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Abstract

This article extends the analysis of multi-horizon mean-variance portfolio analysis in the Morey and Morey [Mutual fund
performance appraisals: a multi-horizon perspective with endogenous benchmarking. Omega 1999;27:241–58] article in several
ways. First, instead of either proportionally contracting risk dimensions or proportionally expanding return dimensions, a more
general efficiency measure simultaneously attempts to reduce risk and to expand return over all time periods. Second, a duality
relation is established between this generalized multi-horizon efficiency measure and an indirect mean-variance utility function,
underscoring the natural interpretation of this generalized efficiency measure in terms of investor’s preferences. Furthermore,
the need to properly apply time discounting in multi-horizon mean-variance portfolio problems is argued for. An empirical
illustration based on the original mutual fund data set in Morey and Morey [Mutual fund performance appraisals: a multi-horizon
perspective with endogenous benchmarking. Omega 1999;27:241–58] is added to contrast the new and the original approaches.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

For decades, portfolio performance has been evalu-
ated using performance measures combining informa-
tion on both return and risk, such as the Sharpe measure
[1], the Treynor measure [2], the Jensen measure [3],
among others (see [4] for a critical discussion).
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More recently, explicit efficiency measures have
been introduced to benchmark mutual funds using
non-parametric frontier models (known as Data Envel-
opment Analysis).1 Indeed, while these benchmarking
models have been widely used to assess the relative
performance of production activities in agriculture, in-
dustry and service sectors, efficiency measures based on
frontier estimation are now being employed in various
new domains, like marketing (e.g., [5]) and inequality
measurement (e.g., [6]), to name just a few. Also, their

1 Kleine [12] offers a taxonomy and overview of these mod-
els, and also provides a link to the multi-criteria decision making
literature.
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use in finance in general and portfolio analysis in partic-
ular is of rather recent date.2 The seminal article em-
ploying efficiency measures to benchmark mutual funds
was Murthi et al. [7], immediately followed by Mc-
Mullen and Strong [8] and Premachandra et al. [9], and
several others in the meantime. Within the static mean-
variance portfolio selection problem, Sengupta [10] is
probably the first to introduce an efficiency measure as
a benchmarking tool in the quadratic optimization pro-
grams. The seminal article of Morey and Morey [11]
introduces the same idea in a multi-horizon or temporal
setting. This extension is important because efficiency
measures, being related to distance functions, have the
great advantage of being capable to position observa-
tions with respect to the boundary of multi-dimensional
choice sets. Morey and Morey [11] propose two types
of efficiency measures. A first efficiency measure at-
tempts to contract all risk dimensions proportionally;
a second one focuses on augmenting all return dimen-
sions as much as possible in a proportional way.

The purpose of the current contribution is to extend
the Morey and Morey [11] proposal. Multi-horizon
or temporal benchmarking can in principle be applied
both retrospectively and prospectively. The Morey and
Morey [11] article mainly focuses on retrospective
benchmarking and explicitly aims to provide an alterna-
tive weighting scheme to assess the performance over
multiple periods using objective rather than subjective
weights, the latter being used by some commercial
rating services (in particular, Morningstar). This article
follows Morey and Morey [11] in their retrospective
viewpoint. But, it also briefly outlines how a prospec-
tive point of view could be developed.3 Furthermore,
the Morey and Morey [11] article takes a long-term in-
vestment perspective by benchmarking portfolios over
a given time horizon. In contrast, the optimization of a
periodically rebalanced benchmark over the given time

2 Applications benchmarking production in the financial sector
are widespread and include, among others, studies on the efficiency
of bank branches (e.g., [13]), banks (see, e.g., the overview of [14])
and insurance companies (see [15] for a survey).

