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Abstract The purpose of this contribution is to highlight an underexplored property
of the directional distance function, a recently introduced generalization of the Shep-
hard distance function. It diagnoses in detail the economic conditions under which
infeasibilities may occur for the case of directional distance functions and explores
whether there exist any solutions that remedy the problem in an economically mean-
ingful way. This discussion is linked to determinateness as a property in index the-
ory and is illustrated by analyzing the Luenberger total factor productivity indicator,
based upon directional distance functions. This indicator turns out to be impossible to
compute under certain weak conditions. A fortiori, the same problems can also occur
for less general productivity indicators and indexes.

Keywords Directional distance function · Shortage function · Well-definedness ·
Infeasibility · Determinateness

1 Introduction

The purpose of this contribution is to explore an underdeveloped property of a recent
generalization of Shephard [1] distance function, known as the directional distance
function. Distance functions are employed in consumption and production theory.
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Luenberger [2, 3] defined the benefit function as a directional representation of pref-
erences, which generalizes Shephard’s [1] input distance function defined in terms of
the utility function. Luenberger [4] introduced the shortage function as a transposition
of the benefit function in a production context. Chambers, Chung and Färe [5] relabel
this same function as a directional distance function and since then it is commonly
known by that name. The directional distance function generalizes existing distance
functions by accounting for both input contractions and output improvements and it
is dual to the profit function (see Chambers, Chung and Färe [6]). Furthermore, the
directional distance function is flexible due to the variety of direction vectors it al-
lows for (see, e.g., Chambers, Färe and Grosskopf [7]). Chambers, Chung and Färe
[5] analyze both the benefit function and the directional distance function in some
depth and extend the composition rules of McFadden [8] to these new concepts.

It is well known that in certain cases the directional distance function is not well-
defined and achieves a value of infinity (see, e.g., Chambers, Chung and Färe [5,
pp. 409–410] or Luenberger [4]). This is related to the property of determinateness
in index theory, which can be loosely stated as requiring that an index remains well-
defined (i.e., cannot become indeterminate or infinite) when any of its arguments be-
come zero or infinity. Being one of Fisher’s [9] original axioms, determinateness has
aroused some discussion. Swamy [10] found it suspect and an eventual candidate to
drop to guarantee consistency of the original Fisher [9] tests, a view seemingly also
shared by Eichorn [11]. Samuelson and Swamy [12] simply rejected determinate-
ness. By contrast, Färe and Lyon [13] specify conditions on technology that guaran-
tee determinateness for an input price index. Thus, there are at least two fundamental
attitudes with respect to determinateness in the index literature. First, reject determi-
nateness and simply report any indeterminacies of indices found in practice. Second,
accept determinateness and look for some conditions guaranteeing it.

This determinateness problem also crops up in the more recent literature on
discrete-time productivity indices. Discrete-time Malmquist input- and output-
oriented productivity indexes based upon Shephard distance functions as general
technology representations (Caves, Christensen and Diewert [14]) have been made
empirically tractable by Färe et al. [15]. But, some of the distance functions con-
stituting this Malmquist index may well be infeasible when estimated upon general
technologies using nonparametric estimators. Meanwhile more general primal pro-
ductivity indicators have been proposed. Notably, Chambers and Pope [16] define
a Luenberger productivity indicator in terms of differences between directional dis-
tance functions (see also Chambers [17]). It is possible to show that almost all other
recent discrete-time primal productivity indices and indicators may suffer from the
same problem in a number of economic contexts. Notice that “indicators” (“indexes”)
denote productivity measures based on differences (ratios) (see Diewert [18]).

As a matter of fact, similar problems also occur in static applications of the direc-
tional distance function when an observation is evaluated to a technology to which it
need not belong. One example is the measurement of gains of diversification or spe-
cialisation when considering potential candidates for mergers (see Färe, Grosskopf
and Lovell [19]).

Färe et al. [15] avoid this infeasibility problem in the Malmquist productivity in-
dex by imposing a technology with a restrictive returns to scale assumption. However,
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Chambers and Pope [16] strongly argue against restrictive returns to scale assump-
tions (e.g., constant returns to scale) that are only relevant for, e.g., a representative
firm supposedly to be in long-run equilibrium. As indicated above, this could imply
simply reporting the infeasibilities when computing productivity indices and indica-
tors. Unfortunately, few empirical studies explicitly report the prevalence of infeasi-
bilities in, e.g., the Malmquist productivity index (Mukherjee, Ray and Miller [20] is
among the exceptions). Probably many researchers continue to assume that determi-
nateness is crucial for index numbers.

While it is true that the vast majority of empirical productivity studies employ de-
terministic, nonparametric technologies (see Varian [21] and Banker and Maindiratta
[22]), our analysis is also valid for parametric specifications of technology. An ex-
ample of an empirical productivity study using both nonparametric and parametric
technologies is Atkinson, Cornwell and Honerkamp [23]. Thus, the paper is phrased
in terms of general technologies and does not privilege a specific estimation method.
However, since the most popular estimation method employs nonparametric tech-
nologies we mostly use the word infeasibility as a manifestation of a lack of well-
definedness throughout the paper.

The purpose of this contribution is to extend the Luenberger [4] and Chambers,
Chung and Färe [6] analysis regarding the directional distance function by diagnos-
ing the economic conditions under which infeasibilities may occur and by exploring
whether there exist any solutions that could remedy the problem in an economically
meaningful way. Concurring with Chambers and Pope [16], we do not follow Färe
and Lyon [13] by looking for eventual restrictions on technology. Instead, the analysis
focuses on the choice of direction vector when using the directional distance func-
tion. This issue has hitherto been unexplored in the literature, probably since it arose
with the definition of the directional distance function itself. Notice that this analysis
also applies to other general distance functions (e.g., McFadden’s [8] gauge function
or the generalized distance function of Chavas and Cox [24]).

