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Abstract

The agricultural sector is currently confronted with the 

challenge to reduce greenhouse gas (GHG) emissions, 

whilst maintaining or increasing production. Energy- 

saving technologies are often proposed as a partial so-

lution, but the evidence on their ability to reduce GHG 

emissions remains mixed. Production economics provides 

methodological tools to analyse the nexus of agricultural 

production, energy use and GHG emissions. Convexity is 

predominantly maintained in agricultural production eco-

nomics, despite various theoretical and empirical reasons 

to question it. Employing non- convex and convex frontier 

frameworks, this contribution evaluates energy productiv-

ity change (the ratio of aggregate output change to energy 

use change) and GHG emission intensity change (the ratio 

of GHG emission change to polluting input change) using 

Hicks- Moorsteen productivity formulations. We consider 

GHG emissions as by- products of the production process 

by using a multi- equation model. Given our empirical 

specification, non- convex and convex Hicks- Moorsteen 

indices can coincide under certain circumstances, which 

leads to a series of theoretical equivalence results. The 

empirical application focuses on 1,510 observations of 

Dutch dairy farms for the period of 2010– 2019. The results 
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1 |  INTRODUCTION

The agricultural sector is currently facing the challenge to reduce greenhouse gas (GHG) 
emissions, whilst maintaining or increasing production. Agriculture contributes almost one 
quarter of total GHG emissions (FAO, 2014). Energy- saving technologies are often proposed 
as a way to reduce GHG emissions in agriculture (Schneider & Smith,  2009). They can in 
theory decrease GHG emissions per unit produced, since they can decrease the requirements 
for energy use, a polluting input, per unit produced. In practice, however, these energy- saving 
technologies do not necessarily lead to a decrease of energy per unit produced, because of 
slower technology adoption among laggards, which furthermore can still be associated with 
energy- wasting behaviour because of the rebound effect (Pan et al., 2021). Moreover, GHG 
emissions per unit of polluting inputs, consisting of not only energy, but also for example herd 
size, fertilisers and feed, can still increase.

Analysing energy productivity change and GHG emission intensity change can provide 
useful insights on the interplay between agricultural production, energy use and GHG emis-
sions. Energy productivity change can be defined as the ratio of aggregate output change to 
energy use change, and GHG emission intensity can be defined as the ratio of GHG emission 
change to polluting input change. This paper develops an analytical framework to evaluate 
energy productivity change and GHG emission intensity change in the agricultural sector.

Production economics provides a suitable methodological toolbox to analyse energy produc-
tivity change and GHG emission intensity change. This field is concerned with the appropriate 
modelling of the production relationship between the inputs used and outputs produced. Energy 
use is one of the conventional inputs to produce conventional outputs. The axiomatic properties 
assigned to analyse the conversion of conventional inputs to conventional outputs have been 
thoroughly studied (e.g., Färe & Primont, 1995), which allows assessment of energy productivity 
growth. GHG emissions are pollutants that occur as by- products in the production process. 
Axiomatic treatment of pollutants has been heavily debated, but the multi- equation modelling 
approach proposed by Murty et al.  (2012) is currently considered the most promising.1 Such 
appropriate modelling permits assessment of GHG emission intensity growth.

In spite of these methodological advances, applications to the agricultural sector over-
whelmingly use the basic convexity assumption when estimating the production technology. 
However, there are theoretical and empirical reasons to question the convexity assumption.

 1Surveys on how to model pollutants are available in Dakpo et al. (2016), Ancev et al. (2017), and Dakpo and Ang (2019).

show a positive association between energy productivity 

change and GHG emission intensity change, which calls 

into question the potential of on- farm, energy- efficiency- 

increasing measures to reduce GHG emission intensity.
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494 |   ANG et al.

Theoretically, there can be indivisibilities in inputs and outputs, economies of scale and 
economies of specialisation (that play a role in the new growth theory: e.g., Romer, 1990 on 
non- rival inputs), as well as externalities. Seminal contributions to axiomatic production the-
ory indicate that the cost function is convex in the outputs if and only if technology is convex 
(e.g., Jacobsen  [1970, Corollary 5.5]). Thus, using contraposition, the cost function is non- 
convex if and only if technology is non- convex: Kerstens and Van de Woestyne (2021) illustrate 
that the gap between convex and non- convex costs may be very substantial.

Empirically, various studies in agricultural economics contain evidence about the potential 
relevance of non- convexities. Paris et al. (1970) report concave isoquants in the hay and con-
centrates inputs space for whole milk and skimmed milk. Brokken (1977) similarly summarises 
three studies revealing that there are concave isoquants in the concentrates and roughage inputs 
space in beef production. Bhide et al. (1980) also report at least partially concave isoquants in 
the concentrate and corn silage input space that best explain the relationship in beef gain pro-
duction. Finally, Freeze and Hironaka  (1990) report limited substitution of alfalfa hay and 
concentrate in beef feeding diets resulting in a forage- concentrate weight gain isoquant that are 
concave to the origin in the middle range. Despite the empirical relevance of non- convexities 
in experimental and agronomical data in agriculture, the large majority of the empirical appli-
cations assumes a convex technology. Recent exceptions empirically considering a non- convex 
technology include Ruijs et al.  (2013), Ruijs et al.  (2017), Ang and Kerstens  (2017) and Ang 
et al. (2018). General reflections on the role of non- convexity in ecosystems and agriculture are 
found in Dasgupta and Mähler (2003) and Brown et al. (2011), among others.

