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a b s t r a c t

This paper proposes a pragmatic, discrete time indicator to gauge the performance of portfolios over time.
Integrating the shortage function (Luenberger, 1995) into a Luenberger portfolio productivity indicator
(Chambers, 2002), this study estimates the changes in the relative positions of portfolios with respect
to the traditional Markowitz mean-variance efficient frontier, as well as the eventual shifts of this frontier
over time. Based on the analysis of local changes relative to these mean-variance and higher moment (in
casu, mean-variance-skewness and mean-variance-skewness-kurtosis) frontiers, this methodology
allows to neatly separate between on the one hand performance changes due to portfolio strategies
and on the other hand performance changes due to the market evolution. This methodology is empirically
illustrated using a mimicking portfolio approach (Fama and French, 1996, 1997) using US monthly data
from January 1931 to August 2007.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Since Markowitz (1952) foundational work, every investor
knows that to gauge the performance of portfolio management risk
must be considered in addition to return levels. This mean-vari-
ance (MV) dual objective of maximizing returns and minimizing
risks turns performance evaluation into a controversial task. In-
deed, no method that is currently available in the literature seems
to be universally approved. There is an ever growing literature on
this topic in traditional investment contexts (for surveys, see, e.g.,
Cuthbertson et al. (2008) on mutual funds), as well as in the spe-
cific context of hedge fund management (for instance, Eling and
Schuhmacher (2007)), and even a meta-literature criticizing these
methods as well (see, for example, Bacon (2008)).

Performance appraisal is linked to the theory of optimal invest-
ment choices, i.e., to the ability of investors to manage assets so as
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to maximize a utility function (based on a set of various moments
characterizing the portfolios’ return distributions). In other words,
performance evaluation analyzes the efficiency of an investment at
least in terms of a traditional return–risk relationship. It is often as-
sumed that all investors have similar behaviors towards these
dimensions (representative agent paradigm). The risk characteris-
tics in the utility function depend upon various parameters like
investor’s objectives, preferences, time horizon,. . .. These simplifi-
cations are acceptable in cases where aggregate results suffice,
but these are simply problematic in other cases. The methodology
proposed in this paper allows for heterogeneity among investors
and therefore answers quite a few of these issues.

Several models for portfolio selection based on higher-order
moments have been developed in the literature (e.g., Philippatos,
1979). However, none of these procedures has managed to obtain
widespread acceptance. For instance, Lai (1991) determines
mean-variance-skewness (MVS) optimal portfolios via a multi-
objective programming approach (see Chunhachinda et al. (1997)
for an empirical application). However, in this contribution we ex-
plore general moment portfolio models (see Briec et al., 2007; Briec
and Kerstens, in press), while explicitly limiting ourselves in the
empirical part to the first four moments traditionally considered
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in the financial literature. To be explicit, we consider MV, MVS and
mean-variance-skewness-kurtosis (MVSK) models, the latter to ac-
count for the observed fat tails that prove to be important in capital
markets. On the one hand, while the MV approach is still a popular
reference for practitioners and academics alike, its restrictive nat-
ure may lead to erroneous weights in portfolio selection. While
some proposals are around allowing investors to maximize a utility
function including higher moments (e.g., Jondeau and Rockinger,
2003), the empirical evidence provides mixed support at best. Nev-
ertheless, enlarging the classical framework with MVS and MVSK
models is a potentially interesting improvement for fund manag-
ers. On the other hand, the method developed in this research
can be easily extended to consider even higher moments, but at
an increasingly important computational cost.

Recently, a new approach has been proposed in the investment
literature by Cantaluppi and Hug (2000) that directly measures the
performance of a portfolio by reference to its maximum potential
on the (ex-ante or ex-post) portfolio frontier. Their proposal is in
fact intimately related to some explicit efficiency measures trans-
posed from production theory into the context of portfolio bench-
marking by Morey and Morey (1999) in the operations research
literature. Informally speaking, their first measure computes the
maximum mean return expansion while the risk is fixed at its cur-
rent level, while an alternative risk contraction function measures
the maximum proportionate reduction of risk while fixing the
mean return level.1

These explicit efficiency approaches are generalized by Briec
et al. (2004) who integrate the shortage function (Luenberger,
1995) as an efficiency measure into the MV model and also develop
a dual framework to assess the degree of satisfaction of investors
preferences. Similar to developments in other fields, this leads to
a decomposition of portfolio performance into allocative and port-
folio efficiency. The advantage is that this shortage function is
compatible with general investor preferences and that it can be ex-
tended to higher dimensional spaces (e.g., MVS space Briec et al.
(2007) or even higher-order models Briec and Kerstens (in press)).

This paper tackles the problem of tracing the performance of
portfolios in discrete time with respect to the ever changing port-
folio frontiers by borrowing from recent developments in the the-
ory of productivity indices (see Diewert (2005) for a review).
Employing the shortage function, a Luenberger portfolio productiv-
ity indicator (Chambers, 2002) is introduced that allows for the
estimation of the relative positions of portfolios with respect to
changes in the efficient frontier, and that offers an accurate local
measure of the eventual shifts of this frontier over time. The pro-
posed methodology for fund performance appraisal in discrete
time is therefore founded in a well-established theoretical frame-
work. This Luenberger portfolio productivity indicator and its
decomposition provide an excellent measurement tool to recon-
sider the traditional performance attribution question: what is
the individual contribution of fund managers to portfolio perfor-
mance and what is due to changes in the financial market. To the
best of our knowledge, this contribution is the first to integrate re-
cent developments in index theory into the portfolio performance
evaluation framework.

By positioning ourselves into an extended Markowitz-like ap-
proach, we do not impose the much stronger assumptions usually
maintained in the CAPM context. While the advantage of using a
frontier as a benchmarking tool may be obvious, one should be
aware of the fundamental relative nature of this frontier with re-
spect to the selected asset universe.2 Thus, we do not claim our meth-
od is a new test of the efficiency of a given portfolio relative to an
1 Cantaluppi and Hug (2000) talk similarly about return loss and surplus risk.
2 Obviously, all empirical work within a CAPM framework refers as a matter of fact

to geographically limited parts of a potentially universal financial market.
equilibrium theory of financial markets as proposed in the more tradi-
tional literature (e.g., Gibbons et al., 1989). We rather propose a meth-
od to identify ex-ante or ex-post improvements that can be attributed
to funds managers when they optimize their positions relative to a
limited asset universe. Indeed, one should notice that the qualification
of efficiency is conditioned on its timing. Ex-post efficiency refers to an
appraisal of performance once returns (consequently, all moments)
are known, while ex-ante efficiency refers to a similar task based on
expected returns. Obviously, prospective benchmarking is sur-
rounded with a multitude of problems related to the fundamental
uncertainties in the data. This requires special attention in terms of
statistical inference on the eventual efficiency status of ex-ante deci-
sions regarding the ex-post results (see Markowitz, 1952).

The next section is devoted to a brief presentation of the rele-
vant literature concerning portfolio performance evaluation and
the more recently introduced efficiency measures operating rela-
tive to the portfolio frontier. Section 3 introduces the basic theoret-
ical building blocks for the analysis. In particular, it introduces the
shortage function as proposed by Luenberger (1992) and studies its
axiomatic properties. Thereafter, we present the Luenberger port-
folio productivity indicator and its decomposition. Section 4 deals
with some technical and strategic aspects of the empirical proce-
dures and discusses the choice of data set. We comment upon
the empirical results in Section 5. Conclusions and issues for future
work are summarized in the final section.
2. Performance measurement in investment: A brief review

2.1. Traditional performance measures

An enormous literature on portfolio performance evaluation
builds upon the initial work of Markowitz (1952) and the founders
of modern portfolio theory with the development of asset pricing
theories (e.g., the CAPM). During these early years, performance
appraisal evolved from total-risk foundations (e.g., the standard
deviation or variance of returns) to performance indexes where
the returns in excess of the risk-free rate are matched with some
risk measure. Two classics are the Sharpe ratio and the Treynor ra-
tio, which gauge performance without any benchmark. These and
more recent developments of portfolio performances gauges are
nicely surveyed by Bacon (2008).

