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Summary. Introducing a new difference-based Luenberger-Hicks-Moorsteen pro-
ductivity indicator, this contribution establishes theoretically its relations with some
existing ratio- and difference-based productivity indexes and indicators. The first
main result is an approximation proposition stating that the logarithm of the Hicks-
Moorsteen productivity index is about equal to the Luenberger-Hicks-Moorsteen
productivity indicator. Secondly, we also establish the specific conditions under
which the Luenberger-Hicks-Moorsteen indicator equals the recently introduced
Luenberger indicator and compare these to the conditions governing the relations
between ratio-based Hicks-Moorsteen and Malmquist indices.
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1 Introduction

Total factor productivity (TFP) growth, as estimated by the traditional Solow resid-
ual, yields an index number reflecting shifts in technology resulting from output
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growth left unexplained by input growth (Hulten (2001)).Awareness has grown that
ignoring inefficiency biases TFP measures. Nishimizu and Page (1981) were the
first to decompose TFP into technical change and technical efficiency change using
parametric production frontiers. Caves, Christensen and Diewert (1982) analyse
Malmquist input, output and productivity indexes in discrete time using distance
functions as general technology representations. Since these indexes require a pre-
cise knowledge of technology, they develop an empirical estimation strategy by
relating Malmquist and Törnqvist productivity indexes, the latter needing no exact
knowledge of technology but depending on both prices and quantities. Färe et al.
(1995) integrate the two-part decomposition of TFP of Nishimizu and Page (1981)
into the Malmquist index and make it computationally tractable by exploiting the
relation between distance functions and radial efficiency measures. Bjurek (1996)
defines an alternative Malmquist TFP (or Hicks-Moorsteen) index, as a ratio of
Malmquist output and input indices.

Luenberger (1992) generalises existing distance functions by introducing the
shortage function, which accounts for both input contractions and output improve-
ments, and establishes duality between this shortage (or directional distance) func-
tion and the profit function (see also Chambers, Chung and Färe, 1998). A Luen-
berger productivity indicator is defined by Chambers (2002) as a difference-based
index of directional distance functions.1 Extending Chambers (1998), we introduce
a new difference-based variation on the Hicks-Moorsteen productivity index, which
is labelled the Luenberger-Hicks-Moorsteen indicator.

This paper first introduces a series of ratio-based and difference-based primal
productivity indices and indicators in a discrete time framework and then proves two
main theoretical results. First, an approximation result shows that the Luenberger-
Hicks-Moorsteen indicator is about equal to the logarithm of the Hicks-Moorsteen
index, its ratio-based counterpart. This outcome complements recent approxima-
tion results linking the Luenberger indicator to the Malmquist index, a ratio-based
version of the former. In particular, Boussemart et al. (2003) prove that the log-
arithm of the input Malmquist productivity index is twice a linear approximation
of minus the Luenberger productivity indicator. In this way all currently known
primal productivity indices and indicators are related to one another.

Second, the necessary and sufficient conditions to obtain equality between
difference-based Luenberger-Hicks-Moorsteen and Luenberger output (or input)
oriented productivity indicators are determined. Both coincide under two proper-
ties: (i) a new property of inverse translation homotheticity of technology in the
direction of g (see also Fukuyama, 2002); and (ii) graph translation homotheticity
in the direction of g (Chambers, 2002). These two conditions are the arithmetic
counterparts of the ones linking the ratio-based Malmquist and Hicks-Moorsteen
productivity indexes (Färe, Grosskopf and Roos, 1996): (i) inverse homotheticity
of technology; and (ii) constant returns to scale (CRS). Similar to Färe, Grosskopf
and Roos (1996), we conclude that Luenberger-Hicks-Moorsteen and Luenberger

1 Following Diewert (1998), “indicators” denote productivity measures based on differences, while
“indexes” indicate productivity measures defined as ratios. A systematic comparison of ratio and dif-
ference approaches to index number theory from both a test and an economic perspective is found in
Chambers (1998, 2002) and Diewert (1998), among others.
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output- and input-oriented productivity indicators will in general differ, since the
conditions needed for their equality are strong and unlikely to be met in empirical
work.

This contribution is structured as follows. In Section 2 the assumptions on
technology and the definitions of the various distance functions and productivity
indices are developed. The next section states the two main theoretical propositions
of this contribution.