Our contributions are fourfold. First, using a production economics perspective, we anal-
yse energy productivity change and GHG emission intensity change side- by- side. A particular 
advantage of this approach is its appropriate consideration of, on the one hand, the conversion 
of conventional inputs to conventional outputs and, on the other hand, the GHG emissions 
occurring as a by- product in this process. Employing Hicks- Moorsteen productivity formula-
tions (Bjurek, 1996), the aggregations in the various components are grounded in production 
theory. Following Murty et al. (2012), we consider GHG emissions as by- products of the pro-
duction process using multi- equation modelling.

Second, in contrast to the prevailing literature, we assume a non- convex technology in 
addition to the more traditional convex technology. To this end, we estimate the production 
technology using a free disposal hull (FDH) (Deprins et al., 1984). FDH is a non- parametric 
approach that only relies on minimal assumptions. Such a non- convex technology has been 
rarely employed in a productivity index context. Examples of such studies include Diewert 
and Fox (2014), Kerstens and Van de Woestyne (2014a), Ang and Kerstens (2017) and Kerstens 
et al. (2018), among others.

Third, we show that convex and non- convex Hicks- Moorsteen index results can be identical 
under certain conditions, which is the case for several components in our empirical analysis. 
This leads to a series of new theoretical results on the conditions under which convex and 
non- convex Hicks- Moorsteen productivity indices coincide. While theoretical relations be-
tween, for instance, Hicks- Moorsteen and Malmquist productivity indices are wellestablished 
(see, e.g., Kerstens & Van de Woestyne [2014a, Section 2.4] for a survey), we are unaware of 
any theoretical results regarding the equivalence of a productivity index under convexity and 
non- convexity. To the best of our knowledge, our results are new to the productivity index 
literature.

Fourth, merging a comprehensive accountancy data set with a unique data set with GHG 
emission estimates, we illustrate our approach with an application to a large sample of 
Dutch dairy farms for the years 2010– 2019. The European Energy Efficiency Directive fo-
cuses on increasing energy efficiency and reduction of the use of fossil fuels (Moerkerken 
et al., 2021). The Dutch dairy sector in particular has signed several covenants that target in-
creases in energy- efficiency, which have been in place in the studied period. There have been 
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    | 495ENERGY PRODUCTIVITY AND GHG EMISSION INTENSITY

(so far unsuccessful) calls for making the Dutch dairy chain energy neutral (Gebrezgabher 
et al., 2012). Furthermore, the dairy sector contributes substantially to GHG emissions in 
the Netherlands (Ruyssenaars et al.,  2021). As a result, the Dutch dairy sector is a good 
candidate for a case study.

The remainder of the current paper unfolds as follows. Section 2 describes the theoretical 
framework, in which we provide a Hicks- Moorsteen formulation of energy productivity 
change and GHG emission intensity change. This is followed by the description of the non- 
convex method in Section 3, in which we establish the equivalence results between non- convex 
and convex Hicks- Moorsteen productivity indices, and by a brief description of the data set 
of Dutch dairy farms in Section 4. Subsequently, we show the empirical results in Section 5. 
Section 6 concludes.

2 |  TH EORETICA L FRA M EWOR K

Balk (2003) states that total factor productivity (TFP) change, the most encompassing measure 
of productivity change, is the ‘real’ component of profitability change. Therefore, productivity 
is a key component of profitability and it is an important driver of changes in living stand-
ards. TFP growth can be conceived as an index number that captures any output growth that 
is unexplained by input growth (Hulten, 2001). Russell  (2018) defines theoretical productiv-
ity indices as known and non- stochastic, but unspecified. The Malmquist productivity index 
(Caves et al., 1982) and the Hicks- Moorsteen productivity index (Bjurek, 1996) are prime ex-
amples. The Malmquist productivity index measures the local shift of the production frontier, 
while the Hicks- Moorsteen productivity index is a ratio of an aggregate output index to an 
aggregate input index. The current contribution focuses on the Hicks- Moorsteen productivity 
formulation.

Our Hicks- Moorsteen productivity formulation has two key advantages in comparison to 
the Malmquist productivity index formulation. First, the Hicks- Moorsteen TFP index is mul-
tiplicatively complete (O'Donnell, 2012). This permits separate analysis of output and input 
growth or decline, which can also be adapted to the environmental context (Abad & 
Ravelojaona, 2022). For our partial productivity formulations, this means that one can sepa-
rately assess aggregate output change and energy use change, on the one hand, and GHG 
emission change and polluting input change, on the other hand. This is normally not possible 
using a Malmquist productivity formulation, although Abad and Ravelojaona (2021) demon-
strate how to formulate a pollution- adjusted Malmquist productivity index consisting of a 
separate polluting productivity index and a separate non- polluting productivity index. Second, 
the Hicks- Moorsteen formulation is not susceptible to infeasibilities under weak conditions on 
technology (mainly strong disposability), which contrasts with the Malmquist productivity 
formulation (see Briec and Kerstens (2011)).2