This tradition has received a wide variety of criticisms because
of the supposed weaknesses of the underlying equilibrium models
on which performance indicators were built and the implicit
assumption that financial asset returns are normally, indepen-
dently and identically distributed, among others.3

The first series of objections touches upon several issues. One is
the irrelevance of unconditional performance evaluation: investors
are supposed to form expectations about returns irrespective of
their expectations over the states of the economy, which may lead
to various distortions in performance levels or stability. A second
problem is linked to the choice of benchmark to gauge portfolio
performance, especially when funds have different management
styles. When the reference point is inappropriate, then the mea-
sure is biased (see Grinblatt and Titman, 1994). A third series of
problems with the underlying equilibrium models (recognized
ever since Jensen (1972)) comes from the non-stability of risk-free
rates or the volatility of betas. In these cases, performance evalua-
tion is biased because equilibrium returns are misevaluated or
simply because a constant beta is irrelevant.

Another major concern is the non-Gaussian nature of stock re-
turns due to dynamic trading strategies (for instance, hedge funds
are a case in point: see Darolles and Gourieroux (2010)). Problematic
3 See, for instance, Fama and French (2004) on the debate surrounding CAPM.
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here is the underestimation of risk in performance appraisal. With
asymmetric or fat tailed distributions, performance gauging must
account for higher-order moments (skewness, kurtosis or even be-
yond: see Ang and Chua (1979)) or lower partial moments (e.g.,
the Sortino ratio is based on a target return and semi-variance). More
recently, various other proposals are formulated: some of these de-
rive from VaR (Gregoriou and Gueyie, 2003), some are extensions of
the Sharpe (Zakamouline and Koekebakker, 2009) or Sortino (Kaplan
and Knowles, 2004) ratios, while still others propose even more gen-
eralized methods such as the Omega measure (see Kazemi et al.,
2004).

Many of these traditional performance measures are associated
with a prominent question in the investment industry, namely per-
formance attribution. While in blatant contradiction with CAPM
theory, performance appraisal is linked to stock picking and market
timing. Indeed, the investment industry is always looking for tools
to trace good fund managers that can exploit market anomalies
and that can pick stocks in the market to obtain an alpha that is
significantly different from zero and manage their portfolios’ betas
dynamically.

Summing up, the standard approaches to investment perfor-
mance appraisal appear unsatisfactory with respect to at least
three generic shortcomings: (i) these yield under- or over-estima-
tions because of the selection of an inappropriate benchmark or
equilibrium models for expected returns, (ii) these are biased due
to the non-normal nature of return distributions or unknown util-
ity functions for investors when higher moments have to be con-
sidered, and (iii) these are unstable because of the dependency of
the measure with the time-frame in which it is computed. One
could also add that these measures usually rely upon other strong
assumptions, such as the uniqueness of investor’s preferences. We
now turn to the rather recent frontier-based measures that may be
a solution for some of these shortcomings.
2.2. Frontier-based efficiency measures

Frontier-based measures of fund performance have gained
some limited popularity since the late nineties. One of the seminal
articles in the finance literature is the work of Cantaluppi and Hug
(2000) who propose an efficiency ratio in relation to the MV effi-
cient frontier.4 In fact, their contribution is similar to the one of Mor-
ey and Morey (1999) in the operations research literature. In their
search for a more universal approach to portfolio performance mea-
surement, Cantaluppi and Hug (2000) contest the relative nature of
most current proposals that define performance with respect to
some other, supposedly relevant, portfolio or index. Instead, they
suggest looking for the maximum performance that could have been
achieved by a given portfolio relative to a relevant portfolio frontier,
i.e., a frontier resulting from a particular choice of investment uni-
verse and satisfying any additional constraints imposed on the
investor.

Basically, it is a matter of utilizing the traditional ex-ante com-
putation of optimal portfolios in an ex-post fashion. Ex-ante, one
first selects the investment universe; then one determines the
investment horizon with corresponding estimates for future re-
turns, risks, and correlations for the asset universe; and finally
one computes an efficient frontier based on these estimates and
the investment restrictions. This same process can be executed
ex-post to benchmark portfolios: computations are then simply
performed with historical rather than expected values. Since a
portfolio manager that ex-ante would have perfect foresight could
invest in a frontier optimal portfolio, the ex-post efficient frontier
4 As stated by these authors, this is not strictly speaking a new method since it has
been employed by, e.g., Kandel and Stambaugh (1995) as well.
offers a natural benchmark for performance gauging. In this con-
text, Cantaluppi and Hug (2000) informally present both a return
loss and a surplus risk efficiency measure.

We illustrate this basic point with Fig. 1 (in the spirit of Cantal-
uppi and Hug (2000)) which compares the Sharpe ratio and the
efficiency ratio. This figure is drawn in the mean-standard devia-
tion space and depicts three portfolios A, B, and C with respect to
a common portfolio frontier. Starting with the Sharpe ratio, it is
clear that portfolio C enjoys a higher Sharpe ratio compared to
portfolios A and B (i.e., the slope of the line S1 being greater than
the slope of S�), despite the fact that the latter portfolios are part
of the Markowitz frontier ðEFF1Þwhile portfolio C is not. To remedy
this problem, the efficiency ratio approach suggests measuring the
inefficiency of portfolio C using either a return loss efficiency mea-
sure (vertical projection line, towards point F), or a surplus risk
efficiency measure (horizontal projection line, towards point E).

To contrast existing viewpoints, we explicitly position our con-
tribution relative to a seminal article by Gibbons et al. (1989) pro-
posing a test of the efficiency of a given portfolio within a CAPM
framework. Reconsidering Fig. 1, when a risk-free asset is available,
then the portfolio frontier is a straight line ðEFF2Þ with a slope s2,
which is tangent to the so-called market portfolio at point E. Thus,
s2 is the ex-post price of risk as measured within this sample. To
evaluate the ex-ante efficiency of portfolio C, considering that it
earns a risk price s1 (i.e., the slope of S1), Gibbons et al. (1989) pro-

pose a test statistic based on / ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

2

q� �. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

1

q� �
to mea-

sure portfolio performance. The bottom line is that the slopes s1

and s2 have to be statistically different if one wants to reject the
hypothesis of ex-ante efficiency for portfolio C, even if it is clearly
situated both under EFF1 and EFF2. In other terms, ex-post effi-
ciency can be used as an ex-ante efficiency proxy, but this raises
serious statistical problems.

Notice that mathematical formulations in this contribution are
expressed in terms of expected returns, while the empirical part
uses historical returns for illustrative purposes. This raises the tra-
ditional ex-ante/ex-post performance appraisal issue. Two reasons
justify this choice. First, in view of the efficient market hypothesis,
one can view historical returns as a simplified (although weak, see
for example, Elton (1999)) mechanism to generate expected return
information. Another solution consists in obtaining such expected
returns information from scenario analysis or from specialized
firms (e.g., the I/B/E/S databases of Thomson Reuters that reflect
consensus estimates). In a similar vein, we maintain the hypothesis
of historical volatility stability instead of using stochastic volatility
Fig. 1. Sharpe ratio vs. efficiency measures.
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models or implied volatility derived from option pricing models.
This same logic also applies to the higher moment information em-
ployed in this research. Second, this ex-ante/ex-post problem is ta-
ken into account by mixing several shortage functions based on
forward and backward returns (see (6) and (7) further on).

Morey and Morey (1999) are the first to give a precise formal
definition of the return loss and surplus risk efficiency measures
also proposed by Cantaluppi and Hug (2000).5 In the same vein,
Briec et al. (2004) are the first to develop a link between portfolio
efficiency measures and MV utility, which leads them to propose
an efficiency measure that simultaneously seeks to improve return
and to reduce variance of a given portfolio.6 In Fig. 1, this leads ‘‘intu-
itively speaking” to the projection of portfolio C into a diagonal
direction towards the Markowitz frontier. Theoretically, these con-
tributions bring portfolio theory in line with developments in pro-
duction theory and elsewhere in micro-economics, where distance
functions as functional representations of choice sets are proven
concepts related to efficiency measures that allow to develop dual
relations with economic (e.g., MV utility) support functions.

More or less independently, a variety of authors have been
transposing efficiency measures, that are related to distance func-
tions from production theory into finance. This literature employs
mathematical programming techniques to estimate non-paramet-
ric frontiers of choice sets and positions any observation with re-
spect to the boundary of these choice sets.7 This has sometimes
been accompanied with the utilization of frontiers to rate, for in-
stance, the performance of mutual funds along a multitude of
dimensions (rather than mean and variance solely). To the best of
our knowledge, the seminal article of Murthi et al. (1997) employs
return as a desirable output to be increased and risk and a series
of transaction costs as an input to be reduced, and measures the per-
formance of each mutual fund with respect to a piecewise linear
frontier (rather than a traditional non-linear portfolio frontier).
Extensions to evaluating hedge funds have been proposed in Grego-
riou et al. (2005). More recently, Glawischnig and Sommersguter-
Reichmann (2010) employ a similar framework and critically com-
pare the resulting higher-order moment efficiency measures to tra-
ditional financial indices. The same idea has been employed in the
context of asset selection, whereby changes in stock performance
are related to changes in productive efficiency. Preliminary results
suggest that changes in productive efficiency are at least partially
translated into changes in stock prices (see, e.g., Edirisinghe and
Zhang (2007) or Nguyen and Swanson (2009) for recent
developments).