2 Definitions of technology, distance functions
and productivity indices and indicators

2.1 Technology and distance functions

Production technology transforms inputs x = (x1, ..., xn) ∈ Rn
+ into outputs

y = (y1, ..., yp) ∈ Rp
+. For each time period t, the production possibility set T (t)

summarises the set of all feasible input and output vectors and is defined as follows:

T (t) =
{
(xt, yt) ∈ Rn+p

+ ; xt can produce yt
}

. (1)

Throughout the paper technology satisfies the following conventional assumptions:
(T.1) (0, 0) ∈ T (t), (0, yt) ∈ T (t) ⇒ yt = 0 i.e., no free lunch; (T.2) the set
A(xt) = {(ut, yt) ∈ T (t); ut ≤ xt} of dominating observations is bounded ∀xt ∈
Rn

+, i.e., infinite outputs are not allowed with a finite input vector; (T.3) T (t) is
closed; and (T.4) ∀(xt, yt) ∈ T (t), (xt,−yt) ≤ (ut,−vt) ⇒ ( ut, vt) ∈ T (t),
i.e., fewer outputs can always be produced with more inputs, and inversely (strong
disposal of inputs and outputs). On one occasion, stronger assumptions (specifically,
convexity) are needed.

Efficiency is estimated relative to production frontiers using distance or gauge
functions. The directional distance function DT (t) (., .; gt) : T (t) → R involving
a simultaneous input and output variation in the direction of a pre-assigned vector
gt = (gt

i , g
t
o) ∈ Rn+p

+ is defined as:

DT (t)
(
xt, yt; gt

)
= max

δ

{
δ ≥ 0;

(
xt − δgt

i , y
t + δgt

o

) ∈ T (t)
}

. (2)

This directional distance function (Chambers, Färe and Grosskopf, 1996) is a spe-
cial case of the shortage function (Luenberger, 1992). In the remainder, we denote
by DT (b) (xa, ya; ga) = max

δ
{δ ∈ R; (xa − δga

i , ya + δga
o ) ∈ T (b)} the time-

related version of this directional distance function, where (a, b) ∈ {t, t + 1} ×
{t, t + 1}. Note that this function is defined using a general directional vector g,
while we consider the special case: gt

i = xt and gt
o = yt. The latter is known

as the Farrell proportional distance function (Briec, 1997), a generalization of the
Farrell measure.2 From Chambers, Färe and Grosskopf (1996), the Farrell input
measure is defined as one minus the input-oriented proportional distance function:
Ei

T (t)(x
t, yt) = 1 − DT (t)(xt, yt; (xt, 0)). Similarly, the Farrell output efficiency

measure is defined as one plus the output-oriented proportional distance function:
Eo

T (t)(x
t, yt) = 1 + DT (t)(xt, yt; (0, yt)).

2 Axiomatic properties of this function are studied in Briec (1997) and Chambers, Chung and Färe
(1998).
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2.2 Productivity indices and indicators

2.2.1 Ratio-based productivity indices

Having defined the necessary components, we can define the productivity indices
and indicators. Using the input Farrell measures, the input-oriented Malmquist
productivity index M i((xt, yt), (xt+1, yt+1)) is defined as follows:

M i
((

xt, yt
)
,
(
xt+1, yt+1)) (3)

=

[
Ei

T (t) (xt, yt)

Ei
T (t) (xt+1, yt+1)

Ei
T (t+1) (xt, yt)

Ei
T (t+1) (xt+1, yt+1)

]1/2

.

To avoid an arbitrary selection among base years, a geometric mean of period t
(first ratio) and period t+1 (second ratio) Malmquist indices is taken. Productivity
growth (decline) is indicated by values below (above) unity. Similarly, a Malmquist
output productivity index is defined as follows:

Mo
((

xt, yt
)
,
(
xt+1, yt+1)) (4)

=

[
Eo

T (t) (xt, yt)

Eo
T (t) (xt+1, yt+1)

Eo
T (t+1) (xt, yt)

Eo
T (t+1) (xt+1, yt+1)

]1/2

.

Since Eo
T (t) (xt, yt) =

[
Ei

T (t) (xt, yt)
]−1

under CRS, evidently:

Mo
((

xt, yt
)
,
(
xt+1, yt+1)) =

[
M i

((
xt, yt

)
,
(
xt+1, yt+1))]−1

.

Following Bjurek (1996), a Hicks-Moorsteen productivity (or Malmquist TFP)
index with base period t is defined as the ratio of a Malmquist output quantity
index at base period t and a Malmquist input quantity index at base period t:

HMT (t)
(
xt, yt, xt+1, yt+1) =

Eo
T (t) (xt, yt)

/
Eo

T (t)

(
xt, yt+1

)
Ei

T (t) (xt, yt)
/

Ei
T (t) (xt+1, yt)

(5)

≡ MOT (t)
(
xt, yt, yt+1

)
MIT (t) (xt, xt+1, yt)

.