2.1 | Basic notation

Let x ∈ ℝ
n+o
+

 be the vector of inputs being transformed to the vector of outputs y ∈ ℝ
m
+

. Let 
us additionally consider a production process that generates greenhouse gas emissions ghg 
as a by- product. We partition x into a sub- vector of polluting inputs u ∈ ℝ

n
+
 and sub- vector of 

 2When using weak disposability (another popular way to model bad outputs), infeasibilities can occur even with the Hicks- 
Moorsteen formulation. For instance, Zaim (2004) employs a Hicks- Moorsteen productivity index with weak disposal of bad 
outputs and reports infeasibilities for 8 out of 41 US states, despite using time windows that reduce the number of infeasibilities.
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496 |   ANG et al.

non- polluting inputs v ∈ ℝ
o
+
: x = (u, v). Energy (E) is one of the polluting inputs; z ∈ ℝ

n−1
+

 is the 
sub- vector of non- energy polluting inputs, which implies u = (E, z).

2.2 | Energy productivity change

The parental conventional technology at time t is defined as follows:

whereby the vector of inputs x contributes to generating the vector of outputs y.
Here, x = (u, v) and u = (E, z). Therefore, the technology (1) can be rewritten as follows:

In line with, for example, Färe and Primont (1995), we make the following assumptions:

Axiom 1 Closedness. Tt is closed.

Axiom 2 Boundedness. Tt is bounded.

Axiom 3 Free disposability of inputs and outputs. If 
(
x
�
t
, − y�

t

)
≥
(
xt, − yt

)
 then (

xt, yt
)
∈ Tt ⇒

(
x
�
t
, y�

t

)
∈ Tt.

Axiom 4 Inaction. Inaction is possible: (0n+o, 0m) ∈ Tt.

Axiom 5 Convexity. Tt is convex.

Axioms 1– 4 are always maintained throughout this contribution. Despite its widespread 
use in economics, the axiom of convexity is not always maintained in this contribution.3

We can represent technology Tt by the traditional output distance function:

that scales up outputs for given total input use, and a sub- vector energy distance function:

that scales down the energy input, given non- energy inputs and outputs. We refer to Färe and 
Primont (1995) for the properties of these distance functions.

(1)Tt =
{(

xt, yt
)
∈ ℝ

n+m+o
+

| xt can produce yt
}
.

(2)Tt =
{(
Et, zt, vt, yt

)
∈ ℝ

n+m+o
+

| (Et, zt, vt) can produce yt
}
.

 3 The convex variable returns to scale technology does not satisfy inaction. Since technologies (1, 2) are equivalent, axioms 1 to 4 
as well as 5 can also be rewritten for technology Tt in (2).

(3)D
y

t (E, z, v, y) = inf
ϕ

{
𝜙 > 0 ∣

(
E, z, v,

y

𝜙

)
∈ Tt

}

(4)DE
t
(E, z, v, y) = sup

θ

{
θ > 0 ∣

(
E

𝜃
, z, v, y

)
∈ Tt

}
.
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    | 497ENERGY PRODUCTIVITY AND GHG EMISSION INTENSITY

Using Malmquist aggregations (Caves et al., 1982; O'Donnell, 2012) of Equations (3) and (4), 
we can define aggregate output change between time s and t as:

and energy use change between time s and t as:

Dividing the aggregate output change (5) by the (sub- vector) energy use change (6) yields a Hicks- 
Moorsteen productivity formulation (Bjurek,  1996; Caves et al.,  1982) of energy productivity 
change between time periods s and t:

Equation (7) represents a sub- vector and therefore partial productivity index focusing on energy 
use. Values above unity indicate energy productivity growth. This means that the growth rate of 
aggregate output exceeds that of energy use, which can be interpreted as a relative decoupling of 
production from energy use.

Note that a sub- vector approach to model energy productivity growth as in expression (7) 
has also been used by, for instance, Oude Lansink and Ondersteijn (2006) with an application 
to the Dutch glasshouse sector. But, these authors use a Malmquist productivity index formu-
lation instead.

2.3 | GHG emission intensity change

Murty et al. (2012) show that pollutants such as GHG emissions can be explicitly modelled as 
a by- product. The emission- generating technology is defined as follows:

whereby the polluting inputs u produce the by- product of greenhouse gas emissions ghg.
Following Murty et al. (2012), we make the following assumption:

Axiom 6 Closedness. Gt is closed.

Axiom 7 Boundedness. Gt is bounded.

Axiom 8 Costly disposability of greenhouse gas emissions and polluting inputs. If (ut, ghgt) ∈ 
Gt and ghg′t ≥ ghgt and u′

t
≤ ut, then 

(
u
�
t
, ghg�

t

)
∈ Gt.

(5)YCt,t+1 =

√√√√D
y

t+1

(
Et+1, zt+1, vt+1, yt+1

)

D
y

t+1

(
Et+1, zt+1, vt+1, yt

)
D
y

t

(
Et, zt, vt, yt+1

)

D
y

t

(
Et, zt, vt, yt

)

(6)ECt,t+1 =

√√√√DE
t+1

(
Et+1, zt+1, vt+1, yt+1

)

DE
t+1

(
Et, zt+1, vt+1, yt+1

)
DE
t

(
Et+1, zt, vt, yt

)

DE
t

(
Et, zt, vt, yt

) .

