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1. Introduction
Total factor productivity (TFP) growthmeasures traditionally the shifts
in technology in a residual way, namely in terms of output growth which
remains unexplained by the input growth (Hulten, 2001). Nishimizu and
Page (1982) innovated by decomposing TFP growth into technical change
and technical efficiency change using parametric production frontiers.
They realised that ignoring inefficiency may bias TFP measurement.
Discrete timeMalmquist input- and output-oriented productivity indexes
based upon Shephardian distance functions (see Caves, Christensen and
Diewert,1982) have beenmade empirically tractable by Färe et al. (1995).
Byexploiting the relation betweendistance functions and radial efficiency
measures, these authors suggest computing distance functions using
deterministic, non-parametric technologies (as inner bound approxima-
tions of the true but unknown technology). Furthermore, these same
authors integrate the two-part decomposition of TFP of Nishimizu and
Page (1982) into thisMalmquist productivity index.Meanwhile, dozens of
articles have employed this Malmquist productivity index to study
productivity change in a wide variety of empirical contexts.

Meanwhile, more general primal productivity indicators have
been proposed.1 Indeed, in a series of articles Chambers et al. (1996),
Chambers and Pope (1996) and Chambers (2002) define a Luenberger
mments. The usual disclaimer
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productivity indicator as a difference-based index of directional distance
functions. The latter functions generalize Shephardiandistance functions
by accounting for both input reductions and output augmentations and
they are dual to the profit function. It is possible to define input- and
output-oriented versions of this Luenberger indicator as special cases.
These indicators can then be interpreted as difference-based versions of
their similarly oriented Malmquist productivity indices. Though it is not
yet as popular as the Malmquist productivity index, the Luenberger
productivity indicator has recently been used as a tool for empirical
analysis in a series of articles (e.g., Barros andPeypoch,2007;Boussemart
et al., 2003; Guironnet and Peypoch, 2007; Managi, 2003; Nakano and
Managi, 2008, among others).

This contribution points out a basic problem in the computation of
the Luenberger productivity indicator that has been hitherto ignored
in the existing literature. The solution of this problem increases the
probability that the directional distance functions underlying this
productivity indicator are ill-defined. The next section defines the
basics to formulate the Luenberger productivity indicator, points out
the basic problem in its computation, and indicates a way out.

2. Luenberger productivity indicator

Production technology transforms inputs x=(x1,⋯,xn)∈ℝ+
n into

outputs y=(y1,⋯,yp)∈ℝ+
p . For each time period t, the production

possibility set T summarizes the set of all feasible input and output
vectors. This technology can be defined as follows:

Tt = xt ; yt
� �

2 ℝn + p
+ ; xt can produce yt in period t

n o
: ð2:1Þ
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Throughout this note, technology satisfies the following standard
assumptions: (T.1) (0, 0)∈T, (0, y)∈T⇒y=0 i.e., no free lunch; (T.2)
the set A(x)={(u,y)∈T; u ⩽ x} of dominating observations is bounded
∀x∈ℝ+

n , i.e., infinite outputs are not allowed with a finite input vector;
(T.3) T is closed; (T.4) ∀(x,y)∈T, (u,v)≥0 and (x,−y) ⩽ (u,−v)⇒(u,v)
∈T, i.e., fewer outputs can always be produced with more inputs, and
inversely (strong disposal of inputs and outputs); and (T.5) T is convex.
Notice that to simplify notation, technology has no time superscript.

One way to characterize technology is the use of distance
functions. In an effort to simplify notation, we denote z=(x,y)∈T
and g=(h,k)∈(−ℝ+

n )×ℝ+
p and which is partitioned in an input and

an output direction vector h respectively k. The directional distance
function involving a simultaneous input and output variation in the
direction of a pre-assigned vector g is defined as:2

Definition 1. The function DT: ℝ+
n + p× (−ℝ+

n ) ×ℝ+
p →

ℝ∪{−∞}∪{+∞} defined by

D z; gð Þ =
sup
δ

δ 2 ℝ : z + δg 2 Tf g if z + δg 2 T for some δ 2 ℝ

−∞ otherwise

(

is called the directional distance function in the direction of g=(h,k).
Notice that distance functions are related to efficiency measures in

that they measure deviations from the boundary of technology. Notice
furthermore that, following a tradition in defining this distance
function (e.g., Chambers, 2002), we distinguish between the standard
case where the distance is achieved and the case where there is no
way to achieve the distance. This function has been proven to be a
useful tool in applied production analysis. For instance, it allows
Chavas and Kim (2007) to shed new light on economies of scope from
a primal viewpoint. Furthermore, it provides the defining components
of the Luenberger productivity indicator to which we now turn.