When the Hicks-Moorsteen productivity index is larger (smaller) than unity, it in-
dicates productivity gain (loss).3 A base period t+1 Hicks-Moorsteen productivity
index is defined as follows:

HMT (t+1)
(
xt, yt, xt+1, yt+1) =

Eo
T (t+1)

(
xt+1, yt

) /
Eo

T (t+1)

(
xt+1, yt+1

)
Ei

T (t+1) (xt, yt+1)
/

Ei
T (t+1) (xt+1, yt+1)

≡ MOT (t+1)
(
xt+1, yt+1, yt

)
MIT (t+1) (xt, xt+1, yt+1)

. (6)

3 The Malmquist input quantity index is discussed in Chambers, Färe and Grosskopf (1994). The
same authors also discuss the Deaton index, a variation on the Malmquist output quantity index.
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A geometric mean of these two Hicks-Moorsteen productivity indexes is (Bjurek,
1996, p. 310):

HMT (t),T (t+1)
(
xt, yt, xt+1, yt+1) (7)

=
[
HMT (t)

(
xt, yt, xt+1, yt+1) .HMT (t+1)

(
xt, yt, xt+1, yt+1)]1/2

.

2.2.2 Difference-based productivity indicators

Chambers (2002) defines the Luenberger productivity indicator L((xt, yt),
(xt+1, yt+1); gt, gt+1) in the general case of directional distance functions as fol-
lows:

L
((

xt, yt
)
,
(
xt+1, yt+1) ; gt, gt+1) (8)

=
1
2

[ (
DT (t)

(
xt, yt; gt

) − DT (t)
(
xt+1, yt+1; gt+1))

+
(
DT (t+1)

(
xt, yt; gt

) − DT (t+1)
(
xt+1, yt+1gt+1)) ]

.

When gt = (xt, yt) and gt+1 =
(
xt+1, yt+1

)
, then one obtains a proportional

indicator, as mentioned in Chambers, Färe and Grosskopf (1996). In an effort to
avoid an arbitrary choice of base years, an arithmetic mean of a difference-based
Luenberger productivity indicator in base year t (first difference) and t+1 (second
difference) has been taken. Productivity growth (decline) is indicated by positive
(negative) values.

It is equally possible to define input- and output-oriented versions of this Luen-
berger productivity indicator based on input respectively output directional distance
functions. The input Luenberger productivity indicator is defined as follows:

Li
((

xt, yt
)
,
(
xt+1, yt+1) ; gt

i , g
t+1
i

)
(9)

= L
((

xt, yt
)
,
(
xt+1, yt+1) ;

(
gt

i , 0
)
,
(
gt+1

i , 0
))

,

while the output Luenberger productivity indicator can be defined as:

Lo
((

xt, yt
)
,
(
xt+1, yt+1) ; gt

o, g
t+1
o

)
(10)

= L
((

xt, yt
)
,
(
xt+1, yt+1) ;

(
0, gt

o

)
,
(
0, gt+1

o

))
.

These are difference-based indicators of the similarly oriented ratio-based Malm-
quist indices.

Extending some basic elements developed in Chambers (1998, 2002), a Luen-
berger-Hicks-Moorsteen indicator with base period t is defined as the difference
between a Luenberger output quantity indicator and a Luenberger input quantity
indicator:4

4 Actually, Chambers (1998) defines these difference-based Luenberger input and output indicators
using a special case of the shortage (directional distance) function known as the translation function.
Furthermore, we slightly modify the Chambers (1998, 2002) definition of the Luenberger input quan-
tity indicator to ensure that improvements of the Luenberger-Hicks-Moorsteen indicator are positively
signed.
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LHMT (t)
(
xt+1, yt+1, xt, yt; gt, gt+1) (11)

=
(
DT (t)

(
xt, yt;

(
0, gt

o

)) − DT (t)
(
xt, yt+1;

(
0, gt+1

o

)))
− (

DT (t)
(
xt+1, yt;

(
gt+1

i , 0
)) − DT (t)

(
xt, yt;

(
gt

i , 0
)))

≡ LOT (t)
(
xt, yt, yt+1; gt

o, g
t+1
o

) − LIT (t)
(
xt, xt+1, yt; gt

i , g
t+1
i

)
.

These Luenberger output quantity and input quantity indicators generalise the
Malmquist output and input quantity indices defined in Chambers, Färe and Gross-
kopf (1994).A Luenberger-Hicks-Moorsteen productivity indicator larger (smaller)
than zero indicates productivity gain (loss). A base period t+1 Luenberger-Hicks-
Moorsteen indicator can be similarly defined:

LHMT (t+1)
(
xt+1, yt+1, xt, yt; gt, gt+1) (12)

=
(
DT (t+1)

(
xt+1, yt;

(
0, gt

o

)) − DT (t+1)
(
xt+1, yt+1;

(
0, gt+1

o

)))
− (

DT (t+1)
(
xt+1, yt+1;

(
gt+1

i , 0
)) − DT (t+1)

(
xt, yt+1;

(
gt

i , 0
)))

≡ LOT (t+1)
(
xt+1, yt+1, yt; gt

o, g
t+1
o

) − LIT (t+1)
(
xt, xt+1, yt+1; gt

i , g
t+1
i

)
.