(7)EPRODCt,t+1 =
YCt,t+1

ECt,t+1

=

√
D
y

t+1(Et+1,zt+1,vt+1,yt+1)
D
y

t+1(Et+1,zt+1,vt+1,yt)

D
y
t (Et ,zt ,vt ,yt+1)
D
y
t (Et ,zt ,vt ,yt)

√
DE
t+1(Et+1,zt+1,vt+1,yt+1)
DE
t+1(Et ,zt+1,vt+1,yt+1)

DE
t (Et+1,zt ,vt ,yt)
DE
t (Et ,zt ,vt ,yt)

.

(8)Gt =
{(

ut, ghgt
)
∈ ℝ

n+1
+

| ut can produce ghgt
}
.
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Axiom 9 Convexity. Gt is convex.

Similar to the case of Tt, we do not always maintain the convexity assumption for Gt in the 
following.

We represent Gt by the polluting input distance function:

that scales up polluting inputs for a given total ghg, and a ghg emission distance function:

that scales down ghg as much as possible.
Analogous to Equations (5)– (7), we aggregate Equations (9) and (10) using Malmquist for-

mulations (Caves et al., 1982; O'Donnell, 2012). We define polluting input change between time 
periods s and t as:

and GHG emission change between time periods s and t as:

Again, we refer to Färe and Primont (1995) for the properties of these distance functions.
Dividing Equation  (12) by Equation  (11) yields a Hicks- Moorsteen formulation of GHG 

emission intensity change between time periods s and t:

Equation (13) compares GHG emission change to polluting input change. Values above one indi-
cate intensification, which means that the growth rate of GHG emissions exceeds that of polluting 
inputs. Equation (13) can thus be regarded as the reciprocal of a productivity change measure: 
scores above unity are bad, while scores below unity are good. Observe that XPCt,t+1 reduces 
GHGICt,t+1 and is thus beneficial with regard to the emission- generating technology. If the level 
of GHG emissions remains constant, while the level of polluting inputs has increased, then this 
indicates an improvement of environmental performance in the emission- generating technology, 
as reflected by a decrease in GHG emission intensity. However, in the conventional technology, an 
increase in the level of inputs (including polluting inputs) would be penalised in terms of produc-
tivity. This highlights the importance of not only considering improvements in the environmental 

(9)Du
t
(u, ghg) = inf

𝜌

{
𝜌 > 0|

(
u

𝜌
, ghg

)
∈ Gt

}

(10)D
ghg
t (u, ghg) = sup

𝛿

{
𝛿 > 0|

(
u,
ghg

δ

)
∈ Gt

}

(11)XPCt,t+1 =

√√√√Du
t+1

(
ut+1, ghgt+1

)

Du
t+1

(
ut, ghgt+1

)
Du
t

(
ut+1, ghgt

)

Du
t

(
ut, ghgt

)

(12)GHGCt,t+1 =

√√√√√
D
ghg

t+1

(
ut+1, ghgt+1

)

D
ghg

t+1

(
ut+1, ghgt

)
D
ghg
t

(
ut, ghgt+1

)

D
ghg
t

(
ut, ghgt

) .

(13)GHGICt,t+1 =
GHGCt,t+1

XPCt,t+1

=

√
Du
t+1(ut+1,ghgt+1)
Du
t+1(ut ,ghgt+1)

Du
t+1(ut+1,ghgt)
Du
t (ut ,ghgt)

√
D
ghg

t+1(ut+1,ghgt+1)
D
ghg

t+1(ut+1,ghgt+1)

D
ghg
t (ut ,ghgt+1)
D
ghg
t (ut ,ghgt)
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    | 499ENERGY PRODUCTIVITY AND GHG EMISSION INTENSITY

performance in the emission- generating technology, but also in the economic performance in the 
conventional technology.

The separate theoretical consideration of the conventional technology and emission- 
generating technology in a productivity context follows Lamkowsky et al.  (2021). This ap-
proach differs somewhat from the original approach of Murty et al. (2012). The latter authors 
focus on the development of environmental efficiency measures that appropriately take into 
account the emission- generating process generating pollution. To this end, they compute the 
average of efficiency in the conventional technology and efficiency in the emission- generating 
technology, which can be represented in the intersection of both technologies. The present 
contribution focuses on comparing partial productivity scores in the respective technologies, 
which makes separate consideration appropriate.

3 |  EM PIRICA L SPECI FICATION OF NON- 
PARA M ETRIC TECH NOLOGIES

Thus far we have been silent on the approximation of the conventional and emission- generating 
technologies. This paper employs convex and non- convex nonparametric approximations. 
There are I farms. Assuming convexity and variable returns to scale (VRS), the conventional 
technology at time t is approximated by:

A non- convex approximation is obtained by adding the binary integer constraint λi,t ∈ {0, 1} 
on the activity vector.

Again assuming convex VRS, the emission- generating technology at time t is approximated 
by:

Again, a non- convex approximation is obtained by adding the binary integer constraint 
μi,t ∈ {0, 1} on the activity vector.