Therefore, it is possible to state that frontier-based portfolio
benchmarking methods at least partially remedy some of the gen-
eric shortcomings of traditional performance measures mentioned
earlier: (i) these select an appropriate benchmark in terms of the
ex-post portfolio frontier, and (ii) these can be perfectly general-
ized to higher moments in case of non-normal return distributions.
It remains to be seen how these behave under extensive stress test-
ing. This contribution also aims to remedy to some extent the third
defect mentioned in the previous subsection, i.e., the instability of
performance measures because of the dependency of these mea-
sures with respect to the time-frame in which these are computed.
We resolve this at least partially by defining a portfolio productiv-
ity indicator based upon general efficiency measures that allows
tracking the evolution in financial markets in discrete time. To
5 Even though Morey and Morey (1999) and Cantaluppi and Hug (2000) seem to be
unaware of one another. Sengupta (1989) is to our knowledge the first author to
transpose the idea of a return loss efficiency measure into a MV frontier context.

6 A generalization of the same approach into MVS space is developed in Briec et al.
(2007). For higher moments: see Briec and Kerstens (in press).

7 This approach is often referred to with the moniker data envelopment analysis
(DEA).
the best of our knowledge, this is the first contribution drawing
upon index theory to resolve practical portfolio benchmarking
issues.

3. Static portfolio frontiers and their evolution in discrete time

3.1. Static portfolio frontiers: The shortage function as efficiency
measure

To introduce some basic notation and definitions, consider the
problem of selecting a portfolio from n financial assets at time per-
iod t. Let R1;t; . . . ;Rn;t be random returns of assets 1; . . . ;n in period
t. For each time period t, each of these assets is defined through
some expected return E½Ri;t � for 1; . . . ; n. Furthermore, returns of as-
sets i and j are correlated, so that the variance–covariance matrix
Xt for time period t is defined as Xi;j;t ¼ Cov ½Ri;t ;Rj;t � for
i; j 2 f1; . . . ;ng.

Notice that by adding skewness–coskewness and kurtosis–cok-
urtosis tensors, the extension to the MVS and MVSK frontiers is
rather straightforward. Indeed, the shortage function is compatible
with general investor preferences (favoring uneven moments and
disliking even moments). Thus, in the MVS (MVSK) space a short-
age function is capable to look simultaneously for reductions in
risk (and kurtosis) and augmentations in return and skewness. In
view of the familiarity of the traditional MV frontier notion and
for reasons of space, the formal analysis is limited to the MV case.8

A portfolio xt ¼ ðx1;t ; . . . ; xn;tÞ at time period t is simply a vector
of weights specified over these n financial assets that sums to unityP

i¼1;...;nxi;t ¼ 1
� �

. If shorting is impossible, then these weights

must satisfy the non-negativity conditions ðxi;t P 0Þ. The return
of portfolio xt at time period t is given by RtðxtÞ ¼

P
i¼1;...;nxi;tRi;t .

Therefore, the expected return of portfolio xt is E½RtðxtÞ� ¼P
i¼1;...;nxi;tE½Ri;t �, and its variance is V ½RtðxtÞ� ¼

P
i;jxi;txj;tCov ½Ri;t ;Rj;t�.

The set of admissible portfolios I can be written in general as:9

I ¼ x 2 Rn :
X

i¼1;...;n

xi ¼ 1; x P 0

( )
: ð1Þ

Following the seminal approach by Markowitz (1952), one can
define at time period t the MV representation of the set @t of port-
folios as:

@t ¼ fðV ½RtðxtÞ�; E½RtðxtÞ�Þ : xt 2 Ig: ð2Þ

Since such a representation cannot be used for quadratic pro-
gramming because the subset @t is non-convex (see Briec et al.,
2004), the above set is extended by defining a MV (portfolio) rep-
resentation set through

Rt ¼ @t þ Rþ � ð�RþÞ: ð3Þ

Briec et al. (2004) show that it is useful to rewrite the above subset
as follows:

Rt ¼ fðV 0; E0Þ 2 Rþ � R : 9xt 2 I; ð�V 0; E0Þ
6 ð�V ½RtðxtÞ�; E½RtðxtÞ�Þg: ð4Þ
8 The interested reader is referred to Briec et al. (2007) and Briec and Kerstens (in
press) for details on the use of the shortage function relative to the MVS frontier and
beyond.

9 In this contribution, I is time independent. However, this set of admissible
portfolios can be modified to include additional constraints (e.g., transaction costs)
that can be written as linear functions of asset weights: see Briec et al. (2004). Briec
and Kerstens (in press) explicitly consider the cases of the availability of a risk-free
asset and shorting. These additional constraints could eventually be time dependent,
thereby imposing time dependency on I.
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The addition of the cone is necessary for the definition of a sort
of ‘‘free-disposal hull” of the MV representation of feasible portfo-
lios and is compatible with the definition in Markowitz (1952). It is
of interest to focus on the basic properties of the subset Rt on
which we define the shortage function below. Briec et al. (2004)
have shown that Rt is convex, closed and satisfies a free-disposal
assumption. These properties of the representation set allow defin-
ing an efficiency measure in the context of the Markowitz portfolio
theory.

Before generalizing the well-known Markowitz approach, we
introduce the shortage function at time period t.10

Definition 3.1. The function St : I� R2
þ ! Rþ [ fþ1g defined by

Stðxt ; gtÞ ¼ sup fd : ðV ½RtðxtÞ� � dgV ;t ; E½RtðxtÞ� þ dgE;tÞ 2 Rtg;

is called the shortage function at time period t for portfolio xt in the
direction of vector gt ¼ ðgV ;t ; gE;tÞ.

The shortage function looks for improvements in the direction
of both an increased mean return and a reduced risk. Notice that
the efficiency improving direction vector gt depends on time. The
purpose of this time-dependency is to cater for the potentially
changing preferences of the investor over time. The pertinence of
the shortage function as a portfolio management efficiency indica-
tor results from its properties. In particular, this indicator charac-
terizes the Markowitz frontier, is weakly monotonic and
continuous on I, and generalizes the Morey and Morey (1999) ap-
proaches who look either for return expansions or risk reductions
only (see Briec et al. (2004) for details). Notice that if gt ¼ 0, then
Stðxt ; gtÞ ¼ þ1. In general, we assume that gt – 0.

Markowitz (1952) also proposed an optimization program in a
dual, MV utility based framework to determine the portfolio corre-
sponding to a given degree of risk-aversion. To provide a dual
interpretation of the shortage function, Briec et al. (2004) also de-
fine a MV indirect utility function as the support function of the
Markowitz frontier. From the duality result by Luenberger
(1995), who connected expenditure and shortage functions, these
same authors derive the shortage function from the indirect MV
utility function and conversely through a dual pair of relationships.
Following this dual relation, it is also possible to disentangle be-
tween various efficiency notions when evaluating potential
improvements in portfolios. By analogy with other domains in eco-
nomics, Briec et al. (2004) distinguish formally between (i) portfo-
lio efficiency, (ii) allocative efficiency, and (iii) overall efficiency.
For reasons of space and since the empirical application ignores
the utility approach, we provide the intuition behind this duality
relationship and the ensuing efficiency taxonomy in Appendix 1
or refer the reader to Briec et al. (2004) for details.

3.2. Portfolio performance change in discrete time: A Luenberger
portfolio productivity indicator

This subsection is concerned with the dynamic study of portfo-
lio performance in discrete time. Using a recent Luenberger pro-
ductivity indicator based on some combinations of shortage
functions (see Chambers, 2002), our new proposal applies this
Luenberger indicator to measuring dynamic portfolio performance.

However, this requires an adaptation of Definition 3.1 of the
shortage function to a dynamic context.