To develop these arguments, this contribution is structured as follows. Section 2
develops the basic definitions of the technology and the various distance functions.
The next section states the general nature of the infeasibility problem in the definition
of the directional distance function depending upon the choice of direction vector.
A fourth section analyzes the problem for the case of the Luenberger productivity
indicator and summarizes the main results applied to this indicator, in addition to
simply reporting the eventual infeasibilities. A final section concludes.

We end with two remarks. First, while all the material accumulates in a natural way
and results are summarized in a few clarifying statements regarding the Luenberger
productivity indicator, throughout the text we illustrate results by citing authors that
may well employ less general distance functions. The latter references are probably
mainly useful for readers with an interest in details related to index theory. Second,
for convenience, the analysis is phrased in terms of production theory. However, the
transposition of these results to the benefit function in consumption theory is imme-
diate.
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2 Technology and Distance Functions: Definitions

We first introduce the assumptions on technology and the definitions of the dis-
tance functions providing the components for computing productivity indicators.
Production technology transforms inputs x = (x1, . . . , xn) ∈ R

n+ into outputs y =
(y1, . . . , yp) ∈ R

p
+. For each time period t , the production possibility set T summa-

rizes the set of all feasible input and output vectors and is defined as follows:

T =
{
(x, y) ∈ R

n+p
+ : x can produce y

}
. (1)

Alternatively, technology can be characterized by its output set P(x) = {y ∈ R
p
+ :

x can produce y} or equivalently by its input set L(y) = {x ∈ R
n+ : x can produce y}.

For the sake of simplicity, let (0,0) denote the null input-output vector of T .
Throughout the paper, technology satisfies the following conventional assumptions:

(A1) (0,0) ∈ T , (0, y) ∈ T ⇒ y = 0, i.e., no free lunch;
(A2) the set A(x) = {(u, y) ∈ T ;u ≤ x} is bounded ∀x ∈ R

n+, i.e., infinite outputs
are not allowed with a finite input vector;

(A3) T is closed;
(A4) ∀(x, y) ∈ T , (u, v) ∈ R

n+p
+ and (x,−y) ≤ (u,−v) ⇒ (u, v) ∈ T , i.e., fewer

outputs can always be produced with more inputs (strong disposal of inputs
and outputs).

Note that the “no free lunch” assumption states that the null input-output vector is part
of technology and that a null vector of inputs (0, y) cannot generate a semi-positive
output vector. On some occasions, the stronger assumption of convexity is needed:

(A5) T is convex.

While these assumptions are standard, it is possible to weaken some of these main-
tained axioms. For instance, strong input and output disposal may be (partially) re-
placed by the assumption of weak disposability (see, e.g., Färe, Grosskopf and Lovell
[19]). Notice that in such a case the resulting technologies may lead to even more in-
feasibilities of the distance functions (see below), since the production possibility set
is smaller. For instance, Jaenicke [25] notices the issue of infeasibilities for technolo-
gies with weak disposal in the output dimensions.

Technology can be characterized by distance functions. To simplify the notation,
we denote

z = (x, y) ∈ T , (2)

g = (h, k) ∈ (−R
n+) × R

p
+, (3)

which is partitioned in an input and an output direction vector h respectively k. The
directional distance function involving a simultaneous input and output variation in
the direction of a preassigned vector g is defined as follows.
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Definition 2.1 The function DT : R
n+p
+ × (−R

n+) × R
p
+ → R ∪ {−∞} ∪ {+∞} de-

fined by

DT (z;g) =
{

sup {δ ∈ R : z + δg ∈ T } , if z + δg ∈ T for some δ ∈ R,

−∞, otherwise,

is called the directional distance function in the direction g = (h, k).

Notice that distance functions are related to efficiency measures in that they measure
deviations from the boundary of technology.

For the purpose of studying the problem of ill-defined productivity indicators, we
distinguish between the standard case where the distance is achieved and the case
where there is no way to achieve the distance. This distinction is fairly standard when
defining distance functions (see, e.g., Chambers [17]). Note that when no direction
is selected and a point is part of the technology (z ∈ T ), then DT (z;g) = +∞. This
directional distance function (Chambers, Färe and Grosskopf [6]) is a special case of
the shortage function (Luenberger [2]).

Note that the directional distance function is defined using a general directional
vector g. However, sometimes we consider the special case: h = −x and k = y, also
known as the Farrell proportional distance function (Briec [26]). Axiomatic proper-
ties of this function are studied in Briec [26] and Chambers, Chung and Färe [6]. In
the literature other direction vectors have been proposed (for instance, the transla-
tion function of Blackorby and Donaldson [27] with h = −1n and k = 0, where 1n is
the n-dimensional unit vector). See Chambers, Färe and Grosskopf [7] for additional
choices of direction vectors.

The directional distance function generalises the Shephard distance functions. For
instance, the Shephard input distance function results by setting g = (h,0) = (−x,0)

and calculating Di(z) = [1 − DT (z;−x,0)]−1.
The profit function � : R

n+p
+ → R ∪ {∞} is now defined as

�(w,p) = sup
(x,y)

{p.y − w.x : (x, y) ∈ T } . (4)

A dual formulation of the directional distance function is defined as follows:

Definition 2.2 The function D̄T : R
n+p
+ × (−R

n+) × R
p
+ → R ∪ {−∞} defined by

D̄T (z;g) = inf
(w,p)≥0

{�(w,p) − p.y + w.x : p.k − w.h = 1}

is called the hyperdirectional distance function in the direction g = (h, k).

Chambers, Chung and Färe [6] prove duality between directional distance func-
tion and profit function when the former function is real-valued. In the latter case,
DT (z;g) = D̄T (z;g). Clearly, this dual version of the directional distance function
can be interpreted as a shadow profit function.