These approximations allow computation of all components of energy productivity change 
and GHG emission intensity change. Following the detailed explanation in Murty and 
Russell  (2020, pp. 47– 48), these separate approximations are also consistent with the origi-
nal theoretical framework of Murty et al.  (2012) that defines the by- production technology 
as the intersection of the conventional technology and the emission- generating technology. 
Appendix A (online) shows an overview of the required linear and binary mixed- integer linear 
programmes under the assumptions of convexity and non- convexity respectively.

The only alternative theoretical models that use a by- production framework to model 
bad outputs in both convex and non- convex ways are found in Abad and Briec (2019) and 
Abad and Ravelojaona  (2021, 2022). These models are based on recent work to measure 
strong forms of hypercongestion for convex and non- convex technologies in Briec et al. (2016) 
who develop a limited form of strong disposability called S- disposability (see Briec 
et al. (2018) for an empirical illustration).4 Abad and Briec (2019) and Yuan et al. (2021) are 
among the first to empirically implement a non- convex version of the Murty et al. (2012) 

(14)T̂ t

(
xt, yt

)
=
{(

xt, yt
)
|
∑I

i=1
�i,txi,t ≤ xt,

∑I

i=1
�i,tyi,t ≥ yt,

∑I

i=1
�i,t = 1

}
.

(15)Ĝt

(
ut, ghgt

)
=
{(

ut, ghgt
)
|
∑I

i=1
�i,tui,t ≥ ut,

∑I

i=1
�i,t, ghgi,t ≤ ghgt,

∑I

i=1
�i,t = 1

}
.

 4Abad and Briec (2019) re- baptise this S- disposability assumption as a B- disposability assumption when modelling bad outputs.
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500 |   ANG et al.

by- production approach: these authors report substantial differences between convex and 
non- convex empirical results.

Convex and non- convex comparisons of the Hicks- Moorsteen productivity index are rare 
in the literature. Kerstens and Van de Woestyne (2014a, 2014b) compare Hicks- Moorsteen and 
Malmquist productivity indices under balanced and unbalanced panel data and under con-
stant and variable returns to scale. These authors report substantial differences between con-
vex and non- convex Hicks- Moorsteen productivity indices, but they do not report any formal 
testing. In an additive context, we are aware of only two further studies that report on the 
impact of convexity on the Luenberger- Hicks- Moorsteen productivity indicator: both Ang and 
Kerstens (2017) and Kerstens et al. (2018) report statistically significant differences between 
non- convex and convex estimates.

When computing non- convex and convex Hicks- Moorsteen productivity indices for our em-
pirical specification, we find that several components coincide exactly. This leads to a series of 
new theoretical results stating that convex and non- convex (partial) Hicks- Moorsteen produc-
tivity indices coincide under specific conditions.

Theorem 1 Assuming that there is just a single output (m = 1), then the following statements are 
true under both convex and non- convex assumptions:

The proofs of Theorem 1 and the other statements are given in Appendix B, on-
line.

Theorem 2 The following statements are true under both convex and non- convex assumptions:

Corollary 1 Assuming that there is just a single output (m = 1), then the following statement is 
true under both convex and nonconvex assumptions:

The above results shows that with a single output, we can measure all components of the 
Hicks- Moorsteen index without having to solve any optimization models. In addition, the 
Hicks- Moorsteen index and its components are independent of the value of fixed inputs. As a 
consequence, in this particular case, the fixed inputs can be ignored. This closed- form speci-
fication provides opportunities for policy- oriented applications, that can dispense with more 
complex linear or binary mixed- integer linear programmes.

(16)
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    | 501ENERGY PRODUCTIVITY AND GHG EMISSION INTENSITY

This simplification for computing a theoretical Hicks- Moorsteen productivity index is new 
to the productivity literature. It is wellknown that efficiency measures under a FDH technol-
ogy can be obtained via implicit enumeration algorithms and that this leads to substantial 
time gains (see, e.g., Kerstens and Van de Woestyne (2014b)). However, it is exceptional to have 
implicit enumeration results that are also valid for convex technologies. To the best of our 
knowledge, the only other results concern the cost function and revenue function under con-
stant returns to scale and a single output or a single input, respectively (see Briec et al. (2014)). 
However, the latter result concerns value functions, while here we have a result for a particular 
specification of the technology.

Theorem 3 Assuming that there is just a single polluting input (n = 1), then the following state-
ments are true under both convex and non- convex assumptions:

Theorem 4 The following statements are true under both convex and nonconvex assumptions:

Corollary 2 Assuming that there is just a single polluting input (n = 1), then the following state-
ment is true under both convex and nonc- onvex assumptions:

Observe that our empirical application considers multiple polluting inputs. Consequently, 
Theorem 3 and Corollary 2 do not strictly hold for our particular empirical application.

4 |  DATA

We use a data set from the Farm Accountancy Data Network (FADN), which is merged with 
a data set containing computations of GHG emissions by Wageningen Economic Research 
(WEcR). The FADN data set is an unbalanced, but stratified panel. To obtain a homogene-
ous sample, the application focuses on the specialised dairy farms not producing any other 
on- farm output (thus, omitting farms that produce crop outputs). One clear outlier with an 
unrealistic value has been omitted. The final, merged data set contains 1,510 observations for 
the years 2010– 2019.