Definition 3.2. Given two time periods a and b, the function
Sb : I� R2

þ ! R [ f�1;þ1g defined by
10 The shortage function has been introduced by Luenberger (1992, 1995) in a
production theory context where it measures the distance between some point of the
production possibility set and the Pareto frontier.
Sbðxa; gaÞ ¼ sup
d
fd : ðV ½RaðxaÞ� � dgV ;a; E½RaðxaÞ� þ dgE;aÞ 2 Rbg; ð5Þ

is called the shortage function at time period b in the direction of
vector ga ¼ ðgV ;a; gE;aÞ for portfolio xa calculated at time period a.

Remark that E½RaðxaÞ� stands for the expected return of portfolio xa

calculated at time period a, and an analogous interpretation applies
to the variance. Notice also that if t ¼ a ¼ b, then Definition 3.2 cor-
responds to Definition 3.1. In this case, the value of d is always po-
sitive. However, for different time periods, this need not be the case.
As in Definition 3.1, the direction vector ga is assumed to be distinct
from zero in the general case, although the value of þ1 can be as-
signed to Sbðxa; 0Þ. Furthermore, Sbðxa; gaÞ ¼ �1 if there is no scalar
d such that ðV ½RaðxaÞ� � dgV ;a; E½RaðxaÞ� þ dgE;aÞ 2 Rb. In the following,
we are especially interested in the evolution of the shortage func-
tion for two consecutive periods, that is: ða; bÞ 2 ft; t þ 1g�ft; t þ 1g.

The difference derived from expression (5) between two periods
at a ¼ t and a ¼ t þ 1, given a representation set at b ¼ t yields:

Dtðxt; xtþ1; gt ; gtþ1Þ ¼ Stðxt; gtÞ � Stðxtþ1; gtþ1Þ: ð6Þ

This period t productivity indicator simply computes a difference in
the distances between the MV portfolio representations in periods t
and t þ 1 relative to the portfolio frontier in period t. Considering
the representation set at b ¼ t þ 1, we can compute a similar
indicator:

Dtþ1ðxt ; xtþ1; gt ; gtþ1Þ ¼ Stþ1ðxt; gtÞ � Stþ1ðxtþ1; gtþ1Þ: ð7Þ

Relative to the portfolio frontier in period t þ 1, this period t þ 1
productivity indicator calculates the difference in the distances be-
tween the MV portfolio representations in periods t and t þ 1.

Notice that both these indicators mix various shortage func-
tions which themselves are based on forward and/or backward
looking return and other moment information. For example, one
can consider Stþ1ðxt ; gtÞ as the ex-ante error made by a portfolio
manager in choosing his portfolio weights at time t with respect
to information available at time t þ 1, while Stþ1ðxtþ1; gtþ1Þ ex-
presses the counterpart ex-post error observed at time t þ 1.

To avoid an arbitrary choice between time periods, it is natural
(see, e.g., Chambers, 2002) to take the arithmetic mean of the two
indicators defined above to obtain the discrete time Luenberger
portfolio productivity indicator of performance change

Lðxt; xtþ1; gt ; gtþ1Þ ¼
1
2
½Dtðxt; xtþ1; gt ; gtþ1Þ

þ Dtþ1ðxt ; xtþ1; gt ; gtþ1Þ�; ð8Þ

which is the portfolio analogue of a Luenberger productivity indica-
tor.11 This portfolio performance change can be equivalently decom-
posed as:

Lðxt; xtþ1; gt ; gtþ1Þ ¼ Eðxt; xtþ1; gt ; gtþ1Þ þ Fðxt ; xtþ1; gt ; gtþ1Þ; ð9Þ

with

Eðxt; xtþ1; gt ; gtþ1Þ ¼ Stðxt; gtÞ � Stþ1ðxtþ1; gtþ1Þ; ð10Þ

and
basic properties of practical significance: e.g., (i) ratios are unit invariant, differences
are not, (ii) differences are invariant to changes in origin, ratios are not, (iii) ratios
have difficulties handling zeros, differences have not, etc. In general, a variety of well-
known issues in index theory (see, e.g., Diewert, 2005) can probably shed light on
some new problems that may crop up when transposing index numbers into portfolio
theory.



Fig. 2. Luenberger portfolio productivity indicator and its decomposition: Portfolio No. 6.
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Fðxt; xtþ1; gt; gtþ1Þ ¼
1
2
½ðStþ1ðxtþ1; gtþ1Þ � Stðxtþ1; gtþ1ÞÞ

þ ðStþ1ðxt; gtÞ � Stðxt; gtÞÞ�: ð11Þ

In this decomposition, Eð�Þ measures the efficiency change of the
shortage functions between periods t and t þ 1, while Fð�Þ captures
the average change in portfolio performance between the two peri-
ods evaluated at the portfolio composition in t þ 1 and at the port-
folio composition in t.12 Hence, Eq. (9) decomposes portfolio
performance change into two components: one representing effi-
ciency change relative to a moving portfolio frontier ðEð�ÞÞ, another
indicating the average change in the portfolio frontier itself ðFð�ÞÞ.
This decomposition offers a measurement framework for financial
market performance gauging because: on the one hand, Eð�Þ captures
the performance of the fund managers over time relative to a shifting
portfolio frontier, and on the other hand, Fð�Þ indicates how the
financial market itself has locally changed over time and enlarges
or reduces the opportunities available to investors. When the Luen-
berger indicator of portfolio performance change Lð�Þ or any of its
components (Eð�Þ or Fð�Þ) is positive (negative), then portfolio perfor-
mance increases (decreases) between the two time periods
considered.

Fig. 2 illustrates the above performance indicator for a basic MV
portfolio model with gs ¼ ðV ½RsðxsÞ�; E½RsðxsÞ�Þ for s ¼ t; t þ 1. More
precisely, we illustrate the Luenberger indicator and its decomposi-
tion with the help of a certain portfolio 6 over two overlapping time
windows W1 and W2.13 Fig. 2 plots two MV frontiers computed with
the returns in the sample over W1 and W2. Portfolios are plotted
using crosses in W1 and dots in W2, except P6 that is once plotted
with a black triangle in W1 and once with a gray square in W2. Ar-
rows indicate the respective distances towards the frontiers in both
periods (Stðxt ; gtÞ; Stþ1ðxt ; gtÞ; Stðxtþ1; gtþ1Þ, and Stþ1ðxtþ1; gtþ1Þ as
defined before). The Luenberger indicator must be constructed
12 From here onwards, the arguments of the functions defining the Luenberger
indicator and its components are suppressed.

13 This example is drawn from the empirical analysis in Sections 4 and 5. The two
time windows range respectively from 1934/01 till 1937/01 ðW1Þ and 1934/02 till
1937/02 ðW2Þ.
from its components: Stðxt ; gtÞ ¼ 0:3795; Stþ1ðxtþ1; gtþ1Þ ¼ 0:3475;
Stþ1ðxt ; gtÞ ¼0:3053, and Stðxtþ1; gtþ1Þ ¼ 0:4191. To obtain Eð�Þ (see
Eq. (10)), it suffices to compute: 0.3795 � 0.3475 = 0.0320. Clearly,
this portfolio has moved closer to the portfolio frontier over time
yielding a positive Eð�Þ. Computing the Fð�Þ (see Eq. (11)) requires
the following calculations: 0.5 � ((0.3475 � 0.4191) + (0.3053 �
0.3795)) = �0.0729. This negative number simply reflects the pro-
ductivity decrease due to the inward shift of the portfolio frontier
around portfolio 6. Notice that this inward shift of the portfolio fron-
tier is not a global phenomenon: it does not affect the lower risk-re-
turn combinations. The Luenberger indicator is simply the sum of
these two components: 0.0320 + (�0.0729) = �0.0409. In this case,
the improvement of the Eð�Þ is overruled by the local deterioration
of the Fð�Þ and we end up with a negative portfolio frontier productiv-
ity change.

Turning to computational matters, the representation set Rt (see
Eq. (3)) is used to directly compute the various shortage functions
and thus the Luenberger indicators by recourse to standard qua-
dratic programming (QP). Assume a sample of m portfolios
x1

t ; x
2
t ; . . . ; xm

t is observed over a given finite time horizon
t ¼ 1; . . . ; T. Now, consider a specific portfolio xk

t for k 2 f1; . . . ;mg
at time period t whose performance needs gauging. To calculate
the Luenberger indicator, the four different shortage functions com-
posing it must be computed by solving a QP for each. To solve for
Stðxt ; gtÞ in a basic MV model, the following QP must be computed:

max d ð12Þ
s:t: E½RtðxtÞ� þ dgE;t 6

X
i¼1;...;n

yi;tE½Ri;t�

V ½RtðxtÞ� � dgV ;t P
X

i;j

Xi;j;tyi;tyj;t

X
i¼1;...;n

yi;t ¼ 1; yi;t P 0; d P 0; i ¼ 1; . . . ;n;

where d and yi;t; ði ¼ 1; . . . ;nÞ are decision variables. This QP is then
solved for each portfolio with respect to the portfolio set at periods t
and t þ 1. For the latter computation, one simply replaces the left-
hand side of the first two constraints by the return and risk of the
evaluated portfolio in period t þ 1 and also the corresponding direc-
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tion vector gtþ1 to end up with Stðxtþ1; gtþ1Þ. To compute the
remaining two shortage functions, one proceeds as follows. To ob-
tain Stþ1ðxtþ1; gtþ1Þ, all that is needed is to replace the subscript t
by t þ 1 everywhere in (12). Stþ1ðxt ; gtÞ is found by replacing the re-
turns, variances and covariances at time period t, occurring on the
right-hand side of the first two constraints of model (12), by those
computed at time period t þ 1.