60 J Optim Theory Appl (2009) 141: 55–73

3 Directional Distance Function: Infeasibility and Its Remedy

This section analyses the precise conditions under which infeasibilities may or may
not occur. This is done for general points that need not be part of technology.

3.1 Infeasible Directions

We first define the concept of an infeasible direction for the directional distance func-
tion and focus on its relationship to a general production technology.

Definition 3.1 Let g ∈ (−R
n+) × R

p
+ and, for all z ∈ R

n+p
+ , let us denote

�(z,g) = {z + δg : δ ∈ R}
the affine line generated from z in the direction of g. We say that a direction g is:

(a) Infeasible at z if �(z,g) ∩ T = ∅;
(b) Interior if g ∈ (−R

n++) × R
p
++.

We can now state the following completely general result proving that for all tech-
nologies and for an arbitrary direction vector g there exists some point z such that
the direction g is infeasible at point z. The proof below is based on the characteristic
of the output set P(x) that is bounded for all x ∈ R

p
+. In particular, focusing on the

at least two-dimensional output case, we show that for any non-zero direction there
exists an input output vector such that the direction g is infeasible.

Proposition 3.1 For all technologies T satisfying A1–A4 and g ∈ (−R
n+) × R

p
+, if

the following conditions hold:

(i) the number of output dimensions is greater than or equal to 2 (p ≥ 2),
(ii) the output direction vector is non-zero (k �= 0),

then there exists some z ∈ R
n+p
+ such that the direction g is infeasible at z.

Proof We first consider the case where there is some j ∈ {1, . . . , p} such that
kj = 0. Since p ≥ 2, this does not contradict k �= 0. Now, consider some x ∈
R

n+. Since P(x) is compact, there exists some ȳ such that P(x) ⊂ {v ∈ R
p
+ :

v ≤ ȳ}. Let y ∈ R
p
+ such that yj > ȳj . Then, for all δ ∈ R, yj + δkj = yj > ȳj . Thus,

y + δk /∈ {v ∈ R
p
+ : v ≤ ȳ}. Thus, y + δk /∈ P(x). Consequently, (x, y) + δg /∈ T .

Since z = (x, y) ∈ R
n+p
+ , we deduce that g is infeasible at z.

Assume now that for all j ∈ {1, . . . , p}, kj > 0. Since P(x) is compact, there is
j ∈ {1, . . . , p} and some y ∈ R

p
+ such that y ∈ {v ∈ R

p : vj = 0} and y /∈ P(x). For
all δ ≥ 0, y + δk ∈ P(x) ⇒ y ∈ P(x) (from the strong disposal assumption). This is
a contradiction, thus for all δ ≥ 0, we have y + δk /∈ P(x). Moreover, since yj = 0,
δ < 0 ⇒ y + δk /∈ R

p
+ ⇒ y + δk /∈ P(x). Thus, we deduce that (x, y) + δg /∈ T , for

all δ ∈ R. This ends the proof. �

To illustrate this proposition, a numerical example is provided below for a simple
three dimensional production technology with two outputs.
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Example 3.1 Assume that n = 1 and p = 2, and let us consider the production tech-
nology: T = {(x, y1, y2) ∈ R

3+ : y1 + y2 ≤ x}. It is easy to check that T satisfies
A1–A5. Let z = (1,0,2), clearly z /∈ T . Moreover, let us consider the direction
g = (−1,1,1). The direction g is feasible at z if and only if the following system
of linear inequalities has some solution:

1 − δ ≥ 0, (5a)

0 + δ ≥ 0, (5b)

2 + δ ≥ 0, (5c)

2 + 2δ ≤ 1 − δ. (5d)

Clearly, the system of inequalities (5) has no solution and thereby DT (z;g) = −∞.

Following Proposition 3.1, for a given technology with a number of outputs p ≥ 2
and a given direction vector with non-null output direction, there always exists an
input output vector such that the directional distance function takes the value −∞.

Corollary 3.1 For all production technologies T satisfying A1–A4, where p ≥ 2 and
all g ∈ R

n+p
+ , there exists z ∈ R

n+p
+ such that D(z;g) = −∞.

This implies that one can always find a direction vector (with non-null output direc-
tion) which is infeasible for a given point z.

Corollary 3.2 For all production technologies T satisfying A1–A4, where p ≥ 2,
there exists g ∈ R

n+p
+ and z ∈ R

n+p
+ such that D(z;g) = −∞.

Thus, this perfectly general result demonstrates that even the Luenberger productivity
indicator, that employs the most general of distance functions, cannot avoid infeasi-
bilities.

Furthermore, these results can serve to illustrate that some claims in the litera-
ture regarding the origin of the infeasibility problem are simply wrong. For instance,
the output-oriented Malmquist productivity index can well be infeasible irrespective
of the maintained returns to scale assumption on technology (contrary to the claim
of Färe et al. [15, pp. 260] that non-increasing returns to scale is a sufficient con-
dition for the existence of a solution). Obviously, the same remark would apply to
the Luenberger output-oriented productivity indicator. As another example, Jaenicke
[25, pp. 257–258] suggests that imposing strong instead of weak output disposal on
technology is sufficient to guarantee feasibility for a distance function with non-null
output direction vector when constructing an output-oriented Malmquist index. This
claim is erroneous, since even with the stronger assumption of strong output disposal
maintained in this contribution it is impossible to rule out infeasibilities.

However, the above results are no longer valid when the output set in one-
dimensional and the direction vector is semi-positive in inputs and positive in the
single output, as it is stated in the next result.
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Lemma 3.1 Let T be a production technology satisfying A1–A4. If the output set
is one-dimensional (p = 1) and if g ∈ (−R

n+) × R++, then for all z ∈ R
n+1+ , the

direction g is feasible at z.