An arithmetic mean of these two base periods Luenberger-Hicks-Moorsteen indi-
cators is:

LHMT (t),T (t+1)
(
xt, yt, xt+1, yt+1; gt, gt+1) (13)

=
1
2

[
LHMT (t)

(
xt, yt, xt+1, yt+1; gt, gt+1)

+LHMT (t+1)
(
xt, yt, xt+1, yt+1; gt, gt+1) ]

.

3 Productivity indices and indicators: some theoretical comparisons

We establish two main results.5 The first links the Luenberger-Hicks-Moorsteen
indicator and its ratio-based Hicks-Moorsteen counterpart. Second, we determine
the exact conditions on technology that make the Luenberger-Hicks-Moorsteen
indicator and the input-or output-oriented versions of the Luenberger productivity
indicators coincide.

3.1 Hicks-Moorsteen index and Luenberger-Hicks-Moorsteen indicator

A linear approximation result for the Luenberger-Hicks-Moorsteen indicator and
the Hicks-Moorsteen index is found in the next proposition.

5 Färe, Grosskopf and Roos (1998) summarise in detail the relations between these primal discrete-
time productivity indices and more traditional approaches. In particular, they show that the Malmquist
productivity indexes are far more general than the Fisher and Törnqvist indexes, among others because
they do not require knowledge of prices nor assume any form of optimising behaviour.
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Proposition 1. Assume that technology T (t) satisfies (T.1)–(T.4). If at each time
period gt = (xt, yt) and gt+1 =

(
xt+1, yt+1

)
, then at the first order:

LHMT (t),T (t+1)
(
xt, yt, xt+1, yt+1; gt, gt+1)

≈ log
(
HMT (t),T (t+1)

(
xt, yt, xt+1, yt+1)) .

Proof. Since the equalities Ei
T (t) (xt, yt) = 1 − DT (t) (xt, yt; (xt, 0)) and Eo

T (t)

(xt, yt) = 1+DT (t) (xt, yt; (0, yt)) work at each time period, at the first order we
have

log
(
Ei

T (b) (xa, ya)
)

≈ −DT (b) (xa, ya; (xa, 0)) and

log
(
Eo

T (t)

(
xt, yt

)) ≈ DT (b) (xa, ya; (0, ya))

for (a, b) ∈ {t, t + 1} × {t, t + 1} . (a)

Now taking the logarithm of (5), we obtain at the first order:

log
(
HMT (t)

(
xt, yt, xt+1, yt+1))

≈ LHMT (t)
(
xt, yt, xt+1, yt+1; gt, gt+1) . (b)

Similarly taking the logarithm of (6), we obtain:

log
(
HMT (t+1)

(
xt, yt, xt+1, yt+1))

≈ LHMT (t+1)
(
xt, yt, xt+1, yt+1; gt, gt+1) (c)

and we immediately deduce the result. 	


3.2 Graph and inverse translation homotheticity:
definitions and intermediate results

In Subsection III.3, we study the relations between Luenberger input (output) and
Luenberger-Hick-Moorsteen productivity indicators to duplicate the Färe, Gross-
kopf and Roos (1996) results for the ratio-based counterpart indices. This subsec-
tion develops intermediary definitions and propositions using the notion of graph
translation homotheticity (Chambers, 2002). For notational simplicity, assume that
gt = g at each time period t.

Definition 1. Assume that technology T (t) satisfies (T.1)–(T.4). At each time pe-
riod t we say that T(t) exhibits graph translation homotheticity in the direction of
g, if for any scalarδ:(

xt, yt
) ∈ T (t) and

(
xt, yt

)
+ δg ≥ 0 ⇒ (

xt, yt
)

+ δg ∈ T (t).

Remark that the condition in the above definition reduces to postulating that
T (t) = (T (t) + ∆(g))∩Rn+p

+ , where ∆(g) = {δg : δ ∈ R}. We show below that
this property can be characterised using the input- and output-oriented directional
distance functions.
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Proposition 2. Assume that technology T (t) satisfies (T.1)–(T.4). At each time
period t, T (t) satisfies graph translation homotheticity in the direction of g if and
only if:

DT (t)
(
xt, yt; (gi, 0)

)
= DT (t)

(
xt, yt; (0, go)

)
= 2DT (t)

(
xt, yt; (gi, go)

)
.