We distinguish one output and six inputs. The output is the aggregate dairy output (in €), 
which consists of milk and meat. The three polluting inputs (u) are energy (in €), herd size (in 
livestock units) and other non- energy intermediate polluting inputs (in €). The latter consist 

(21)
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of an aggregation of seed, feed, pesticide, fertilisers and other variable inputs. The three non- 
polluting inputs (v) are land (in hectares), labour (in annual working hours), and the aggregate 
capital depreciation of buildings and machinery (in €).

Dairy output, other non- energy intermediate polluting inputs and aggregate capital depre-
ciation are computed as the ratio of the total monetary value to the respective dimensionless 
Törnqvist price index. The monetary value of energy is deflated by the respective dimension-
less price index. As a result, the outputs and inputs expressed in monetary terms are implicit 
quantities, while livestock, land and labour are expressed as original quantities. Implicit quan-
tities employ a common price index per year. This implies that differences in price are re-
flected as differences in implicit quantity. Outputs and inputs with a higher price are here 
assumed to have a higher quality and hence a higher price (Cox & Wohlgenant, 1986; Mairesse 
& Jaumandreu, 2005). All price indices are drawn from the Eurostat (2021) database. Finally, 
we consider GHG emissions (in kilograms). WEcR computes the GHG emissions by a consid-
eration of the emission factors of all inputs and outputs, as well as a careful investigation of the 
agricultural production system. GHG emissions consist of CO2 emissions, N2O emissions and 
CH4 emissions. Sources of GHG emissions include, for example, the production and purchas-
ing of fertilisers, ruminal fermentation of cows, storage of manure, and energy use (Duurzame 
Zuivelketen, 2018).

In our empirical setting, we compute EPRODCt,t+1 as follows: (i) the Y Ct,t+1 component ex-
pands the output given all six inputs, and (ii) the ECt,t+1 component reduces the single energy input 
solely given the five other inputs and the output. Additionally, GHGICt,t+1 is computed as follows: 
(i) the XPCt,t+1 component reduces GHG emissions given the three polluting inputs, and (ii) the 
GHGCt,t+1 component expands the three polluting inputs given GHG emissions.

The data on FADN and WEcR are proprietary, but their use can be requested at and 
negotiated with WEcR. The Supplementary Materials online provide the r code to compute 
EPRODCt,t+1 and GHGICt,t+1.

Table 1 shows the detailed descriptive statistics. Despite the homogeneity of the sample, 
there is substantial heterogeneity in the inputs, output, and GHG emissions.

5 |  EM PIRICA L RESU LTS

This section describes our empirical results. We first show the results regarding energy produc-
tivity change and GHG emission intensity change, which is followed by a comparison between 
both. There are in total 1,008 annual growth rates. The non- convex and convex approxima-
tions are deterministic and as a result sensitive to potential outliers that may determine the 
production frontier. Following Ang and Kerstens (2016) and Serra et al. (2014) among others, 
we apply the super- efficiency approach of Banker and Chang (2006) as a robustness check. 
This involves the removal of the considered observation from the reference technology in the 
efficiency estimation. ‘Super- efficient’ farms have a score higher than unity or are infeasible to 
compute with respect to such a modified technology (Ray, 2008). Appendix C (online) shows 
the non- convex scores of energy productivity change and GHG emission intensity change for 
the sub- sample of observations with a feasible score between the 5th and 95th percentile for 
an output distance function formulation, employing non- convex approximation. These results 
without potential outliers are overall similar to those presented in the main body of the text.

5.1 | Energy productivity change

As mentioned in Section 3, the non- convex and convex approximations of all components of 
EPRODCt,t+1 coincide.
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    | 503ENERGY PRODUCTIVITY AND GHG EMISSION INTENSITY

Table 2 shows the annual energy productivity change, EPRODCt,t+1 in Equation (7), and the 
components of aggregate output change, YCt,t+1, and energy use change, ECt,t+1. The average 
annual EPRODCt,t+1 in the considered period is 1.034, which indicates an average growth rate of 
3.4% per annum (p.a.). The median annual EPRODCt,t+1 is 1.008, which indicates a slight median 
increase of 0.8% p.a. The mean is somewhat higher than the median, but overall close to the me-
dian. The average EPRODCt,t+1 indicates growth of +17.6%, +8.5%, +10.7%, +13.7% and +11.7% 
in the periods of 2010– 2011, 2011– 2012, 2012– 2013, 2016– 2017 and 2017– 2018, respectively. In the 
other periods, there is on average a decline in EPRODCt,t+1, of which 2018– 2019 (−12.8%) is the 
worst period. Finally, we note that ECt,t+1 is more volatile and has a larger spread than YCt,t+1.

The results on average annual energy productivity change, aggregate output change, and 
energy use change for the subsample without potential outliers are reported in Table C1 in 
Appendix C, online. These results are similar to the ones discussed here.

5.2 | GHG emission intensity change

As mentioned in Section 3, the non- convex and convex approximations of GHGCt,t+1 coincide.
As our empirical application considers multiple polluting inputs, Theorem 3 and Corollary 2 

do not hold for our empirical application. Therefore, the non- convex and convex approxima-
tions differ for XPCt,t+1 and GHGICt,t+1.