Proof Assume that z /∈ T . Let δ̄ = −y
k

. We have z+ δ̄g = (x+ δ̄h,0). Since h ∈ −R
n+,

we deduce that z + δ̄g ∈ R
n+ × {0}. Since (0,0) ∈ T , we deduce from the strong

disposal assumption that z + δ̄g ∈ T . �

3.2 Infeasible Directions when the Output Direction Vector is Null

Now, we focus on the case where the output direction is null. Here, the eventual
infeasibilities depend on the precise choice of the input direction.

We can formulate a first general result as follows.

Proposition 3.2 Let T be a production technology satisfying A1–A4. Let y ∈ R
p
+

and assume that L(y) �= ∅. Assume that there exist i0 ∈ {1, . . . , n} and αi0 ≥ 0 such
that, for all u ∈ L(y), ui0 > αi0 . If g = (h,0) is a direction such that hi0 = 0, then
there exists some x ∈ R

n+ such that the direction g is infeasible at point z = (x, y) for
all y ∈ R

p
+.

Proof We just consider the vector x ∈ R
n+ defined by

xi0 =
{

1, if i �= i0,
αi0
2 , if i = i0,

for i = 1, . . . , n. Now, let h ∈ −R
n+ such that hi0 = 0. Now, it is clear that, for all

δ ∈ R, xi0 + δhi0 = αi0
2 ≤ αi0 . But, since for all u ∈ L(y), ui0 > αi0 , we deduce that

x + δh /∈ L(y). Consequently, for all vector k ∈ R
p
+ and all y ∈ R

p
+, (x, y) + δg /∈ T .

This ends the proof. �

Thus, whenever the output direction is null, at least one input dimension is essential
(i.e., there is a minimal level needed of this input to produce some outputs), and the
input direction vector is not of full dimension in the essential input(s), there is always
a point such that it is infeasible for a general technology.

A simple numerical example based on a Leontief technology is provided below
showing that this type of infeasibility may well appear in a traditional parametric
technology.

Example 3.2 Assume that T = {(x1, x2, y) ∈ R
3+ : y ≤ min{x1, x2}}. If g = (−1,0,0),

then the direction g is infeasible at point (1, 1
2 ,1).

The next example focuses on the more widely used Cobb-Douglas technology.

Example 3.3 Assume that T = {(x1, x2, y) ∈ R
3+ : y ≤ x

θ1
1 x

θ2
2 }, where θ1, θ2 > 0. If

g = (−1,0,0), then the direction g is infeasible at point (0,1,1).
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From Examples 3.1 and 3.2, it is clear that traditional parametric technology specifi-
cations are not immune to the infeasibility problem.

Next, we show that when the output correspondence is bounded, then for all input-
oriented directions there exists an infeasible direction at some point in R

n+p
+ . We say

that the output correspondence is bounded if there exists a compact K ⊂ R
p
+ such

that P(x) ⊂ K for all x ∈ R
n+. Furthermore, if an output vector is attainable from

an input vector and the direction vector is interior in the inputs, then the directional
distance function is feasible.

Proposition 3.3 Let T be a production technology satisfying A1–A4. We have the
following properties:

(a) If P is a bounded correspondence, then for all directions g = (h,0), there exists
some z ∈ R

n+p
+ such that g = (h,0) is an infeasible direction at z.

(b) Assume that y ∈ P(Rn+) and suppose that the input set L(y) has a nonempty in-
terior in R

n+. If h ∈ −R++, then the input interior direction g = (h,0) is feasible
at z = (x, y).

Proof (a) If P(x) is a bounded set, then there exists y ∈ R
p
+ such that y /∈ P(x). Now

for all δ ∈ R, we have (x, y) + δ(h,0) /∈ T and this ends the proof. (b) Since L(y)

has a nonempty interior, there is some u ∈ L(y) ∩ R
n++. Moreover, since h ∈ R

n++,
there is some δ̄ ∈ R such that x + δ̄h ≥ u. Since the free disposal assumption holds,
we deduce that x + δ̄h ∈ L(y). This ends the proof. �

To illustrate the (a) part of this proposition, we cite a few empirical studies explic-
itly reporting the prevalence of this infeasibility problem in the case of the input-
oriented Malmquist index. Glass and McKillop [28] mention for their sample of 84
UK building societies that 5, 6 and 6 observations (about 7%) encounter infeasibil-
ities when comparing their distances to technologies situated in different time peri-
ods. Mukherjee, Ray and Miller [20] report between 1% and 3.5% infeasibilities on a
larger sample of 201 US commercial banks over a longer number of years (see their
Tables 4–6). Though we are unaware of articles reporting infeasibilities, the Luen-
berger input-oriented productivity indicator could suffer from the same problems.

The following corollary is immediate:

Corollary 3.3 Let T be a production technology satisfying A1–A4. Moreover, as-
sume that T has a nonempty interior, p = 1 and constant returns to scale hold. For
all y ∈ R+ if h ∈ −R

n++, then the input interior direction g = (h,0) is feasible at
z = (x, y).

Proof Since T has a nonempty interior, then L(y) has also a nonempty interior in
R

n+. However, since p = 1 for all y ∈ R+, L(y) �= ∅ and this ends the proof. �

This corollary explains that in the single output case imposing constant returns to
scale and a full dimensional input direction vector are sufficient conditions for feasi-
bility.

Kris
Typewriter
2

Kris
Typewriter
3
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In the literature on the Malmquist productivity index, the impression is given that
the infeasibility issue can be solved by simply imposing constant returns to scale on
a non-parametric technology (see, e.g., Färe, Grosskopf and Lovell [19]). However,
the above propositions clearly demonstrate that the occurrence of infeasibilities in,
for instance, the case of the input-oriented Malmquist index is not linked to a returns
to scale hypothesis imposed on technology, but that it depends on the output direction
vector being null and the input direction vector not being of full dimension. Further-
more, constant returns to scale in itself is never a sufficient condition to guarantee
feasibility.

Thus, both the use of parametric and non-parametric technologies can generate
infeasibilities when computing discrete time productivity indexes when the output
direction vector is null and the input direction vector is not of full dimension.