Proof. Assume that technology satisfies graph translation homotheticity. Consider
the point: (

x̄t, ȳt
)

=
(
xt, yt

) − DT (t)
(
xt, yt; (gi, 0)

)
. (gi, 0) (a)

=
(
xt − DT (t)

(
xt, yt; (gi, 0)

)
.gi, y

t
)

Now, let η = DT (t) (xt, yt; (gi, 0)), since η ≥ 0 we have:(
x̂t, ŷt

)
=

(
x̄t, ȳt

)
+ DT (t)

(
xt, yt; (gi, 0) .g

)
(b)

=
(
xt, yt + DT (t)

(
xt, yt; (gi, 0) .go

)
Since technology exhibits graph translation homotheticity in the direction of g it is
easy to show that int (T (t)) = (int (T (t)) + ∆(g)) ∩ Rn+p

+ where int stands for
the interior. Therefore, since from (a), (x̄t, ȳt) belongs to the boundary the point
(x̂t, ŷt) belongs to the boundary of T (t). Consequently,(

xt, yt + DT (t)
(
xt, yt; (gi, 0)

)
.go

)
=

(
xt, yt + DT (t)

(
xt, yt; (0, go)

)
.go

)
.

As a consequence, DT (t) (xt, yt; (gi, 0)) = DT (t) (xt, yt; (0, go)) and the first part
of the equality is proven.

Now, let the point (x̃t, ỹt) = 1
2 (x̄t, ȳt) + 1

2 (x̂t, ŷt). Since (x̂t, ŷt) is the trans-
lation of (x̄t, ȳt) in the direction of g, (x̃t, ỹt) is also a translation of (x̄t, ȳt)
in the direction of g. Thus, since T (t) satisfies graph translation homotheticity
(x̃t, ỹt) ∈ T (t). Moreover:

(
x̃t, ỹt

)
=

1
2

(
(xt, yt) − DT (t)

(
xt, yt; (gi, 0)

)
. (gi, 0)

)
(c)

=
1
2

((
xt, yt

)
+ DT (t)

(
xt, yt; (0, go)

)
. (0, go)

)
Since using the arguments above it can be proven that (x̃t, ỹt) lies on the boundary
of T (t), we have (x̃t, ỹt) = (xt, yt)+DT (t) (xt, yt; (gi, go)) .(−gi, go). It follows
that we have

DT (t)
(
xt, yt; (gi, go)

)
=

1
2
DT (t)

(
xt, yt; (gi, 0)

)
=

1
2
DT (t)

(
xt, yt; (0, go)

)
.

To show the converse, assume that (xt, yt) ∈ T (t) and (xt, yt) + η.g ≥ 0. As-
sume that η ≥ 0 and let us consider the point

(
xt

+, yt
+
)

= (xt + η.gi, y
t) ≥

0. Immediately, we deduce that: DT (t)
(
xt

+, yt
+; (gi, 0)

) ≥ η. Consequently,
DT (t)

(
xt

+, yt
+; (0, go)

) ≥ η and since (xt, yt) + η.g =
(
xt

+, yt
+
)

+ η. (0, go)
we deduce that this point belongs to T (t). If η ≤ 0, then the proof is similar
defining the point

(
xt

−, yt
−

)
= (xt, yt − η.go) ≥ 0. 	
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Furthermore, in addition to Proposition 2 the following characterization of a
technology exhibiting graph translation homotheticity can be provided.

Proposition 3. Assume that technology T (t) satisfies (T.1)–(T.4) and T (t) is con-
vex:

1) At each time period t, T (t) satisfies graph translation homotheticity in the direc-
tion of g if and only if DT (t) (xt, yt + αgo; (gi, 0)) = DT (t) (xt, yt; (gi, 0))−α.

2) At each time period t, T(t) satisfies graph translation homotheticity in the direc-
tion of g if and only if DT (t) (xt + αgt

i , y
t; (0, go)) = DT (t) (xt, yt; (0, go))+α.

Proof. 1) The proof is obtained using the properties stated by Chambers, Chung
and Färe (1998). If the condition in Proposition 2 holds:

DT (t)
(
xt, yt + αgo; (gi, 0)

)
= DT (t)

(
xt, yt + αgo; (0, go)

)
= DT (t)

(
xt, yt; (0, go)

) − α

= DT (t)
(
xt, yt; (gi, 0)

) − α

Using the same equalities above we deduce that the condition in 2) implies the
condition in 1). 2) is obtained symmetrically. 	