To introduce the Luenberger productivity indicator, we now
introduce a time superscript into the directional distance function.
Let (a,b)∈{t,t+1}×{t,t+1}, we denote:

Db za; ga
� �

= sup
δ

δ 2 ℝ : za + δga 2 Tb
n o

: ð2:2Þ

The Luenberger productivity indicator L(zt, zt+1), initially pro-
posed in Chambers et al. (1996), Chambers and Pope (1996) and
Chambers (2002), can now be defined as:

L zt ; zt + 1; gt ; gt + 1
� �

=
1
2ðDt zt; gt

� �
− Dt zt + 1; gt + 1

� �
+ Dt + 1 zt; gt

� �
− Dt + 1 zt + 1; gt + 1

� �
Þ:
ð2:3Þ

An arithmeticmean of a Luenberger productivity indicator in base year t
and t+1 is taken to average out the effect of selecting an arbitrary base
year. Productivity growth (decline) is indicated by positive (negative)
values. Chambers et al. (1996) also indicate that the Luenberger
indicator can be decomposed as follows:

L zt ; zt + 1; gt ; gt + 1
� �

= Dt zt; gt
� �

− Dt + 1 zt + 1; gt + 1
� �h i

+
1
2 ½ Dt + 1 zt; gt

� �
− Dt zt; gt

� �� �
+ Dt + 1 zt + 1; gt + 1

� �
− Dt zt + 1; gt + 1

� �� ��:

ð2:4Þ

The expression in the first brackets represents the technical efficiency
change (EC), while the terms in the second brackets represent the
technological change (TC).
2 This directional distance function is a special case of the shortage function
(Luenberger, 1992).
Recently, Chambers et al. (1996) provide programs to compute the
Luenberger productivity indicator (see below) using deterministic,
non-parametric technologies (see Varian, 1984 and Banker and
Maindiratta, 1988). Notice that while it is true that the vast majority
of empirical Luenberger productivity studies employ these technol-
ogies (e.g., Boussemart et al., 2003 or Guironnet and Peypoch, 2007),
this analysis carries immediately over to parametric specifications of
technology (see, e.g., Briec and Kerstens, in press). A study based on
parametric technology specifications is Fuentes et al. (2001). An
example of an empirical productivity study using both non-para-
metric and parametric technologies is Atkinson et al. (2003).

LetJ={1,⋯, m} be an index of observations and consider the set of
activities A={z j: j∈J}. Suppose that (0, 0)∈A and x j=0⇒y j=0 in
order to obey axioms T.1–T.5. The non-parametric estimate T ̂ of the
unknown technology from the observed set of data A is:

T̂ = z 2 ℝn + p
+ : 8 w; pð Þ2 ℝn + p

+ ;a j2 J with p� y − w� xVp � y j − w � x j
n o

:

ð2:5Þ

This can equivalently be rewritten as:

T̂ = z 2 ℝn + p
+ : 8 w;pð Þ 2 ℝn + p

+ ; r � y − w � xVmax
j2J

p � y j − w � x jf g
� �

:

ð2:6Þ

From Varian (1984) and Banker and Maindiratta (1988), the primal
formulation of this non-parametric technology can be written:

T̂ = z 2 ℝn + p
+ : xzXθ; yVYθ;1m � θ = 1; θz0

n o
; ð2:7Þ

where X is a n×m input matrix whose j-th row is x j; Y is a p×m
output matrix whose j-th row is y j; and 1m is the m-dimensional unit
vector. The following program computes the directional distance
function with respect to technology T̂ ̂:

D z; gð Þ = sup δ 2 ℝ : x + δhzXθ; y + δkVYθ;1m
:θ = 1; θz0

� 	
: ð2:8Þ

Notice that to impose constant returns to scale (as proposed in
Chambers et al., 1996), it suffices to drop the weight constraint
(1m·θ=1) on the activity vector (θ). However, whether one assumes
constant returns to scale or not, the above program may well not
calculate the directional distance function correctly if traditional
economic definitions of non-negative outputs must be respected. In
fact, it is easy to see that D

―
(z;g)=sup{δ∈ℝ: z+δg∈ T̂ ̂+K}, where

K=ℝ+
n ×(−ℝ+

p ). Hence, the constraint z+δg≥0 is missing. A
similar approach has been employed in all empirical studies known
to us (see, e.g., Barros and Peypoch, 2007; Boussemart et al., 2003;
Guironnet and Peypoch, 2007; Managi, 2003; Nakano and Managi,
2008, among others).