3.3 Duality and Feasibility

One of the key results so far, proven in Proposition 3.1, is that if k �= 0 then there is
some z ∈ R

n+p
+ such that the direction g is infeasible at z. Therefore, it is obvious

that if g ∈ (−R
n++) × R

p
++, then there is some z ∈ R

n+p
+ such that DT (z;g) = −∞.

In this subsection we show, perhaps surprisingly, that this results does not hold true
for the dual formulation of the directional distance function.

To show this, we introduce the free disposal cone that is defined as

K = R
n+ × (−R

p
+). (6)

This cone is related to the free disposal assumption because A4 can be equivalently
written as (T + K) ∩ R

n+p
+ = T . Throughout this subsection this free disposal cone

plays a crucial role.
The next main result establishes that if the line �(z,g) meets the addition of the

technology and the free disposal cone T +K , then the dual directional distance func-
tion is well-defined.

Proposition 3.4 Let T be a production technology satisfying A1–A5. For all z ∈
R

n+p
+ , if �(z,g) ∩ (T + K) �= ∅, then

D̄T (z;g) > −∞,

and

D̄T (z;g) = max{δ : z + δg ∈ T + K}.
Moreover, there exist (x̄, ȳ) ∈ R

n+p
+ and (w̄, p̄) ∈ R

n+p
+ with p̄.k − w̄.h = 1 such

that:

D̄T (z;g) = p̄.ȳ − w̄.x̄ − p̄.y + w̄.x.

Proof Let us denote γ (z;g) = sup{δ : z+δg ∈ T +K}. Since �(z,g)∩(T +K) �= ∅,
that is closed, γ (z;g) > −∞ and z + γ (z;g)g ∈ T + K . For all convex C ⊂ R

n+p ,
let us define the function hC : R

n+p
+ → R+ ∪ {∞} defined as hC(w,p) = sup{p.y −
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w.x : (x, y) ∈ C}. From the convexity of T we deduce the convexity of T +K . Since
z+γ (z;g)g ∈ Bd(T +K), from the weak version of the convex separation theorem,
we deduce that there exists (w,p) ∈ R

n+p such that

p.(y + D(x,y;g).k) − w.(x + D(x,y;g).h) = hT +K(w,p).

It is, however, a standard fact that hT +K(w,p) = hT (w,p) + hK(w,p) and since
hK(w,p) = +∞ for all (w,p) /∈ R

n+p
+ , we deduce that (w,p) ∈ R

n+p
+ . Moreover,

since hT (w,p) = �(w,p) and hK(w,p) = 0, an elementary calculus shows that

γ (z;g) = �(w,p) − p.y + w.x

p.k − w.h
.

Therefore, for all (w′,p′) ∈ R
n+p
+ if hT +K(w′,p′) = �(w′,p′) < +∞, we have

sup
{
δ : p′.(y + δk) − w′.(x + δh) ≤ �(w′,p′)

} ≥ �(w,p) − p.y + w.x

p.k − w.h

and normalizing we deduce that

γ (z;g) = min
(w,p)≥0

{�(w,p) − p.y + w.x : p.k − w.h = 1} > −∞.

Therefore, since the minimum is achieved, there is some (w̄, p̄) ∈ R
n+p
+ and such

that �(w̄, p̄) = (−w,p). (z + γ (z;g)g). But, since z + γ (z;g)g ∈ T + K , there is
some (x̄, ȳ) ∈ T such that z + γ (z;g)g ∈ (x̄, ȳ) + K , and consequently we have
immediately �(w̄, p̄) = p̄.ȳ − w̄.x̄. �

This has an immediate consequence: if all components of the direction vector are
non-zero, then the dual directional distance function is well-defined. Otherwise, the
dual directional distance function may well not solve the infeasibility problem.

Corollary 3.4 Let T be a production technology satisfying A1–A5. Let g ∈
(−R

n++) × R
p
++ be an interior direction. For all z ∈ R

n+p
+ , we have

D̄T (z;g) > −∞.

Proof If g ∈ (−R
n++) × R

p
++, then there is some δ̄ ∈ R− such that y + δ̄k ≤ 0 ⇒

z + δ̄g ∈ {(0,0)} + K ⇒ z + δg ∈ T + K . Therefore, �(z,g) ∩ (T + K) �= ∅ and
from Proposition 3.4 the result is established. �

This result can be related to Briec and Lesourd [29] who showed that if g = (−1n,1p)

then, for all z ∈ T , D̄T (z;g) is the Chebyshev distance from z to the weak efficient
subset of T . Another corollary points out the difference between primal and dual
directional distance functions for some infeasible directions.

Corollary 3.5 Let T be a production technology satisfying A1–A5. For all z ∈ R
n+p
+ ,

if �(z,g) ∩ T = ∅ and �(z,g) ∩ (T + K) �= ∅, then

D̄T (z;g) > DT (z;g) = −∞.
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Fig. 1 A case where
DT (z;g) = −∞ and
D̄T (z;g) > −∞

This last result is illustrated in Fig. 1. In Fig. 1, we suppose that g = (0, k). There-
fore, for all price vectors (w̄, p̄) ∈ R

n+p
+ such that D̄T (z;g) = �(w̄, p̄) − p̄.y + w̄.x

with p̄.k − w̄.h = 1, we have �(w̄, p̄) − p̄.y + w̄.x = p̄.(y + γ (z;g)k) − w̄.(x +
γ (z;g)h) − p̄.y + w̄.x = p.(y + γ (z;g)k) − p̄.y = R(p̄, x) − p̄.y > 0. Thus, there
exist points and direction vectors for which the hyper-directional distance function
may well be feasible, while the directional distance function is infeasible.

This same result is also illustrated by taking up again the earlier Example 3.1 and
showing that its dual directional distance function is feasible.