Remark that the results above are to some extent analogous to those charac-
terizing CRS for the traditional Shephard distance function, but now replacing
homogeneity by translation homotheticity. The following corollary is immediate:

Corollary 1. Assume that technology T (t) satisfies (T.1)–(T.4). T (t) exhibits
graph translation homotheticity in the direction of g if and only if:

Li
((

xt, yt
)
,
(
xt+1, yt+1) ; gi

)
= Lo

((
xt, yt

)
,
(
xt+1, yt+1) ; go

)
Proof. See Theorem 7 in Chambers (2002).

This result is analogous to the well-known result that input-based and output-
based Malmquist productivity indicators coincide under CRS, albeit inversely.

Before showing below how the above properties can help to specify the ex-
act conditions under which Luenberger-Hicks-Moorsteen and Luenberger (input-
or output-oriented) productivity indicators are identical, we introduce a new no-
tion of translation inverse homothetic technologies (simultaneously proposed by
Fukuyama, 2002). Translation homotheticity is a property of technologies devel-
oped by Chambers and Färe (1998).6 The new property of inverse translation homo-
theticity extends the notion of inversely homothetic technologies, earlier developed
by Färe and Primont (1995), to an arithmetic viewpoint.

Following Chambers and Färe (1998), technology is input translation homoth-
etic if:

L
(
yt

)
= H

(
yt, go

)
go + L (ȳ) for yt ∈ Rp

+ (14)

6 Färe and Li (2001) develop a test for translation homotheticity using non-parametric technologies.
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where ȳ is a fixed output vector. Remark that the original paper focuses on the
case where this vector has all components equal to one. Moreover, H (yt, .) is
assumed to be consistent with the properties of the directional distance function
(see Chambers and Färe, 1998). By analogy with Färe and Primont (1995), output
translation homotheticity is defined by:

P
(
xt

)
= G

(
xt, gi

)
gi + G (x̄) for xt ∈ Rn

+ (15)

where x̄ is a fixed input vector with all components being equal to one and G (xt, .)
is consistent with the properties of the directional distance function. From Chambers
and Färe (1998), the following properties can be stated:

Proposition 4. Assume that technology T (t) satisfies (T.1)–(T.4):

1) The technology is input translation homothetic if and only if

DT (t)
(
xt, yt; (gi, 0)

)
= DT (t)

(
xt, ȳ; (gi, 0)

) − H
(
yt, gi

)
.

2) The technology is output translation homothetic if and only if

DT (t)
(
xt, yt; (0, go)

)
= DT (t)

(
x̄, yt; (0, go)

)
+ G

(
xt, go

)
.7

Proof. 1) is proven in Chambers and Färe (1998) replacing ȳ by 1p. A symmetrical
way is used for proving 2). We have:

DT (t)
(
xt, yt; (0, go)

)
= sup {β : y + βgo ∈ P (x)}
= sup {β : y + βgo ∈ G (x, go) + P (x̄)}
= sup {β : y + go (β − G (x, go)) ∈ P (x̄)} (a)

= sup {β − G (x, go) + G (x, go) : y + go (β − G (x, go)) ∈ P (x̄)}
= G (x, go) + sup {δ : y + δgo ∈ P (x̄)}
= DT (t)

(
x̄, yt; (0, go)

)
+ G

(
xt, go

)
.

Let us show the converse. We have:

P
(
xt

)
=

{
yt : DT (t)

(
x̄, yt, (0, go)

)
+ G

(
xt, go

) ≥ 0
}

=
{
yt : DT (t)

(
x̄, yt + G

(
xt, go

)
go, (0, go)

) ≥ 0
}

(b)

= G
(
xt, go

)
go +

{
ỹt : DT (t)

(
x̄, ỹt, (0, go)

) ≥ 0
}

= G
(
xt, go

)
go + P (x̄)

and the result is stated. 	


Inspired by the result of Färe and Primont (1995), we now introduce the notion
of a translation inverse homothetic technology.

7 This definition is inspired by Färe and Primont (1995) and is slightly different from the one devel-
oped in Färe and Grosskopf (2000).
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Definition 2. A technology is translation inverse homothetic in the direction of g
if and only if there exists an invertible function F such that:

DT (t)
(
xt, yt, (0, go)

)
= DT (t)

(
x̄, yt; (0, go)

) − F
(
DT (t)

(
xt, ȳ, (gi, 0)

))
and

DT (t)
(
xt, yt, (gi, 0)

)
= DT (t)

(
xt, ȳ; (gi, 0)

) − F−1 (
DT (t)

(
x̄, yt, (0, go)

))
where F is a non-increasing and invertible function and x̄ and ȳ are two arbitrary
vectors.

Fukuyama (2002) introduces an identical definition to verify the implications
on the structure of separable cost and revenue functions.