The profit function П̂ relative to the nonparametric technology T̂̂ (Eq.
(2.7) or Eq. (2.8)) is defined by П̂(w,p)=max{p·yj−w·x: j∈J} for
all input–output price vectors (w,p)∈ℝ+

n +p. It is now straightforward
to define a dual formulation of the above nonparametric production
model. If g∈(−ℝ++

n )×ℝ++
p , thenD

―
T̂(z;g)=min(w,p)≥0{П̂(w,p)−p·y+

w·x: p·k−w·h=1}. It follows that:

D
T̂
z; gð Þ = min

w;pð Þz0
max
j2J

p � y j − yð Þ− w � x j − xð Þf g : p � k − w � h = 1
� �

:

ð2:9Þ
This definition shows that this dual version of the directional distance
function is akindof shadowprofit function. It canequallybeused todefine
a mathematical program to compute the directional distance function.

To calculate the above directional distance function (2.8) in away that
guarantees non-negative outputs, one should impose the condition y+
δk≥0 explicitly. Since (x, y) may not be in T̂̂ (in this context when



Table 1
Numerical example with 1 input and 1 output in two time periods.

Time Units Input Output

1 1 5.0 2.0
1 2 2.5 1.0
1 3 4.0 3.0
1 4 6.5 4.0
2 1 3.0 3.0
2 2 1.0 2.0
2 3 3.0 4.0
2 4 6.5 5.0

Table 2
Numerical example: Luenberger index and proportional distance functions.

Units L(zt,zt+1; gt,gt+1) Dt(zt;gt) Dt+1(zt+1;gt+1) Dt(zt+1;gt+1) Dt+1(zt;gt)

Specification (2.8)
1 0.4322 0.2692 0.1667 −0.1905 0.5714
2 1.0500 0.0000 0.0000 −1.5000 0.6000
3 0.2887 0.0000 0.0000 −0.2917 0.2857
4 0.1854 0.0000 0.0000 −0.2000 0.1707

Specification (2.9)
1 0.4322 0.2692 0.1667 −0.1905 0.5714
2 −∞ 0.0000 0.0000 −∞ 0.6000
3 0.2887 0.0000 0.0000 −0.2917 0.2857
4 0.1854 0.0000 0.0000 −0.2000 0.1707
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computing the adjacent period distance functionsDt+1(zt;gt) orDt(zt+1;
gt+1)), in such a case DT̂(z;g)b0 which may occasionally lead to a
projectionpointwithanegativeoutput. Thus, a formulation forcomputing
the directional distance function guaranteeing a traditional economic
definition of non-negative outputs is:

D̂ z; gð Þ = sup δ 2 ℝ : x + δhzXθ; y + δkVYθ; y + δkz0; 1m � θ = 1; θz0
� 	

:

ð2:10Þ

This reveals that the program in Eq. (2.8) may well generate non-
economic outputs when (x,y)∉T ̂.

Notice that in some more pragmatic, managerially oriented
benchmarking models where, e.g., certain outputs are formulated in
terms of growth rates, negative outputs resulting from a projection
using a directional distance function may well be relevant (see, for
instance, Portela, Thanassoulis and Simpson, 2004). In such a context,
the program in Eq. (2.8) yields meaningful results.

By contrast, in standard economic production applications negative
outputs have little meaning. Imposing the condition that the output
translated by the directional distance function into the direction of
vector k must be positive (i.e., y+δk≥0) solves economic mean-
ingfulness, but it may lead to infeasible solutions for the adjacent period
directional distance functions.3 The original Färe et al. (1995) paper on
the Malmquist productivity index attempts to avoid this problem by
choosing a technology with a restrictive returns to scale assumption.
However, Chambers and Pope (1996: 1364) rightly argue in favor of
avoiding restrictive returns to scale assumptions (e.g., constant returns
3 Interestingly, imposing non-negativity on the resulting output projection is not
necessary when using traditional Shephardian distance functions in the context of the
Malmquist productivity index. For instance, when constructing the hyperbolic
Malmquist productivity index (see Zofío and Lovell, 2001) using hyperbolic efficiency
measures these can eventually asymptotically generate a zero output, but these can
never come up with a negative output as a projection point. The additive nature of the
directional distance function causes the peculiar result described here.
to scale) that are only relevant for, e.g., a representative firm supposedly
to be in long-run equilibrium.