3 Notice that retrospective and prospective benchmarking pose
different informational requirements. Retrospective benchmarking is
based on observed past behavior. In contrast, prospective bench-
marking attempts to take account, at least partially, of likely fu-
ture behavior. The required information on expected returns that
can be obtained from scenario analysis or bought from specialized
firms (e.g., the I/B/E/S databases of Thomson Financial based on
consensus estimates). However, uncertainty surrounding the data is
well-known to have an impact on portfolio optimization. For in-
stance, estimation errors in means are more important than errors
in variance–covariance matrices, whereby errors in variances weight
heavier than errors in covariances (see, e.g., [16]).

horizon allows for a complementary short-term per-
spective. In brief, the aim of Morey and Morey [11] is
first and foremost to retrospectively assess performance
adapting a long-term investment perspective. The ob-
jective of our contribution is to offer in addition a
short-run investment perspective. These developments
require that the benchmarking framework is firmly
embedded in portfolio theory.

In particular, this contribution aims to achieve the
following goals. First, it shows that these efficiency
measures introduced by Morey and Morey [11] are
just special cases of a more general approach that si-
multaneously attempts to reduce risk and to expand
return. Second, by stressing the importance of a dual
relation between the efficiency measure (or, more gen-
erally speaking, the distance function) and an indirect
mean-variance utility function, it becomes clear that the
Morey and Morey [11] analysis can be refined in three
important ways. First, instead of reducing all risk di-
mensions (or expanding all return dimensions) over a
given time horizon by a common scalar, one should sim-
ply define an efficiency measure for each period within
the time horizon. Second, the duality relation shows that
in general one needs time discounting in multi-horizon
settings, also for the efficiency measures. Indeed, given
standard assumptions about time discounting, efficiency
gains in the far future should be weighted less than ef-
ficiency gains in the near future when planning ahead
(similar to the case of utility gains). In retrospective
benchmarking, the distant past is analogously weighted
less than efficiency gains in the nearby past. Third, this
same duality relation also shows that this more gen-
eral approach to portfolio efficiency (PE) is compatible
with standard investor preferences with respect to mean-
variance portfolios, while the Morey and Morey [11]
efficiency measures imply extreme assumptions with
respect to the risk characteristics of investors that are
rather unlikely to hold in general.

Indeed, Briec et al. [17] study existing non-parametric
efficiency measurement approaches for a single period
mean-variance portfolio selection from a theoretical
perspective and generalize the efficiency measures of
Morey and Morey [11] into the full mean-variance
space. Starting from a given portfolio, the generalized
efficiency measure seeks for simultaneous reductions
in risk and expansions in return. This generalized effi-
ciency measure or shortage function is studied in the
context of the Markowitz [31] efficient frontier, and a
link is established to the indirect mean-variance utility
function. This framework allows distinguishing be-
tween PE and allocative efficiency (AE). Furthermore,
it permits retrieving information about the revealed
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risk aversion of investors. In this contribution, we
basically combine this static mean-variance framework
developed with the idea of a time-discounted short-
age function defined in Briec et al. [18] in a temporal
profit function setting. This allows evaluating the per-
formance of a mean-variance portfolio problem over a
multi-period time horizon.

This article is structured as follows. Section 2 lays
the foundation by succinctly repeating the static mean-
variance portfolio using the analytical tools proposed
in Briec et al. [17]. A numerical example illustrates the
difference between the Morey and Morey [11] approach
and the generalized efficiency measure. To develop the
theoretical framework, Section 3 first defines a time-
discounted shortage function and a time-discounted in-
direct utility function in a multi-period mean-variance
setting. Then, we establish a duality result between
these time-discounted temporal shortage and temporal
indirect mean-variance utility functions. This basically
transposes the duality result in Briec et al. [18] from a
production setting to a financial context. Again, a nu-
merical example serves to illustrate the key differences
between the different approaches. In the empirical ap-
plication in Section 4, we exploit the original Morey
and Morey [11] data. These authors use 26 mutual funds
observed over the period from 1985 to 1995, and they
analyze their yields in monthly averages over three time
horizons. The empirical results computed and discussed
are: (i) the shortage function results compared to their
mean return expansion (MRE) and risk contraction (RC)
efficiency measures; (ii) the discounted shortage func-
tion results compared to the standard shortage function
results; and (iii) the results of the discounted overall
efficiency decomposition. A concluding section outlines
conclusions and eventual future extensions.