Proposition 5. Assume that technology T(t) satisfies (T.1)–(T.4). If the technology
is such that DT (t) (xt, yt, (0, go)) = 0 ⇔ DT (t) (xt, yt, (gi, 0)) = 0, then the
technology T(t) is input and output translation homothetic8 if and only if it is
inversely translation homothetic.

Proof. It is always true that:

DT (t)
(
xt − DT (t)

(
xt, yt, (gi, 0)

)
.gi, y

t; (gi, 0)
)

= 0 (a)

Thus, from Proposition 4.1, we obtain:

DT (t)
(
xt − DT (t)

(
xt, yt, (gi, 0)

)
.gi, y

t; (0, go)
)

= 0 (b)

⇒ DT (t)
(
xt − [

DT (t)
(
xt, ȳ; (gi, 0)

) − H
(
yt, gi

)]
.gi, y

t; (0, go)
)

= 0

From Proposition 4.2:

DT (t)
(
xt − [

DT (t)
(
xt, ȳ;

(
gt

i , 0
)) − H

(
yt, gt

i

)]
.gi, y

t; (0, go)
)

(c)

= DT (t)
(
x̄, yt; (0, go)

)
+ G

(
xt − [

DT (t)
(
xt, ȳ; (gi, 0)

) − H
(
yt, gi

)]
.gi, go

)
Thus:

DT (t)
(
x̄, yt; (0, go)

)
= −G

(
xt − [

DT (t)
(
xt, ȳ; (gi, 0)

) − H
(
yt, gi

)]
.gi, go

)
.

Since the left-hand side is independent of x so is the right-hand-side. Therefore:

DT (t)
(
x̄, yt; (0, go)

)
= F

(
H

(
yt, gi

))
(d)

where

F
(
H

(
yt, gi

))
= −G

(
xt − [

DT (t)
(
xt, ȳ; (gi, 0)

) − H
(
yt, gi

)]
.gi, go

)
(e)

is a non-increasing function. We deduce from Proposition 4.1 that:

DT (t)
(
xt, yt, (gi, 0)

)
=DT (t)

(
x̄, yt, (gi, 0)

) −F−1 (
DT (t)

(
xt, ȳ, (0, go)

))
. (f)

8 Notice that this definition differs from the definition of simultaneous input and output translation
homotheticity developed in Färe and Grosskopf (2000).
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Moreover:

DT (t)
(
xt, yt, (0, go)

)
= sup

{
δ : DT (t)

(
xt, ȳ, (gi, 0)

) − F−1 (
DT (t)

(
x̄, yt + δgo, (0, go)

)) ≥ 0
}

= sup
{
δ : F

(
DT (t)

(
xt, ȳ, (gi, 0)

)) ≤ DT (t)
(
x̄, yt + δgo, (0, go)

)}
= sup

{
δ : δ ≤ DT (t)

(
x̄, yt + δgo, (0, go)

) − F
(
DT (t)

(
xt, ȳ, (gi, 0)

))}
= DT (t)

(
x̄, yt + δgo, (0, go)

) − F
(
DT (t)

(
xt, ȳ, (gi, 0)

))
Finally, following Färe and Primont (1995) the converse is obvious. 	


The second part of our proposition coincides with Proposition 2 in Fukuyama
(2002). The conditions on technology in the first part imply a joint efficiency as-
sumption. Fukuyama (2002) explains extensively the implications of this joint ef-
ficiency assumption (e.g., see his Proposition 1).

3.3 Linking Luenberger-Hicks-Moorsteen and Luenberger productivity indicators

Inspired by the work of Färe, Grosskopf and Roos (1996) linking Hicks-Moorsteen
and Malmquist indices, we establish in this subsection a connection between the
Luenberger-Hicks-Moorsteen and Luenberger productivity indicators.

Proposition 6. Assume that technology T (t) satisfies (T.1)–(T.4). The Luenberger-
Hicks-Moorsteen productivity indicator is equal to the Luenberger output (or input)
oriented productivity indicator if and only if:

(i) the technology is inversely translation homothetic in the direction of g, and
(ii) exhibits graph translation homotheticity in the direction of g at each time

period.