We add two remarks on computational issues. First, while in
principle several options are available for the choice of direction
vector (see Briec et al. (2004) for details), we opt here to employ
the observation under evaluation itself, that is, gt ¼ ðgV ;t ; gE;tÞ ¼
ðV ½RtðxtÞ�; jE½RtðxtÞ�jÞ.14 In this case, the shortage function measures
the maximum percentage of simultaneous risk reduction and ex-
pected return augmentation. Second, it is well-known that in certain
cases the shortage function is not well-defined and achieves a value
of infinity (e.g., Luenberger, 1995). Focusing on the choice of direc-
tion vector, Briec and Kerstens (2009) show that the shortage func-
tion, one of the most general distance functions available in the
literature so far, may not achieve its distance in the general case
where a point need not be part of technology and where the direc-
tion vector can take any value. As a consequence, the feasibility of
the Luenberger productivity indicator can in general not be guaran-
teed.15 Apart from reporting any eventual infeasibilities, these
authors show that there is no easy solution in general. Notice that
the efficiency measures proposed by Morey and Morey (1999), as
special cases of the shortage function approach, are even more vul-
nerable to the infeasibility issue. Its incidence in a portfolio context
has never been reported.

Finally, though the Luenberger indicator is not based on a utility
approach, it is important to realize that the performance changes
traced over time do reflect gains and losses in utility. This interpre-
tation is developed in Briec et al. (2004).
4. Research methodology: Implementation strategy and data

To illustrate how the Luenberger indicator and its components
can serve to track individual fund managers’ performance, we
opt for a mimicking portfolio approach (Fama and French, 1996).
This approach employs portfolios categorized on some variable
or combination of variables of interest (e.g., Fama and French
(1996) form portfolios on firm size and book-to-market equity,
while Fama and French (1997) do the same on industry). In our
case, we employ portfolios formed on specific factors or styles.
To compose these portfolios and compute the corresponding va-
lue-weighted monthly returns, the underlying universe of financial
assets is restricted to all stocks listed on the main North American
stock markets (in particular, NYSE, AMEX and NASDAQ). In partic-
ular, we use a data set made available by French consisting in ser-
ies of monthly returns from January 1931 to August 2007 for 36
value-weighted (hence, potentially non-optimal) portfolios de-
noted P1; P2; . . . ; P36 and formed on specific factors or styles.16
14 Absolute values for return allow for both positive and negative initial data.
15 This is related to the property of determinateness in index theory which can be

loosely stated as requiring that an index remains well-defined when any of its
arguments is not.

16 The following list provides succinct information on how these 36 portfolios have
been composed: (1) Fama–French Benchmark (P1–P6): below and above medium size
market equity (ME) portfolios based on growth, neutral and value (according to book-
to-market (BTM)) portfolios ; (2) size (P7–P11): five portfolios (one per quintile)
based on size (ME); (3) growth (P12–P16): five portfolios (one per quintile) based on
BTM; (4) dividend yield (P17–P21): five portfolios (one per quintile) based on
dividend yield; (5) momentum (P22): picking well-performing stocks from the past;
(6) short-term reversal (P23): picking poor-performing stocks from the near past; (7)
long term reversal (P24): picking poor-performing stocks from the more distant past;
and (8) industry portfolios (P25–P36): portfolios mimicking returns in 12 different
industries. More information is available on the web pages of French: http://
mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
This data set has four important characteristics: (i) the asset
universe is common to all portfolios and available over a long
time period, (ii) portfolios are not handled by real fund manag-
ers over a certain relatively short time span, but represent a
variety of management styles that could have been implemented
over a long run by some idealized manager, (iii) the value-
weighted and non-optimized nature of the portfolios potentially
allows for a wide scope of inefficiencies, and (iv) the portfolios
have a known time-frame (i.e., a month), since they are recom-
posed each month or each several months depending on factors
or styles. By contrast, real world funds have the disadvantage of
having no such natural time unit (e.g., the frequency of resched-
uling is (i) hard to infer precisely from mission statements, (ii)
can vary slightly over time, and (iii) need not coincide across
funds).17

To test the capabilities of our new methodology for tracking
these inefficiencies, we compute the performance of these ideal-
ized funds over a series of sliding time windows with respect to
a common fund frontier composed of all selected mimicking port-
folios. Since the reallocation of assets within the sample of portfo-
lios is at least partly asynchronous, the resulting heterogeneity in
portfolio performance under idealized circumstances forms a per-
fect level playing field to assess the long run success of certain
portfolio management strategies conditioned on styles or factors.
In particular, this framework opens up two interesting perspec-
tives in the empirical part that are specific to these methodological
choices.

First, we compare these portfolios in terms of the Luenberger
indicator and its decomposition over a very long time period and
under identical circumstances and contrast it to more traditional
performance appraisal tools. Borrowing from the existing litera-
ture, we use the Sharpe ðSharpeÞ and Sortino ðSortÞ ratios to evalu-
ate the MV and MVS models, while we opt for the more recent
Omega ðOmegaÞ measure (Kazemi et al., 2004) as a counterpart
for the MVSK model.18 Obviously, a plethora of other traditional
financial indices could have been used instead (e.g., the Omega mea-
sure could have been replaced by the modified Sharpe ratio proposed
by Gregoriou and Gueyie (2003)). We then define their percentage
changes (DtSharpe;DtSort and DtOmega) to have a traditional ana-
logue to the difference-based Luenberger portfolio productivity indi-
cator that also has a percentage interpretation for our choice of
direction vector.

Second, the decomposition of the Luenberger indicator provides
a unique tool for the long run assessment of the relative success of
implementing different portfolio strategies (e.g., based on various
styles, factors, etc.). In particular, the efficiency change component
ðEð�ÞÞ provides an alternative, but particularly suitable measure-
ment tool to detect the eventual ability of fund managers for stock
picking and market timing, since the measurement is not contam-
inated by the change in the financial market (i.e., it is separated
from the frontier change ðFð�ÞÞ).

With a given set of N portfolios, Disatnik and Benninga (2007)
underscore the importance to use a minimal size for the time win-
dow of N þ 1 to avoid the most dramatic estimation errors in the
17 In Appendix 2 we apply the Luenberger productivity indicator to a limited sample
of real world funds.

18 The Omega measure is among the few traditional performance measures that
account for all moments of the return distribution (e.g., skewness and kurtosis). It is
computed as follows:

Omega ¼
R b

L ð1� FðrÞÞdrR L
a ðFðrÞÞdr

ð13Þ

where FðrÞ is the cumulative distribution of returns between a and b; L is the loss
threshold: above this threshold returns are considered as gains, below as losses.
Thus, Omega can be interpreted as a ratio of gains over losses. The threshold L is here
specified as zero.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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variance–covariance matrix.19 Hence, all computations are per-
formed with the same time window of 37 months.20 The sliding tick
for this window is one month. Therefore, since we dispose of 920
months in the data set, we end up with 883 time windows.21 We also
use a 3-month T-Bill as reference for the risk-free rate in the tradi-
tional performance measures.22 These data are obtained from the
Federal Reserve Board and are only available since January 1934.
Consequently, changes in the traditional ratios (DtSharpe;DtSort
and DtOmega) can only be computed from January 1937 onwards.
This difference in availability only affects the comparisons between
these traditional measures and the Luenberger portfolio productivity
indicator.