2. The static mean variance model

2.1. Theory

Developing some basic definitions, consider the prob-
lem of selecting a portfolio (or fund of funds) from n
financial assets (or funds) at time period t. In each pe-
riod t, assets are characterized by an expected return
E[Rt

i ] for i ∈ {1, . . . , n}, and by a variance–covariance
matrix �t

i,j =Cov[Rt
i , R

t
j ] for i, j ∈ {1, . . . , n}. A port-

folio xt = (xt
1, . . . , x

t
n) is composed by a proportion of

each of these n financial assets (
∑

i=1,...,n xt
i = 1).

When short sales are excluded, then the condition
xi �0 is imposed. Short selling is sometimes relevant
for mutual funds, and even more so for hedge funds.
Therefore, it is good to realize that the developed models

can be extended to allow for short selling. Furthermore,
when investors face additional constraints (e.g., transac-
tion costs or upper limits on any fraction invested) that
can be written as constraints that are linear functions
of asset weights, then the set of admissible portfolios
can be easily adapted (see [17]). In the remainder of the
contribution, the basic models presented ignore short
selling and any additional constraints. Of course, we do
not deny that the benefits of rebalancing in our short-
term investment perspective cannot be partly swamped
by the existence of transaction costs, but these costs are
immaterial in developing the basic benchmarking model
of a periodically rebalanced fund of funds.

The return of portfolio x at the time period t is given
by Rt(xt ) = ∑

i=1,...,n xt
i R

t
i . The expected return and

variance of this portfolio are as follows:

E[Rt(xt )] = �t (xt ) =
∑

i=1,...,n

xt
i E[Rt

i ], (2.1)

Var[Rt(xt )] = E[(Rt (xt ) − �t (xt ))2]
=

∑
i,j

xt
i x

t
j Cov[Rt

i , R
t
j ]. (2.2)

It is useful to define the mean-variance (portfolio)
disposal representation set through:

DRt = {(V , E) ∈ R2+ : ∃xt with V �Var[Rt(xt )],
E�E[Rt(xt )]}. (2.3)

The purpose of this set is to extend the choice of
portfolio weights by allowing for some type of free
disposal in all return and risk dimensions. Thus, for
a given portfolio it is always possible to increase
its risk and to reduce its return. This is a technical
assumption facilitating the use of standard optimization
tools.

In production theory, the shortage function measures
—intuitively stated—the distance between some point
of the production possibility set and the Pareto fron-
tier (Luenberger [32]).4 The following introduces the
shortage function as a performance indicator for the
mean-variance portfolio optimization problem (see
[17]). Let xt denote a portfolio observed at the time
period t. Let gt = (−gt

V , gt
E) ∈ (−R+) × R+ be a

direction vector. The shortage function St
gt measures the

efficiency of each portfolio in a direction given by the
vector gt . At time period t, this function is defined for

4 This shortage function is also known under the name direc-
tional distance function.
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all portfolios xt as:

St
gt (x

t ) = sup{�; (Var[Rt(xt )] − �gt
V ,

E[Rt(xt )] + �gt
E) ∈ DRt }. (2.4)

The basic properties of the subset DRt on which the
shortage function is defined are discussed in Briec et al.
[17] in the setting of Markowitz mean-variance portfo-
lio theory. It is sufficient to stress that when St

gt (x
t )=0,

then the evaluated portfolio is efficient and part of the
Markowitz frontier. When St

gt (x
t ) > 0, then the portfo-

lio is inefficient and the shortage function indicates the
percentage change in terms of both return expansion
and risk reduction that are needed to catch up with the
portfolio frontier. For example, when St

gt (x
t ) = 0.05,

then by augmenting return and contracting risk by 5%
it is possible to join the portfolio frontier.