Example 3.4 Let us consider Example 3.1 where for n = 1 and p = 2, the production
technology is T = {(x, y1, y2) ∈ R

3+ : y1 + y2 ≤ x}. We have shown that the direc-
tion g = (−1,1,1) is not feasible at point z = (1,0,2) and thereby DT (z;g) = −∞.
However, we have shown in Proposition 3.4 that the dual directional distance func-
tion is D̄T (z;g) = sup{δ : (1,0,2) + δ(−1,1,1) ∈ T + K}. Let us determine a maxi-
mization program to compute this dual directional distance function. Since the output
dimension is not constrained in T + K , we have

T + K =
{
(x, y1, y2) ∈ R+ × R

2 : y1 + y2 ≤ x
}

.

Therefore, the constraints 0+ δ ≥ 0 and 2+ δ ≥ 0 in system (5) should be suppressed
in the maximization program to compute the dal directional distance function,

max δ,

1 − δ ≥ 0,

2 + 2δ ≤ 1 − δ. (7)

We obtain

D̄T (z;g) = −1/3 > −∞ = DT (z;g).
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To complete the main result above we establish that if the condition �(z,g) ∩
(T + K) �= ∅ does not hold, then the dual directional distance function is infeasible
(D̄T (z;g) = −∞).

Proposition 3.5 Let T be a production technology satisfying A1–A5. For all z ∈
R

n+p
+ , if �(z,g) ∩ (T + K) = ∅, then

D̄T (z;g) = −∞.

Proof If �(z,g)∩ (T +K) = ∅, then there are two subsets I = {i ∈ {1, . . . , n} : hi =
0} and J = {j ∈ {1, . . . , p} : kj = 0} such that I ∪ J �= ∅. For all positive integers m,
let us define the direction gm = (hm, km) such that

hm
i =

{
hi, if i /∈ I,
1
m

, if i ∈ I,
km
j =

{
kj , if j /∈ J,
1
m

, if j ∈ J.

Since gm ∈ (−R
n++)×R

p
++, we deduce that �(z,gm)∩(T +K) �= ∅. Let γ (z;gm) =

sup{δ : z + δgm ∈ T + K}. Let us prove that limm→+∞ γ (z;gm) = −∞. Assume the
contrary and let us show a contradiction. Since �(z,g)∩ (T +K) = ∅, z /∈ T . There-
fore, γ (z;gm) ≤ 0 for all m ∈ N\{0}. Suppose that there is a compact W ⊂ R

n+p

such that wm = z + γ (z;gm)gm ∈ W for all positive integers m. Since W is com-
pact there is some subsequence {ml}l∈N such that liml→∞ wml = w ∈ W . However,
liml→∞ gml = g. Consequently, there is some γ̄ such that liml→∞ γ (z;gml ) = γ̄ ,
and since T +K is closed w = z+ γ̄ g ∈ T +K . This is a contradiction because of the
assumption �(z,g) ∩ (T + K) = ∅. Consequently, limm→+∞ ‖z + γ (z;gm)gm‖ =
+∞ and since limm→∞ gm = g we deduce that limm→∞ γ (z;gm) = −∞. Now, for
all m ∈ N, since

{
(w,p) ∈ R

n+p
+ : p.k − wh = 1

}
⊃

{
(w,p) ∈ R

n+p
+ : p.km − w.hm = 1

}
,

we deduce that, for all m ∈ N\{0},
inf

(w,p)≥0
{�(w,p) − p.y + w.x : p.k − w.h = 1}

≤ min
(w,p)≥0

{
�(w,p) − p.y + w.x : p.km − w.hm = 1

} = γ (z;gm).

Therefore, since limm→∞ γ (z;gm) = −∞, we obtain: D̄T (z;g) = −∞. �

To conclude this discussion, we establish a final result indicating that the feasi-
bility of the dual directional distance function is a necessary and sufficient condition
to conclude that the intersection of a line with the technology extended by the free
disposal cone is nonempty.

Theorem 3.1 Let T be a production technology satisfying A1–A5. For all z ∈ R
n+p
+ ,

�(z,g) ∩ (T + K) = ∅ ⇐⇒ D̄T (z;g) = −∞.
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3.4 Existence of Feasible Directions

This subsection sets to determine the conditions for the existence of a feasible direc-
tion g̃(z) at each point z in the non-negative Euclidean orthant. It turns out that the
required necessary and sufficient conditions are very restrictive. For convenience, we
use the following decomposition of the direction vector g̃(z) = (h̃(z), k̃(z)). More
specifically, suppose that the direction vector is given by some function g̃ : R

n+p
+ →

(−R
n+) × R

n+ termed the direction function. This direction function is defined as

g̃(z) = (h̃(z), k̃(z)). (8)

Proposition 3.6 Assume that p ≥ 2. Then, the two following conditions are equiva-
lent:

(i) For all production technologies satisfying A1–A4 and all z ∈ R
n+p
+ , �(z, g̃(z))∩

T �= ∅,
(ii) g̃ has the form g̃(z) = (h̃(z), cy), where c ∈ R++.

Proof Assume that (ii) does not hold. Let δ̄ = inf{δ : y + δk̃(z) ≥ 0}. Since (ii) does
not hold and p ≥ 2, there is some j ∈ {1, . . . , p} such that yj + δ̄k̃j (z) > 0. Let T be
an arbitrary production technology satisfying A1–A4 such that y + δ̄k̃(z) ∈ P(Rn+).
This means that y + δ̄k̃(z) can be produced by some input vector. Now, let

Hj =
{
(u, v) ∈ R

n+p
+ : vj ≤ 1

2

(
yj + δ̄h̃j (z)

)}
.