Thus, given that all 36 portfolios must be evaluated with 4 dif-
ferent shortage functions over 883 time windows, we end up with
127,152 optimizations in total for the MV model and an equal
amount for the MVS and MVSK models. Recall that in the case of
the MV (MVS or MVSK) model, each portfolio is projected using a
shortage function simultaneously looking for return (and skew-
ness) augmentation and risk (and kurtosis) reduction. Notice the
computational advantage of using efficiency measures, since it
would be more difficult to compare 883 complete MV frontiers
with one another (while ignoring the impossibility to do anything
similar in the MVS or MVSK cases). The proposed approach only
needs the projections of these 36 portfolios in each of the 883 time
windows (the remainder of the MV, MVS or MVSK frontiers can be
safely neglected).

Notice furthermore that the incidence of the infeasibility prob-
lem mentioned before, turns out to be rather minor: we observe
infeasibilities for only 165 (i.e., 0:519% ¼ 165=ð883� 36Þ), 201
(i.e., 0:632% ¼ 201=ð883� 36Þ) and 1224 (i.e., 3:850% ¼
1224=ð883� 36Þ) portfolios in the MV, MVS, respectively the
MVSK models. Thus, the problem is rather small in this data base.
5. Empirical results

This section scrutinises these portfolios in terms of their MV,
MVS and MVSK Luenberger portfolio productivity indicators, and
also compares these to the DtSharpe, DtSort, respectively DtOmega
indicators.23

A first part of the analysis searches for a common ground in the
information provided by this Luenberger productivity indicator and
its counterpart traditional performance measures. The idea is to
identify whether or not these two categories of performance gauges
offer similar results. Rank correlations are computed over the peri-
od 02/1937 to 08/2007 (for data availability reasons) between on
the one hand Lð�Þ and on the other hand the DtSharpe indicator
(MV), the DtSort indicator (MVS) and the DtOmega indicator
(MVSK). To impose minimal assumptions, these correlations are
evaluated by a Spearman rho test. Results are presented in Table 1.

Looking at Table 1, one can draw two conclusions. First, the
Luenberger productivity indicator is rather highly positively corre-
lated with all three traditional indicators. This shows that our new
approach is not disconnected from existing performance indica-
19 This minimum requirement ensures, for instance, that the covariance matrix can
be inverted. If this condition is not respected, estimation errors could bias results (see,
e.g., Michaud, 1989).

20 Robust methods for the estimation of the variance–covariance matrix can, for
instance, be found in DeMiguel and Nogales (2009). To the best our knowledge,
however, the transposition to higher co-moment tensor estimations is not yet
available.

21 The first time window ranges over the interval [01/1931, 01/1934] and the last
one over the interval [08/2004, 08/2007].

22 Furthermore, these risk-free rates are annualized and converted to a monthly
basis.

23 Appendix 2 discusses the empirical results pertaining to the real world funds and
comments upon some contrasting results with the mimicking portfolio approach.
tors. Notice that while the correlation with the DtSharpe indicator
(MV) is higher than with the DtSort indicator (MVS), the highest
correlation is in fact found with the DtOmega indicator. This seems
to point out that the Luenberger indicator captures essential fea-
tures of the whole return distribution. Second, with regard to its
components, frontier change is more strongly positively associated
with the traditional performance indicators than the technical effi-
ciency change component. Thus, traditional indicators seem to
capture some changes in portfolio frontiers, but have a rather hard
time to adequately assess the individual contributions of fund
management itself.24

Keeping in mind that traditional measures are unable to distin-
guish the contribution of portfolio managers to the performance
evolution, while the Luenberger portfolio productivity indicator
and its decomposition allow for such a distinction, we now try to
test the relevance of this decomposition. Two questions are consid-
ered: (i) is the evolution of Lð�Þ; Eð�Þ and Fð�Þ due to mere chance,
and (ii) do the series of Lð�Þ; Eð�Þ and Fð�Þ have a mean that is differ-
ent from zero? While the first question is concerned with the
detection of any significant influence of portfolio managers on
the Luenberger and its components, the second question focuses
on the size of any eventual effect.

One basic idea here is simply to identify, if possible, some styles
that perform well in terms of efficiency over time (in line with a re-
search stream pioneered by McDonald (1974)). Moreover, since all
of these mimicking portfolios belong to a more general active man-
agement style (these portfolios being rebalanced on some regular
basis), our results could shed some light on the controversy regard-
ing the utility/vacuity of active management. While it is frequently
reported that actively managed portfolios fail to outperform pas-
sive counterpart strategies (see, e.g., Gruber, 1996), some research-
ers do find some value added for active mutual fund management
(e.g., Wermers, 2000). Thus, while we do not expect reporting port-
folios with significant non-zero Lð�Þ (given efficient markets), we
wonder whether some styles could exhibit some non-zero Eð�Þ.
Obviously, positive improvements in Eð�Þ could indicate expertise
among some portfolio managers (at least over short periods of time)
to push portfolios towards the moving portfolio frontier target,
while a negative result could point to their inability to do so.

To answer the first question, we utilize a Wald-Wolfowitz run
test. Results are proposed in Table 2. Notice that in the remainder,
we only report significant results. Looking at the decomposition, a
first major result is that most portfolios exhibit non-random Eð�Þ
series in all three models. By contrast, Fð�Þ appears to be almost
completely random, as could be expected from efficient market
theory. Second, the Luenberger indicator Lð�Þ, as the sum of both
above components, is mainly non-random for the two first portfo-
lio families. These are in particular, the Fama–French Benchmark
portfolios 3 (neither in MV, nor in MVSK), 4, 5 and 6 (i.e., mainly
those that are above the median size, whatever their position in
terms of BTM) and portfolios 7, 8, 9 and 10 (neither in MVS, nor
in MVSK) (i.e., P7–P9 are portfolios composed within the subset
of the 60% smallest firms).

The second question is answered using a Wilcoxon test for dif-
ferences. Over the whole time period, we cannot report any portfo-
lio that has non-zero performance indicators except P31 (a
significant Lð�Þ in MV) and P23 (a significant Eð�Þ in MVS and in
MVSK). Of course, this is in line with the efficient market hypoth-
esis as well, since it is hard to imagine that the portfolio mimicking
approach could generate and sustain superior results over such a
24 Of course, this aggregate result is accompanied by quite some variations among
portfolios. For instance, portfolios 21, 24, and 3 Industry portfolios (28, 31 and 32)
even exhibit a non-significant and close to zero rank correlation with regard to the
technical efficiency change component, even though all of these are significantly
correlated with the frontier change.



Table 1
Portfolios with significant correlations between Lðxt ; xtþ1; gt ; gtþ1Þ and DSharpe (MV), DSortino (MVS) resp. DOmega (MVSK).

Portfolio group Port. No. DtSharpe (MV) DtSort (MVS) DtOmega (MVSK)

Eð:Þ Fð:Þ Lð:Þ Eð:Þ Fð:Þ Lð:Þ Eð:Þ Fð:Þ Lð:Þ

FF. Benchmark 1 0.3996 0.4366 0.5588 0.3301 0.3543 0.4490 0.3422 0.5704 0.6109
2 0.2158 0.3737 0.4244 0.3291 0.4130 0.5025 0.3518 0.6231 0.6920
3 0.1264 0.4060 0.3887 0.3358 0.5099 0.6079 0.3357 0.6991 0.7520
4 0.2506 0.4373 0.4193 0.4012 0.3711 0.4920 0.4053 0.5722 0.6097
5 0.1505 0.4018 0.3831 0.4092 0.4908 0.5873 0.4369 0.7056 0.7576
6 0.1230 0.3665 0.3516 0.3432 0.4952 0.5931 0.3389 0.7049 0.7756

Size 7 0.1266 0.3528 0.3236 0.2850 0.4049 0.4896 0.2666 0.5131 0.5897
8 0.1963 0.4302 0.4190 0.4735 0.4830 0.6194 0.4646 0.7083 0.7657
9 0.2583 0.4602 0.4628 0.4413 0.5092 0.6044 0.4633 0.7330 0.7696
10 0.2999 0.4489 0.4789 0.4585 0.5693 0.6478 0.5139 0.7613 0.8084
11 0.3141 0.3980 0.4865 0.2831 0.3165 0.3968 0.3060 0.5553 0.5947

Growth 12 0.3929 0.4404 0.5531 0.3576 0.3471 0.4526 0.3786 0.5878 0.6349
13 0.3179 0.3969 0.4689 0.3741 0.4643 0.5600 0.3547 0.6248 0.6534
14 0.1520 0.4089 0.4244 0.3060 0.4795 0.5694 0.3501 0.6630 0.7471
15 0.1527 0.3855 0.3911 0.3667 0.5307 0.6159 0.3926 0.7572 0.8279
16 0.1281 0.4223 0.3850 0.3375 0.4436 0.5505 0.3524 0.6680 0.7187