Briec et al. [17] demonstrate that this static shortage
function generalizes both the mean return augmentation
and RC efficiency measures proposed in Morey and
Morey [11]. If gt

V = −Var[Rt(xt )] and gt
E = 0, then

setting DV (xt ) ≡ 1 − Sgt (xt ) we retrieve their RC
measure. Furthermore, if gt

V = 0 and gt
E = E[Rt(xt )],

then DE(xt ) ≡ 1 + Sgt (xt ) yields their mean MRE
measure. These transformations are necessary to make
the original Morey and Morey [11] efficiency measures,
where 1 indicates efficiency, comparable to the shortage
function, where 0 stands for efficiency.5

In addition to tracing the frontier of efficient portfo-
lios, Markowitz [19] also defines an optimization pro-
gram based on a mean-variance indirect utility function
to determine the optimal portfolio corresponding to a
given degree of risk aversion. This portfolio maximizes
a dated mean-variance utility function defined by:

Ut
(�t ,�t )

(xt ) = �tE[Rt(xt )] − �tVar[Rt(xt )]. (2.5)

This utility function in time period t satisfies posi-
tive marginal utility of expected return, and negative
marginal utility of risk. Briec et al. [17] prove a du-
ality result between the above shortage function and
this mean-variance indirect utility function in a static
context. This confirms that the shortage function has
an economic interpretation, since it is compatible with
general preferences of investors over the mean-variance
space.

To determine an optimal portfolio corresponding to a
given degree of risk aversion within the mean-variance

5 These transformations are analogous to the ones linking the
shortage function to the traditional Shephardian distance functions,
that are themselves inversely related to the radial efficiency measures
employed by Morey and Morey [11]: see Chambers et al. [20].

approach, Markowitz [19] defines a quadratic optimiza-
tion program maximizing the above mean-variance util-
ity function:

V (�t , �t ) = max �tE[Rt(xt )] − �t Var[Rt(xt )]
s.t.

∑
i=1,...,n

xt
i = 1, xt �0, (2.6)

where the ratio �t = �t /�t ∈ [0, +∞] represents the
degree of absolute risk aversion. This parameter is spe-
cific per investor, but it normally remains constant over
time.

Repeating the integration of on the one hand the ef-
ficiency measure approach and on the other hand the
direct utility function computation, we follow Briec
et al. [17] who are the first to define an overall efficiency
decomposition in the portfolio context.

Definition 2.1. Static overall efficiency decomposition:

(1) Overall efficiency (OE) index is the quantity:

OE(xt ) = V (�t , �t ) − U(�t ,�t )
(xt ),

(2) Allocative efficiency (AE) index is the quantity:

AE(xt ) = OE(xt ) − Sgt (xt ),

(3) Portfolio efficiency (PE) index is the quantity:

PE(xt ) = Sgt (xt ).

PE checks whether or not a portfolio is situated at
the boundary of the mean-variance portfolio frontier.
AE measures the gap between the portfolio projection
onto the boundary and the point on the same boundary
maximizing the indirect utility function. The OE notion
ensures that both of these ideals are satisfied simulta-
neously and measures any degree of underperformance
in this respect. This amounts to simply transposing the
traditional distinction between technical and AE from
a production to a portfolio context.

We finish this static version of the mean-variance
model using the shortage function with two remarks.
First, the duality between shortage function and mean-
variance indirect utility allows retrieving information
about the investors absolute risk aversion via the shadow
prices associated with this specific efficiency measure
(see Proposition 5.1 in [17]). In particular, the adjusted
risk aversion function is defined as:

(�∗
t , �

∗
t )(x

t ) = arg min
�t ,�t �0

{V (�t , �t ) − U(�t ,�t )
(xt ) : �t g

t
V

+ �t g
t
E = 1}. (2.7)
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This type of shadow indirect mean-variance utility func-
tion searches for parameters (�∗

t , �
∗
t ) defining a shadow

risk aversion that renders the current portfolio optimal
for the investor. These risk aversion parameters implic-
itly characterize the agent’s behavior by putting it in
the most favorable light, i.e., by minimizing portfolio
inefficiency. This (shadow) risk aversion could be em-
ployed to assess whether portfolio management strate-
gies of, e.g., mutual funds adhere to a priori specified
risk profiles.