Table  3 shows the annual GHG emission intensity change estimated using nonconvex 
approximation, GHGICNC

t,t+1 in Equation (13), and the components of polluting input change 
estimated using non- convex approximation, XPCNC

t,t+1, and GHG emission change estimated 
using non- convex approximation, GHGCNC

t,t+1. The average annual GHGICNC
t,t+1 in the considered 

period is 1.015, which indicates an average increase of 1.5% p.a. The median annual GHGICNC
t,t+1 

is 1.005, which indicates a slight median increase of 0.5% p.a. The mean and median are thus 
rather close to one another. The average GHGICNC

t,t+1 indicates decline of 2.5% and 1.2% in 
2013– 2014 and 2014– 2015, respectively. In all other periods, there is on average an increase 
in GHGICNC

t,t+1, of which 2012– 2013 (+16.9%) stands out. Interestingly, average annual in-
creases (decreases) in EPRODCt,t+1 are counterbalanced by average annual increases (de-
creases) in GHGICNC

t,t+1. The trend of GHGCNC
t,t+1 largely follows the trend of XPCNC

t,t+1, except in 
2018– 2019, in which XPCNC

t,t+1
> 1 and GHGCNC

t,t+1
< 1. The positive association between XPCNC

t,t+1 
and GHGCNC

t,t+1 is more pronounced than the one between Y Ct,t+1 and ECt,t+1. This suggests 

TA B L E  1  Descriptive statistics

Statistic Mean St. dev.

Dairy output (implicit quantity in €) 364,728 276,785

Labour (in annual working hours) 4,730 3,051

Land (in hectares) 58.158 35.635

Herd size (in livestock units) 151.870 100.799

Material non- energy input (implicit quantity in €) 144,716 115,273

Energy (implicit quantity in €) 7,239 5,246

Aggregate capital depreciation (implicit quantity in €) 50,624 41,545

Greenhouse gas emissions (in kilograms) 1,555,100 1,101,576

Dairy Törnqvist price index (dimensionless) 1.107 0.089

Material non- energy input Törnqvist price index (dimensionless) 1.132 0.072

Energy price index (dimensionless) 1.034 0.114

Aggregate capital Törnqvist price index (dimensionless) 1.068 0.061
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504 |   ANG et al.

that decoupling energy use from production occurs more frequently than decoupling GHG 
emissions from the use of polluting inputs. Finally, we note that XPCNC

t,t+1 and GHGCNC
t,t+1 are 

not so volatile and have a relatively low spread.
Table 4 shows the annual GHG emission intensity change estimated using convex approxi-

mation, GHGICC
t,t+1 in Equation (13), and the components of polluting input change estimated 

using convex approximation, XPCC
t,t+1, and GHG emission change estimated using convex ap-

proximation, GHGCC
t,t+1. As shown in the theoretical results, GHGCC

t,t+1
= GHGCNC

t,t+1. There are 
differences in GHGICC

t,t+1
 and XPCC

t,t+1, albeit to a very minor extent.
The results on average annual GHG emission intensity change, polluting input change, and 

greenhouse gas emission change under non- convex approximation for the subsample without 
outliers are reported in Table C2 in Appendix C, online. Overall, these results are in line with 
the ones discussed here.

5.3 | Comparing energy productivity change to GHG emission 
intensity change

Given the similarity between the results estimated using non- convex and convex approxima-
tions, we only focus on the comparison between energy productivity change and GHG emis-
sion intensity change employing the non- convex approximation.

TA B L E  2  Average annual energy productivity change, aggregate output change and energy use change

Period EPRODCt,t+1 Y Ct,t+1 ECt,t+1

2010– 2011 1.176 1.021 0.895

2011– 2012 1.085 1.031 1.010

2012– 2013 1.107 1.039 0.989

2013– 2014 0.941 0.965 1.083

2014– 2015 0.975 1.066 1.123

2015– 2016 0.938 1.067 1.206

2016– 2017 1.137 1.035 0.941

2017– 2018 1.117 0.998 0.926

2018– 2019 0.872 1.031 1.227

Overall 1.034 1.029 1.050

TA B L E  3  Average annual greenhouse gas emission intensity change, polluting input change and greenhouse 
gas emission change under nonconvex approximation

Period GHGIC
NC

t,t+1
XPC

NC

t,t+1
GHGC

NC

t,t+1

2010– 2011 1.019 1.000 1.018

2011– 2012 1.017 1.025 1.041

2012– 2013 1.164 1.050 1.223

2013– 2014 0.975 1.055 1.028

2014– 2015 0.988 1.057 1.041

2015– 2016 1.006 1.071 1.075

2016– 2017 1.021 0.977 0.996

2017– 2018 1.028 0.954 0.979

2018– 2019 0.957 1.017 0.972

Overall 1.015 1.028 1.040
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    | 505ENERGY PRODUCTIVITY AND GHG EMISSION INTENSITY

Figure 1 shows a scatter plot that relates energy productivity change to GHG emission in-
tensity change. It shows a positive association between energy productivity change and GHG 
emission intensity change, which suggests a trade- off between good performance in one tech-
nology and good performance in the other. This empirical finding is confirmed by a Pearson 
correlation of 0.345 and Spearman rank correlation of 0.486.