Dividend Yield 17 0.3951 0.4664 0.5597 0.4461 0.4494 0.5766 0.4245 0.6510 0.7041
18 0.3104 0.4212 0.4864 0.3159 0.3770 0.4683 0.4049 0.5866 0.6636
19 0.2226 0.3740 0.4490 0.2115 0.4047 0.4660 0.2940 0.6208 0.6730
20 0.1364 0.3403 0.3952 0.2371 0.4030 0.5170 0.2528 0.6192 0.6869
21 0.0475 (0.1672) 0.3759 0.3630 0.1752 0.3854 0.4184 0.2272 0.5421 0.5968

Momentum 22 0.1989 0.3847 0.4118 0.4173 0.5125 0.6303 0.5023 0.7255 0.8536
ST Reversal 23 0.2052 0.4333 0.4196 0.3666 0.4154 0.5269 0.3567 0.6102 0.7057
LT Reversal 24 0.0354 (0.3095) 0.3400 0.2721 0.1548 0.2790 0.3384 0.2037 0.4452 0.5118

Industry 25 0.0998 0.3418 0.3464 0.2364 0.3871 0.4383 0.2374 0.5250 0.5822
26 0.1754 0.4289 0.4043 0.2502 0.2004 0.2942 0.2314 0.2443 0.3234
27 0.3038 0.4832 0.5088 0.3292 0.3963 0.4678 0.4287 0.6557 0.7133
28 �0.0412 (0.2352) 0.3145 0.2199 0.2042 0.2500 0.3279 0.1840 0.4055 0.4751
29 0.2621 0.3974 0.4640 0.2210 0.2843 0.3709 0.2510 0.4521 0.5300
30 0.2653 0.4363 0.4839 0.2049 0.2211 0.2850 0.2031 0.3146 0.3407
31 0.0065 (0.8508) 0.3288 0.3015 0.1284 0.1865 0.2698 0.1516 0.2473 0.3299
32 �0.0528 (0.1250) 0.3036 0.2627 0.1421 0.1466 0.2016 0.2112 0.2957 0.3878
33 0.2172 0.4347 0.4609 0.3245 0.4045 0.5002 0.3723 0.5451 0.6430
34 0.1079 0.4033 0.4057 0.1538 0.2589 0.3541 0.2015 0.3969 0.4626
35 0.1527 0.4158 0.4055 0.3486 0.4006 0.5206 0.3610 0.5875 0.6583
36 0.2695 0.4083 0.4415 0.4034 0.3379 0.4729 0.3247 0.4704 0.5258

Overall 0.1920 0.4001 0.4158 0.1414 0.3154 0.3233 0.3232 0.5491 0.6122

Note: Spearman Correlation coefficient with H0: q ¼ 0. Absence of p-value indicates a significance at 1% threshold.
To save space, we denote Eðxt ; xtþ1; gt ; gtþ1Þ; Fðxt ; xtþ1; gt ; gtþ1Þ, and Lðxt ; xtþ1; gt ; gtþ1Þ by Eð:Þ; Fð:Þ, respectively Lð:Þ. This is done in all tables.
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long run. However, in a sufficiently short time horizon (1–3 years:
see, e.g., Brown and Goetzmann, 1995) and sometimes over longer
periods (5–10 years: e.g., Elton et al., 1996), one can imagine that
some portfolios (e.g., styles, etc.) may perform well because, for a
variety of reasons, their profile fits into some market niche favored
by the economy. Therefore, we look at the short run by fixing a per-
iod consisting of the last ten years. The Wilcoxon test is recom-
puted and results are reported in Table 3.

While no portfolio gets a significant Eð�Þ in MV, and only one
(P35) in MVS and in MVSK, quite a few obtain non-zero Lð�Þ and
Fð�Þ. Notice that not a single portfolio obtains a non-zero
DtSharpe or DtSort indicator over the same time span. These port-
folios obtain a significant Luenberger indicator value, not because
of any capability from the idealized manager, but simply due to
changes in the market that temporarily and locally favor certain
niches in the portfolio set. Combining this information with the re-
sult regarding the first question, one can conjecture that the non-
random Eð�Þ found there must be caused by some coincidentally
favorable circumstances situated in some sub-period(s) different
from the last ten years. Among these results, one also notices that
there is no evidence supporting the relative interest to invest in
high book-to-market portfolios (i.e., value portfolios, P15 and
P16). This result contrasts with Lakonishok et al. (1994) who pro-
vide contradictory illustrations. One explanation for this difference
could be the mechanical behavior of our virtual managers who
consistently follow certain management styles. This style consis-
tency is known to be insufficient to achieve good performance lev-
els (see Asness et al., 2000): for instance, some appropriately timed
rotation between growth and value styles seems necessary to ob-
tain such good results.

Finally, knowing that non-zero performance is at best only ob-
servable in the short-term, we wonder whether there is any time-
dependency within these indicator-based performance results
within the same 10 year time span. This question relates to the
more general issue of performance persistence in portfolio man-
agement. An enormous literature has been devoted to this subject
ever since Jensen (1968) illustrated the virtual impossibility to out-
perform the market over long periods and on a regular basis. We
test for possible persistence in performance for short periods of
time using first-order autocorrelation regressions for efficiency
change, frontier change and the Luenberger indicator for MV,
MVS and MVSK models. We basically find that non-zero perfor-
mance in these non-optimized mimicking portfolios cannot be sus-
tained over time (see Appendix 3 for details).
6. Conclusions

The main objective of this contribution is to introduce a general
method for measuring the evolution of portfolio efficiency over



Table 2
Run tests for the Luenberger indicator and its components (whole sample).

Portfolio group Port.
No.

Mean-variance Mean-variance-skewness Mean-variance-skewness-kurtosis

Eð:Þ Fð:Þ Lð:Þ Eð:Þ Fð:Þ Lð:Þ Eð:Þ Fð:Þ Lð:Þ

Z p-value Z p-value Z p-value Z p-value Z p-value Z p-value Z p-value Z p-value Z p-value

FF. Benchmarks 3 – – – – – – �1.115 0.2648 �1.170 0.2419 �1.716 0.0862* – – – – – –
4 �3.000 0.0027*** �1.448 0.1477 �3.337 0.0008*** �2.180 0.0292** �0.820 0.4117 �3.468 0.0005*** �1.658 0.0974* �0.332 0.7402 �2.971 0.0030***

5 �2.789 0.0053*** �1.116 0.2645 �4.634 0.0000*** �1.649 0.0991* �1.550 0.1212 �5.031 0.0000*** �2.081 0.0374* �0.858 0.3907 �4.671 0.0000***

6 �3.764 0.0002*** �1.689 0.0912* �3.045 0.0023*** �4.476 0.0000*** �1.680 0.0929*** �2.690 0.0071*** �5.289 0.0000*** �1.819 0.0689* �2.927 0.0034***

Size 7 �6.503 0.0000*** �2.063 0.0391* �4.354 0.0000*** �8.303 0.0000*** �2.294 0.0218* �3.915 0.0001*** �8.081 0.0000*** �2.161 0.0307* �3.511 0.0004***

8 �2.668 0.0076*** �1.284 0.1990 �3.169 0.0015*** �1.811 0.0701* �1.274 0.2029 �4.067 0.0000*** �1.627 0.1038 �0.393 0.6941 �3.780 0.0002***

9 �1.517 0.1293 �1.034 0.3010 �2.655 0.0079*** �0.772 0.4399 �1.314 0.1887 �2.798 0.0051*** �0.807 0.4196 �0.405 0.6858 �2.287 0.0222*

10 �1.716 0.0861* �0.027 0.9783 �2.727 0.0064*** – – – – – – – – – – – –
Growth 14 – – – – – – �1.986 0.0470* �0.096 0.9232 �0.096 0.9232 – – – – – –

15 �2.140 0.0323* 0.372 0.7097 1.314 0.1891 �2.188 0.0287* 1.352 0.1765 1.238 0.2159 �2.850 0.0044*** 0.434 0.6640 0.595 0.5518
16 �2.059 0.0395* 0.204 0.8388 �0.966 0.3341 �4.860 0.0000*** �0.776 0.4377 �1.816 0.0693* �4.861 0.0000*** �0.935 0.3498 �3.094 0.0020***