For illustration, we provide a small numerical example. Assume four
units with a single input producing a single output are observed in two
time periods (see Table 1). The Luenberger indicator as well as the
underlying four proportional distance functions for each of these units
relative to the two frontiers in both years are summarised in Table 2.
Looking at the representation of the graph of both technologies in Fig. 1,
the last three observations are clearly situated on the variable returns to
scale frontier in each time period (whence, the zeros in the first two
columnswith distance functions), while thefirst observation is inefficient
through time (whence, thepositivenumbers in thefirst twocolumnswith
distance functions). The outward shift of the technology explains the
positive productivity growth revealed by the Luenberger indicator for
units 3 and 4. The inefficient observation 1 moving closer to the shifting
frontier also enjoys a positive productivity growth. However, the second
unit illustrates the abovementioned issue:while theprojection of thefirst
period observation to the second period frontier is feasible, the reverse
projection of the second period observation to the first period frontier is
feasible under the standard specification, but infeasible otherwise. Indeed,
the standardspecificationwouldyieldaprojectionon thevertical segment
of the frontier in the negative orthant implying that 2.5 inputs could
generate a −1 output level. Imposing non-negativity of the projection
point leads to an infeasibility in Dt(zt+1;gt+1) yielding an undefined
Luenberger indicator.

The frequency of infeasible solutions depends, among others, on
the data structure, the specification of technology and the choice of
direction vector (see Briec and Kerstens, in press). But, Briec and
Kerstens in press show convincingly that this problem of ill-defined
productivity indicators is unavoidable in general for both non-
parametric and parametric technology specifications alike and that
therefore the property of well-determinateness in index theory may
have to be abandoned.4 One key result is that for a given technology
with at least two output dimensions and a given strictly positive
direction vector, there always exists an input output vector such that
the directional distance function takes the value −∞ (see Briec and
Kerstens, in press, Proposition 3.1). Thus, imposing the condition y+
δk≥0 may be just another cause of infeasibilities in empirical appli-
cations of which empirical researchers should be aware. Unfortu-
nately, there have been few empirical studies explicitly reporting the
prevalence of infeasibilities when computing, e.g., the Luenberger
productivity indicator or similar productivity indices. For instance,
Mukherjee et al. (2001) as well as Ray and Desli (1997) are empirical
studies using a Malmquist index that do report on this problem. This
lack of reporting is probably partially due to ignorance on the side of
empirical researchers.

These results have also practical implications for the development
of estimation procedures for technologies. For instance, attempts to
correct the estimation bias in non-parametric estimators using the
bootstrap currently ignore the possibility of undefined distance
functions in the context of productivity indexes (see Simar and
Wilson, 1999 and Tortosa-Ausina et al., 2008 for a recent empirical
application), thereby introducing yet another bias in the estimates.

3. Concluding comments

This contribution has clarified a problem with the traditional way
of computing the Luenberger productivity indicator. In fact, this
traditional approach may lead to negative outputs when computing
adjacent time period directional distance functions. To avoid this
outcome, one needs to impose an additional constraint guaranteeing
that the projected point yields a non-negative output. However, when
4 In a similar vein, Althin (2001) is one of the few authors explicitly acknowledging
that both the variable and fixed base Malmquist productivity indices may fail the
determinateness test as an index.



Fig. 1. Numerical example with 1 input and 1 output in two time periods.
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it is binding, this additional constraint leads to infeasibilities. This is
yet another potential source of ill-defined productivity indicators.

It must be stressed that infeasibilities are neither specific to the
Luenberger productivity indicator nor specific to its use of the
directional distance functions. As shown in Briec and Kerstens in
press, infeasibilities can also occur in a varietyofMalmquist productivity
indices based upon Shephardian distance functions as well. Further-
more, infeasibilities can equally appear in a static efficiency setting
when, for instance, evaluating the benefits from mergers (e.g., Bogetoft
andWang, 2005) or whenmeasuring so-called super-efficiencymodels
(e.g., Andersen and Petersen, 1993) to rank efficient units or to assess
stability of the solutions. However, it is important that practitioners are
aware of this infeasibility issue and why it may be logically unavoidable
under certain specifications of technology. Therefore, it is recommend-
able to simply report any infeasibilities that happen to occur in empirical
applications.
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