The large majority of farms score well either in terms of energy productivity change or in 
terms of GHG emission intensity change: quadrant II shows 400 observations with energy 

TA B L E  4  Average annual greenhouse gas emission intensity change, polluting input change and greenhouse 
gas emission change under convex approximation

Period GHGIC
C

t,t+1
XPC

C

t,t+1
GHGC

C

t,t+1

2010– 2011 1.032 0.988 1.018

2011– 2012 1.018 1.026 1.041

2012– 2013 1.173 1.043 1.223

2013– 2014 0.978 1.053 1.028

2014– 2015 0.982 1.063 1.041

2015– 2016 0.989 1.089 1.075

2016– 2017 1.018 0.981 0.996

2017– 2018 1.037 0.947 0.979

2018– 2019 0.931 1.047 0.972

Overall 1.017 1.024 1.040

F I G U R E  1  Scatter plot of energy productivity change versus greenhouse gas emission intensity change, 
estimated using non- convex approximation. [Colour figure can be viewed at wileyonlinelibrary.com]
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506 |   ANG et al.

productivity growth and GHG emission intensity growth, while quadrant III shows 355 ob-
servations with energy productivity decline and GHG emission intensity decline. Quadrant I 
shows 177 observations with energy productivity decline and GHG emission intensity growth. 
Quadrant IV shows 176 observations with energy productivity growth and GHG emission in-
tensity decline.

6 |  CONCLUSIONS

Using a production economics perspective, this paper develops a framework to analyse en-
ergy productivity change and GHG emission intensity change. Both measures are computed 
employing a nonparametric, nonconvex and convex framework based on a Hicks- Moorsteen 
productivity formulation. The empirical application focuses on 1,510 observations of Dutch 
specialised dairy farms for the years 2010– 2019. Given our specific empirical specification, 
we observe that energy productivity change and polluting input change are equivalent for 
nonconvex and convex approximations. We formulate theoretical conditions under which this 
equivalence holds.

The results are similar for non- convex and convex approximations. The average energy 
productivity growth is 3.4% p.a. in both approximations, while the GHG emission intensity 
increases by 1.5% p.a. in the non- convex approximation, and by 1.7% p.a. in the convex approx-
imation. A robustness check for outliers is in line with our main results. Fluctuations over time 
are substantial for energy productivity change and more moderate for GHG emission inten-
sity change. Energy productivity growth is positively associated with GHG emission intensity 
growth rather than GHG emission intensity decline.

We emphasise that these results should be interpreted as descriptive and exploratory rather 
than causal. Our identification strategy disallows verifying whether energy productivity growth 
causes GHG emission intensity growth. Moreover, change in one technology may imply ad-
justment in the other one, which is overlooked by the correlation analysis. Nonetheless, our 
findings do call into question the potential of on- farm, energy- efficiency- increasing measures 
to reduce GHG emission intensity.

We have five recommendations for future research. First, the flexibility of our proposed 
framework allows straightforward application to other empirical settings. Any change in 
partial or total factor productivity can be compared to a change in the performance in the 
emission- generating technology. Energy productivity change and GHG emission intensity 
change can be evaluated side- by- side in, for instance, the electric power plant sector. Another 
interesting avenue is the consideration of other pollutants such as phosphorus surplus and 
nitrogen surplus in the agricultural sector.

Second, the behavioural and technological drivers explaining the nexus of agricultural pro-
duction, energy use and GHG emissions should be further investigated. In this way, policy- 
makers are able to draft policies that effectively stimulate reduction of GHG emissions whilst 
increasing or maintaining agricultural production.

Third, one should extend the current analysis by also considering indirect energy use. 
This paper solely focuses on direct, purchased energy use. Indirect energy use also takes 
into account earlier chain stages of, most notably, fertilisers. Although policy- makers 
rather focus on reducing direct energy use by means of energy- efficiency- increasing initia-
tives, identifying sustainable pathways to reduce GHG emissions requires analysis beyond 
the farm level.

Fourth, our framework could be applied in a difference- based productivity indica-
tor framework. Following the terminology of Diewert  (2005), the current framework is 
based on ratio- based productivity ‘indices’. However, when there are zero or negative 
values, difference- based ‘indicators’ are more apt (Balk et al.,  2003). Difference- based 
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    | 507ENERGY PRODUCTIVITY AND GHG EMISSION INTENSITY

productivity  measures include Bennet (Chambers,  2002), Bennet- Lowe (Ang,  2019), 
Luenberger (Chambers, 2002) and Luenberger- Hicks- Moorsteen (Briec & Kerstens, 2004) 
indicators.

Fifth, we recommend to adapt the proposed framework to a statistical setting. Our non- 
parametric framework is inherently deterministic. Simar and Wilson  (1999) show how to 
obtain statistically robust estimates using a bootstrapped Malmquist productivity formu-
lation. An extension to a Hicks- Moorsteen index remains to be developed. Alternatively, 
one could employ stochastic frontier analysis (Aigner et al.,  1977; Meeusen & Van Den 
Broeck, 1977).
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