Dividend yield 17 �1.137 0.2554 0.086 0.9314 �2.221 0.0263* �1.964 0.0495* �0.120 0.9048 �1.057 0.2906 �2.133 0.0329* �0.113 0.9100 �1.341 0.1798
20 �2.256 0.0241* �0.676 0.4992 �1.515 0.1298 �2.724 0.0064*** 1.225 0.2207 �1.107 0.2681 �2.035 0.0419* 0.871 0.3840 �0.918 0.3588
21 – – – – – – – – – – – – �1.973 0.0485* �0.611 0.5410 0.041 0.9674

Momentum 22 �4.495 0.0000*** �0.961 0.3366 �0.919 0.3582 �6.263 0.0000*** �0.805 0.4206 �0.732 0.4642 �6.045 0.0000*** �0.741 0.4588 �0.940 0.3471
ST Reversal 23 �2.473 0.0134* �1.700 0.0890* �0.769 0.4421 �6.686 0.0000*** �1.204 0.2288 �0.422 0.6730 �6.380 0.0000*** �1.339 0.1806 �0.557 0.5775
LT Reversal 24 �2.230 0.0258* �0.683 0.4949 �1.747 0.0806* �7.022 0.0000*** 1.223 0.2212 �0.716 0.4742 �7.280 0.0000*** 1.279 0.2008 �0.746 0.4560

Industry 25 �2.765 0.0057*** �1.421 0.1554 �0.745 0.4562 �2.237 0.0253* 0.738 0.4603 0.774 0.4389 �1.661 0.0966* 1.119 0.2631 0.625 0.5318
26 �2.199 0.0278* �0.023 0.9820 0.104 0.9174 �6.850 0.0000*** �1.655 0.0979* �1.643 0.1003 �7.183 0.0000*** �1.418 0.1562 �2.078 0.0377*

28 �3.410 0.0006*** �0.467 0.6402 0.273 0.7849 �8.426 0.0000*** �0.977 0.3287 0.220 0.8256 �7.794 0.0000*** �0.438 0.6615 1.334 0.1821
29 �1.683 0.0924* 0.371 0.7108 1.449 0.1474 �1.869 0.0617* 0.453 0.6503 1.387 0.1654 �2.497 0.0125* 0.323 0.7468 1.665 0.0959*

30 �2.800 0.0051*** �0.334 0.7388 �0.595 0.5519 �5.298 0.0000*** 0.409 0.6824 0.304 0.7608 �5.025 0.0000*** 1.504 0.1327 0.680 0.4965
31 �3.740 0.0002*** �0.354 0.7235 �0.564 0.5727 �7.750 0.0000*** �0.554 0.5793 �0.975 0.3294 �7.352 0.0000*** �1.215 0.2243 �1.219 0.2229
32 – – – – – – �5.008 0.0000*** �0.235 0.8139 �0.492 0.6230 �4.894 0.0000*** �0.505 0.6132 �0.769 0.4420
33 �2.978 0.0029*** �1.416 0.1568 �0.576 0.5649 �3.486 0.0005*** �0.337 0.7364 �0.601 0.5478 �3.103 0.0019*** �0.846 0.3978 0.102 0.9184
34 �3.444 0.0006*** 0.081 0.9354 �1.307 0.1912 �6.388 0.0000*** 0.728 0.4665 0.524 0.6007 �6.156 0.0000*** 0.265 0.7909 0.481 0.6305
35 – – – – – – �1.716 0.0861* 1.498 0.1342 �0.675 0.4998 �1.762 0.0780* 0.867 0.3861 �0.366 0.7146
36 �1.383 0.1667 �1.651 0.0988* �1.773 0.0763* – – – – – – – – – – – –

Note: Wald-Wolfowitz run test with H0: series X follows a random process.
* 10% Signs represent thresholds.
** 5% Signs represent thresholds.
*** 1% Signs represent thresholds.
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Table 3
Wilcoxon tests for the Luenberger indicator and its components (last ten years).

Portfolio group Port. No. Eð:Þ Fð:Þ Lð:Þ

W p-value W p-value W p-value

Mean-variance
FF. Benchmark 1 – – – – 0.0028 0.0643*

2 – – 0.0058 0.0824* – –
Size 11 – – 0.0047 0.0967* 0.0059 0.0422**

Growth 12 – – – – 0.0006 0.0994*

Dividend yield 19 – – 0.0075 0.0311** 0.0133 0.0367**

20 – – 0.0091 0.0148** – –
Industry 25 – – 0.0077 0.0203** 0.0123 0.0607*

29 – – 0.0108 0.0054*** 0.0145 0.0178**

31 – – – – �0.0002 0.0521*

36 – – 0.0065 0.051* – –

Mean-variance-skewness
FF. Benchmark 1 – – 0.0108 0.0967* 0.0119 0.065*

19 – – 0.0101 0.0698* 0.0164 0.0685*

25 – – 0.0277 0.0517* – –
28 – – �0.0192 0.0580* �0.0186 0.0889*

29 – – 0.0534 0.0841* 0.0571 0.0961*

34 – – – – 0.0161 0.0967*

35 0.0023 0.0736* – – – –

Mean-variance-skewness-kurtosis
FF. Benchmark 1 – – 0.01213 0.0967* 0.0133 0.0636*

Dividend yield 19 – – 0.0135 0.0698* 0.0199 0.0685*

Industry 28 – – �0.0219 0.0408** �0.0219 0.0605*

34 – – – – 0.0163 0.0931*

35 0.0025 0.0805* – – – –

Note: Wilcoxon test with H0: value is not different of 0.
* 10% Represent thresholds.
** 5% Represent thresholds.
*** 1% Represent thresholds.
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time inspired by developments in index theory. Benchmarking
portfolios by simultaneously looking for risk (and kurtosis) con-
traction and mean return (and skewness) augmentation in the
MV (MVS and MVSK) model using the shortage function frame-
work, we define a new Luenberger discrete time portfolio produc-
tivity indicator. The cardinal virtues of this approach are: (i) it does
not require the complete estimation of the efficient frontier and
tracing its evolution over time, but simply projects the portfolios
on the relevant part of the frontier with the shortage function
using non-parametric envelopment methods to obtain an easily
interpretable efficiency measure and an ensuing productivity indi-
cator; (ii) the decomposition of the Luenberger portfolio productiv-
ity indicator distinguishes between efficiency change and portfolio
frontier change. While the latter component measures the local
changes in the frontier movements induced by market volatility,
the former can in principle capture efficiency changes attributable
to the investor or portfolio manager. This efficiency change compo-
nent allows testing in an alternative, but conceptually promising
way the eventual ability of fund managers to generate superior
performances, since this measurement is not contaminated by
any changes in the financial market itself.

An empirical application on a limited sample of idealized port-
folios illustrates the computational feasibility of this general
framework in the MV, MVS and MVSK frameworks. Given the mim-
icking portfolio approach adopted, and the long time period avail-
able, we are able to shed some light on the question of the relative
performance of implementing different portfolio strategies (e.g.,
based on various styles, factors, etc.). Summarizing some key
empirical results, the Luenberger portfolio productivity indicator
is positively correlated with its counterpart traditional perfor-
mance measures in all three portfolio frameworks. This correlation
is probably mainly due to the capacity of traditional measures to
track portfolio frontier changes. The latter measures cannot iden-
tify the individual contribution of fund management, as it is cap-
tured by our technical efficiency change component.
Furthermore, most portfolios exhibit non-random efficiency
change series in all three portfolio models, while frontier change
series are almost completely random. Additionally, the efficiency
change series does almost never yield a non-zero performance.
By contrast, the frontier change component of some portfolios
can be significantly different from zero in the short run, because
the market coincidentally seems to create favorable circumstances.
Overall, these results are perfectly concordant with efficient mar-
ket theory and are probably driven by the mimicking portfolio ap-
proach which relies in the selected data base on non-optimized
rules. Nevertheless, this new framework opens up possibilities to
systematically attribute performance and quantify any eventual
individual fund manager performance.

Obviously, the current work has some limitations. One restric-
tion is that it does not account for transaction costs, but assumes
that portfolios can be reshuffled in every time period to remain
in track with the evolving portfolio frontiers. This can in principle
be overcome at the cost of complexifying the analysis slightly.
However, we do not anticipate any fundamental problem in
extending the proposed Luenberger indicator, since all extensions
of basic portfolio models could in principle be fitted into the basic
shortage function models. Another restriction is that it ignores the
revived interest in downside risk (see, e.g., Morton et al. (2006)) or
Chen and Wang (2008)). It is likely possible to formulate similar
portfolio productivity gauges using partial moments.
Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at doi:10.1016/j.jbankfin.2009.12.015.
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