It is easy to check that T ∩ Hj satisfies A1–A4 and (x + δ̄h̃(z), y + δ̄k(z)) /∈ T ∩ Hj .
Consequently, �(z, g̃(z)) ∩ (T ∩ Hj) = ∅ and this contradicts (i). Thus (i) ⇒ (ii).
Conversely, if (ii) holds for δ̄ = (−1 + 1

c
), then y + δ̄cy = 0, and since x + δ̄h̃(z) ≥

x and (0,0) ∈ T , we deduce that (x + δ̄h̃(z), y + δ̄z) = (x + δ̄h̃(z),0) ∈ T . Thus,
�(z, g̃(z)) ∩ T �= ∅ and (i) holds. �

Thus, when the direction vector is interior and strictly proportional in all output di-
mensions in the technology (and p ≥ 2), then the directional distance function is
always feasible. The following corollary is an immediate consequence.

Corollary 3.6 For all production technology satisfying A1–A4 and all z ∈ R
n+p
+ , if

the direction function has the form g̃(z) = (h̃(z), cy), where c ∈ R++, then

DT (z; g̃(z)) > −∞.

The above conditions underscore the importance of imposing minimal restrictions on
the output direction to guarantee feasibility.

The next result establishes necessary and sufficient conditions in the case of an
input-oriented direction vector. It turns out that if the output direction vector equals
zero and an output vector is attainable from an input vector, then a necessary and
sufficient condition for the directional distance function to be feasible is that the di-
rection vector is input interior for all production vectors z.
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Proposition 3.7 Suppose that g̃ : R
n+p
+ → (−R

n+) × {0}p is a direction function.
Let (x, y) ∈ R

n+p
+ and suppose that y ∈ P(Rn+). The two following conditions are

equivalent:

(i) For all production technologies satisfying A1–A4 and all z ∈ R
n+p
+ , �(z, g̃(z))∩

T �= ∅,
(ii) g̃ has the form g̃(z) = (h̃(z),0) where h̃(R

n+p
+ ) ⊂ −R

n++.

Proof From Proposition 3.2 it is clear if (ii) does not hold true, then (i) does not hold
true. Therefore, (i) ⇒ (ii). Let us prove that (ii) ⇒ (i). Since y ∈ P(Rn+), there is some
x̄ ∈ R

n+ such that y ∈ P(x̄), thus (x̄, y) ∈ T and y ∈ L(x̄). Now, since h̃(R
n+p
+ ) ⊂

−R
n++, there exists some δ̄ < 0 such that x + δ̄h̃(z) > x̄. Therefore, from the strong

disposal assumption (x + δ̄h̃(z), y) ∈ T and consequently since k̃(z) = 0, (x, y) +
δ̄g̃(z) ∈ T . This ends the proof. �

This excludes all sub-vector orientations in the inputs when the output direction vec-
tor is null. Ouellette and Vierstraete [30] are an example of a study reporting in-
feasibilities (in particular, 1 out of 15 observations) for a sub-vector input-oriented
Malmquist productivity index.

4 Luenberger Productivity Indicator: Diagnosing Its Infeasibility

4.1 Luenberger Productivity Indicator: Definition

In the remainder of this contribution the production possibility set at time period t is
denoted as T t . Thus, the set of all feasible input and output vectors is formalized as
follows:

T t =
{
(xt , yt ) ∈ R

n+p
+ ;xt can produce yt

}
, (9)

where xt and yt represent respectively the input and output vectors at time t . Now
it is necessary to focus on a slightly more general formulation of the directional dis-
tance function. Suppose that the direction vector is given by some direction function
g̃ : R

n+p
+ → (−R

n+) × R
n+. Hence, the directional distance function is DT (z; g̃(z)).

Therefore, if g̃(z) = g is independent of z, one retrieves the usual formulation of
the directional distance function due to Chambers, Chung and Färe [6]. Moreover, to
simplify notation, denote

Dt(z
t ; g̃(zt )) = DT t (zt ; g̃(zt )) and D̄t (z

t ; g̃(zt )) = D̄T t (zt ; g̃(zt )). (10)

Following Chambers [17], the difference-based Luenberger productivity indicator
L(zt , zt+1; g̃) in the general case of a direction function is defined as follows:

L(zt , zt+1; g̃) = 1

2

[(
Dt(z

t ; g̃(zt )) − Dt(z
t+1; g̃(zt+1))

)

+ (
Dt+1(z

t ; g̃(zt )) − Dt+1(z
t+1; g̃(zt+1))

)]
. (11)
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When g̃(x, y) = (−x, y), then one obtains a proportional Luenberger indicator, as
mentioned in Chambers, Färe and Grosskopf [6]. To avoid an arbitrary choice of base
years, an arithmetic mean of a difference-based Luenberger productivity indicator
in base year t (first difference) and t + 1 (second difference) is taken. Productiv-
ity growth (decline) is indicated by positive (negative) values. Notice that the general
definitions of the directional distance functions introduced above imply that the Luen-
berger productivity indicator may well not be real-valued. Empirical studies reporting
this phenomenon, however, are not known to us.

It is equally possible to define input- and output-oriented versions of this Luen-
berger productivity indicator based on the input respectively the output directional
distance functions. Evidently, the same infeasibilities would reappear.

4.2 Undefined Luenberger Productivity Indicator

The next example shows that there exist technologies obeying axioms A1–A4 for
which there exist g, zt and zt+1 such that the direction g is infeasible both at zt with
respect to T t+1 and at zt+1 with respect to T t . Thus, the mixed-period directional
distance functions cannot be computed.

Example 4.1 Assume that T t = {(x, y1, y2) ∈ R
3 : max{ y1

8 , y2} ≤ x} and T t+1 =
{(x, y1, y2) ∈ R

3 : max{y1,
y2
8 } ≤ x}. Clearly, zt = (1,8,1) ∈ T t and zt+1 =

(1,1,8) ∈ T t+1. Suppose that the direction function is constant. By taking g =
(0,1,1) it is easy to see that g is not feasible at zt with respect to T t+1 and in the same
way it is not feasible at zt+1 with respect to T t . It is then clear that Dt(z

t+1;g) = −∞
and Dt+1(z

t ;g) = −∞. Therefore,

L(zt , zt+1;g) = 1

2

[
Dt(z

t ;g) + ∞ − ∞ − Dt+1(z
t+1;g)

]
.