Proof. We define the t-based output oriented Luenberger productivity indicator
by:

∆t = DT (t)
(
xt, yt, (0, go)

) − DT (t)
(
xt+1, yt+1, (0, go)

)
(a)

It is easy to see that the equivalence is true if it holds for a base period t. We first
show that if the t-based Luenberger-Hicks-Moorsteen indicator equals the t-based
Luenberger indicator, then technology exhibits graph translation homotheticity in
the direction of g. Assume that:

DT (t)
(
xt, yt, (0, go)

) − DT (t)
(
xt+1, yt+1, (0, go)

)
(b)

= DT (t)
(
xt, yt, (0, go)

) − DT (t)
(
xt, yt+1, (0, go)

)
+DT (t)

(
xt, yt, (gi, 0)

) − DT (t)
(
xt+1, yt, (gi, 0)

)
Then:

−DT (t)
(
xt+1, yt+1, (0, go)

)
(c)

= −DT (t)
(
xt, yt+1, (0, go)

)
+DT (t)

(
xt, yt, (gi, 0)

) − DT (t)
(
xt+1, yt, (gi, 0)

)
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Next, translate by αg such that (xt + αgi, y
t) ∈ T (t) and

(
xt + αgi, y

t+1
) ∈ T (t).

Then:

−DT (t)
(
xt+1, yt+1, (0, go)

)
(d)

= −DT (t)
(
xt + αgi, y

t+1, (0, go)
)

+DT (t)
(
xt + αgi, y

t, (gi, 0)
) − DT (t)

(
xt+1, yt, (gi, 0)

)
Taking (c) and (d) yields:

DT (t)
(
xt, yt+1, (0, go)

) − DT (t)
(
xt, yt, (gi, 0)

)
(e)

= DT (t)
(
xt + αgi, y

t+1, (0, go)
) − DT (t)

(
xt + αgi, y

t, (gi, 0)
)

Since the input-oriented directional distance function is translation homothetic:

DT (t)
(
xt + αgi, y

t, (gi, 0)
)

= DT (t)
(
xt, yt, (gi, 0)

)
+ α (f)

We deduce that

DT (t)
(
xt, yt+1, (0, go)

)
+ α = DT (t)

(
xt + αgi, y

t+1, (0, go)
)

(g)

And this equality implies that technology is graph translation homotheticity in the
direction g. Given Corollary 1, (b) can be written:

DT (t)
(
xt, yt, (0, go)

) − DT (t)
(
xt+1, yt+1, (0, go)

)
(h)

= DT (t)
(
xt, yt, (0, go)

) − DT (t)
(
xt, yt+1, (0, go)

)
+DT (t)

(
xt, yt, (0, go)

) − DT (t)
(
xt+1, yt, (0, go)

)
Or, equivalently:

DT (t)
(
xt, yt, (0, go)

)
(i)

= DT (t)
(
xt, yt+1, (0, go)

)
+DT (t)

(
xt+1, yt, (0, go)

) − DT (t)
(
xt+1, yt+1, (0, go)

)
Since (i) holds for all

(
xt+1, yt+1

)
, we may fix this vector such that:

DT (t)
(
xt+1, yt+1, (0, go)

)
= DT (t) (x̄, ȳ, (0, go)) = 0 (j)

Using (j) and graph translation homotheticity, we have:

DT (t)
(
xt, yt, (0, go)

)
(k)

= DT (t)
(
xt, ȳ, (gi, 0)

)
+ DT (t)

(
x̄, yt, (0, go)

)
implying that the technology is translation homothetic. To prove the converse, let the
technology be translation homothetic and satisfy graph translation homotheticity.
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In this case:

DT (t)
(
xt+1, yt+1, (0, go)

)
= DT (t)

(
x̄, yt+1, (gi, 0)

)
(l)

+DT (t)
(
xt+1, ȳ, (0, go)

)
DT (t)

(
xt+1, yt, (gi, 0)

)
= DT (t)

(
xt+1, yt, (0, go)

)
(m)

= DT (t)
(
x̄, yt, (0, go)

)
+DT (t)

(
xt+1, ȳ, (gi, 0)

)
DT (t)

(
xt, yt, (gi, 0)

)
= DT (t)

(
xt, yt, (0, go)

)
(n)

= DT (t)
(
x̄, yt, (0, go)

)
+ DT (t)

(
xt, ȳ, (gi, 0)

)
Thus, substituting (n) in (m) and (m) in (l) we deduce:

DT (t)
(
xt, yt, (0, go)

) − DT (t)
(
xt+1, yt+1, (0, go)

)
= DT (t)

(
xt, yt, (0, go)

) − DT (t)
(
xt, yt+1, (0, go)

)
+DT (t)

(
xt, yt, (gi, 0)

) − DT (t)
(
xt+1, yt, (gi, 0)

)
.

Clearly,

LHMT (t),T (t+1)
(
xt, yt, xt+1, yt+1; gt, gt+1)

= Li
((

xt, yt
)
,
(
xt+1, yt+1) ; gt

i , g
t+1
i

)
= Lo

((
xt, yt

)
,
(
xt+1, yt+1) ; gt

o, g
t+1
o

)
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