ∗

NC,1, we

have ∆2 ∪ T ∗
NC,1 = T ∗

NC,1. With ∆1 and ∆2, we also have T ∗
C,1 ∪ T ∗

C,2 =
(
T ∗
NC,1 ∪∆1

)
∪(

T ∗
NC,2 ∪∆2

)
= T ∗

NC,1 ∪T ∗
NC,2 ∪∆1 ∪∆2 =

(
T ∗
NC,1 ∪∆2

)
∪
(
T ∗
NC,2 ∪∆1

)
. Since ∆1 ∪T ∗

NC,2 =

T ∗
NC,2 and ∆2 ∪ T ∗

NC,1 = T ∗
NC,1, therefore T ∗

C,1 ∪ T ∗
C,2 = T ∗

NC,1 ∪ T ∗
NC,2. Correspondingly,(

T ∗
C,1 ∪ T ∗

C,2

)∁
=

(
T ∗
NC,1 ∪ T ∗

NC,2

)∁
. Thus, T ∗

C,Gap = T ∗
NC,Gap holds, as desired.

We then prove that if T ∗
C,Gap = T ∗

NC,Gap holds, then ∆1 ⊆ T ∗
NC,2 and ∆2 ⊆ T ∗

NC,1

hold. T ∗
C,Gap = T ∗

NC,Gap can be expressed as
(
T ∗
C,1 ∪ T ∗

C,2

)∁
=

(
T ∗
NC,1 ∪ T ∗

NC,2

)∁
. There-

fore, T ∗
C,1 ∪ T ∗

C,2 = T ∗
NC,1 ∪ T ∗

NC,2 holds. Since T
∗
C,1 ∪ T ∗

C,2 can be expressed as
(
T ∗
NC,1 ∪∆1

)
∪(

T ∗
NC,2 ∪∆2

)
=

(
T ∗
NC,1 ∪ T ∗

NC,2

)
∪ (∆1 ∪∆2), it follows that

(
T ∗
NC,1 ∪ T ∗

NC,2

)
∪ (∆1 ∪∆2) =

T ∗
NC,1 ∪ T ∗

NC,2. That is, ∆1 ∪∆2 ⊆ T ∗
NC,1 ∪ T ∗

NC,2.

According to the transitive relation, since ∆1 ⊆ (∆1∪∆2) and (∆1∪∆2) ⊆ (T ∗
NC,1∪T ∗

NC,2),

therefore ∆1 ⊆ (T ∗
NC,1 ∪ T ∗

NC,2). Since ∆1 ∩ T ∗
NC,1 = ∅, therefore ∆1 ⊆ T ∗

NC,2, as desired.

Using arguments paralleling the above, one can prove that ∆2 ⊆ T ∗
NC,1.

Thus, T ∗
NC,Gap = T ∗

C,Gap if and only if T ∗
C,1 \ T ∗

NC,1 ⊆ T ∗
NC,2 and T ∗

C,2 \ T ∗
NC,2 ⊆ T ∗

NC,1.
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