Moreover, since zt �= (0,0) and zt+1 �= (0,0), the productivity indicator L(zt , zt+1;g)

experiences an indetermination symbolized by +∞ − ∞.

As an immediate consequence there exist technologies T t and T t+1 such that the Lu-
enberger productivity indicator is not defined when the number of output dimensions
is greater than 1. This means that the Luenberger productivity indicator may not take
its values in [−∞,+∞] and remains undefined.

Proposition 4.1 Suppose that the direction function g̃ is constant and p ≥ 2. There
exists a pair of technologies T t and T t+1 satisfying A1–A4 that respectively contain
zt �= (0,0) and zt+1 �= (0,0), such that L(zt , zt+1;g) is not defined.

4.3 Well-Defined Luenberger Productivity Indicators

The next result establishes necessary and sufficient conditions to make the Luen-
berger productivity indicator computable for all technologies. In particular, it shows
that when the number of output dimensions is greater than 1, then the output direction
should be proportional to the output vector. Clearly, this condition is a straightforward
consequence of Proposition 3.6 above.
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Proposition 4.2 Assume that p ≥ 2. The following two conditions are equivalent:

(i) For all pairs of technologies T t and T t+1 that respectively contain zt �= (0,0)

and zt+1 �= (0,0), L(zt , zt+1;g) is defined.
(ii) g̃ has the form g̃(z) = (h̃(z), cy), where c ∈ R++.

This result is a direct consequence of Proposition 3.6 and seems to indicate that the
choice of a proportional output direction vector seems highly desirable. This could be
interpreted as an argument in favour of the proportional distance function, whereby
the direction vector equals the evaluated observation (see Briec [26] or Chambers,
Färe and Grosskopf [6] for a discussion of various choices of direction vector).

It has been shown before that there exists some cases where, in spite of the infea-
sibility of a direction, the dual directional distance function is well-defined. For that
reason, it is possible to define a dual Luenberger productivity indicator that is well-
defined, at least for interior directions (i.e., directions being non-null in all dimen-
sions). Following Balk [31], the hyper-Luenberger productivity indicator is defined
by

L̄(zt , zt+1; g̃) = 1

2

[(
D̄t (z

t ; g̃(zt )) − D̄t (z
t+1; g̃(zt+1))

)

+
(
D̄t+1(z

t ; g̃(zt )) − D̄t+1(z
t+1; g̃(zt+1))

)]
. (12)

Since from Corollary 3.4 the hyper-directional distance function is well-defined for
interior directions, the hyper-Luenberger productivity indicator is also well-defined
under the same conditions. Of course, since duality is involved in the construction of
the hyper-directional distance function, one must impose convexity of technology in
the next result.

Proposition 4.3 Suppose that g̃ : R
n+p
+ → (−R

n++) × R
p
++, i.e., the direction func-

tion is interior. For all pairs of technologies T t and T t+1 satisfying A1–A5 that
respectively contain zt �= (0,0) and zt+1 �= (0,0), L̄(zt , zt+1) is well-defined.

Thus, only in the case of interior directions, the dual Luenberger productivity in-
dicator is well-defined. Otherwise, there is no guarantee for it being well-defined.
Furthermore, it is clear that no general solution exists in the case of non-convex tech-
nologies.

In fact, also productivity indices and indicators based upon economic value func-
tions (e.g., cost function) may well suffer from the same problems unless they have
the equivalent of interior directions (e.g., long-run cost functions rather than short-run
cost functions). Examples could be the decomposition of the Fisher ideal productiv-
ity index presented in Ray and Mukherjee [32], or the Bennet indicator analysed by
Grifell-Tatjé and Lovell [33]. We do not explicitly treat these cases because it would
lead us too far, but simply note that our basic diagnosis and solutions probably remain
valid.
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5 Conclusions

This paper has verified in detail under which conditions the directional distance func-
tion, the most general distance function introduced in the literature so far, may not
achieve its distance in the general case where a point need not be part of technology
and where the direction vector can take any value. In Sect. 3 we demonstrated a per-
fectly general result that in the case of more than two output dimensions and non-null
output direction vector, the directional distance function may be infeasible. In addi-
tion to a series of more specific infeasibility results, it has been demonstrated that
the hyper-directional distance function, the dual version of the standard directional
distance function, is always feasible for interior directions.

Turning to the implications of these results for maintaining feasibility at the level
of the Luenberger productivity indicator, it has been shown that this can only be
guaranteed for non-null points with direction vectors in some sense proportional to
these points. The dual Luenberger productivity indicator is well-defined for interior
directions only, but this requires the additional axiom of convexity.

Apart from reporting any eventual infeasibilities, this contribution shows that there
is no easy solution in general. While a general solution to the problem exists under
rather stringent conditions, it remains the case that in a variety of circumstances the
problem of infeasibilities cannot be avoided irrespective of the estimation method
used for technology. Also, the current results can be partly interpreted as providing
support for the proportional directional distance function, whereby the direction vec-
tor equals the evaluated observation. Consequently, since in general the directional
distance function may not be well-defined, the axiom of determinateness in index
theory should be firmly rejected.

Just to point out the potential transposition of these results in consumer index
theory, we provide two examples. Malmquist [34] originally defined his primal
Malmquist quantity index as a ratio of input distance functions (another name for
the benefit function) scaling consumption bundles with respect to some arbitrarily
selected indifference surface. The Könus [35] price index is a simple ratio of ex-
penditure functions (similar to cost functions in production). All results in terms of
distance and dual functions, to the extent that these are relevant in a consumer context
where there is normally only a single output, carry over immediately.
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