Second, when shorting is allowed or there is a
riskless asset, then it is well-known from the two- and
one-fund theorems that the efficient frontier follows
simple analytical solutions. However, while the compu-
tational burden of this more general quadratic program-
ming approach remains substantial, it is unavoidable
when building realistic portfolio models including car-
dinal restrictions on the number of assets, transaction
costs, etc. (see, e.g., [21]).

Having briefly sketched the above theoretical frame-
work, it is useful to illustrate the essential differences
between our own approach and Morey and Morey [11]
using a simple numerical example.

2.2. Numerical example

To construct our numerical example, we take the data
from the Benninga [22, pp. 129–130] book: this au-
thor offers a simple numerical example with four as-
sets. Mean returns and the variance–covariance matrix
for these four fictitious assets are listed in Table 1.

The optimal solutions to the mean MRE approach
of Morey and Morey [11] is reported in Table 2. We
report on the mean MRE efficiency measure, the result-
ing portfolio variance and return at the frontier, and the
portfolio weights. Table 3 reports the same optimal re-
sults for the shortage function approach. A glance at
both tables reveals that the results are altogether rather
different. Indeed, there are differences in the efficiency
measure, in the frontier projections, and in the optimal
portfolio weights.

It is useful to offer a more careful interpretation of
these efficiency measures for one of these four fictitious
assets. Asset 2 has a return of 0.09 and a variance of
0.20. Its mean MRE efficiency measure of 0.11 implies
that it can increase its return by 11%. This leads to a
frontier point with return 0.10 (=0.09 + 0.11 · 0.09),
while its variance remains constant. The shortage func-
tion indicates an inefficiency of 0.101: thus, it could
increase its return and reduce its variance by 10.1%.
This results in a point of the Markowitz frontier with
a return equal to 0.099 and a variance equal to 0.180.

Notice that the mean MRE efficiency measures reported
in Table 2 have been modified along the lines sketched
above to make them comparable to the shortage
function.

The differences between the different approaches can
probably best be visualized in Fig. 1 which represents
the original assets, the Markowitz portfolio frontier (as
computed by Benninga [22]), and two frontier projec-
tions: on the one hand the mean MRE efficiency ap-
proach, and on the other hand the shortage function
approach. Starting from the four basic portfolios, it is
clear that the mean MRE efficiency approach leads to
vertical projections onto the Markowitz frontier, while
the shortage function approach projects the initial basic
portfolios somewhat to the North-West onto the same
Markowitz frontier. Using the direct utility function al-
lows picking one point among the portfolio frontier, as-
suming that one can determine reasonable risk param-
eters representing the investor’s preferences.

3. A temporal mean-variance model

3.1. Theory

To construct a multi-horizon or temporal mean-
variance model, one first defines the notion of a
temporal path for a portfolio, which is defined as

X= (xt )Tt=1 = T×
t=1

xt . Since the direction vector may be

time-dependent, we similarly assume that: G=(gt )Tt=1=
T×

t=1
gt . In addition, we denote �= (�1, . . . , �T ) and use

the convention �G = (�1g
1, . . . , �T gT ). In a discrete

time framework, for a given time horizon T the mean-
variance space has the dimension R2×T+ and consists of
all sequences of dated risks and returns of the form:

F(X) = T×
t=1

(Var[Rt(xt )], E[Rt(xt )]). (3.1)

We define a temporal representation set as DR =
×T

t=1DRt , that is the cartesian product of the disposal
representation set at each time period mentioned previ-
ously (see Eq. (2.3)).

The definition of a temporal shortage function does
the same as a static shortage function, but over multiple
time periods: it simultaneously seeks to expand mul-
tiple return dimensions and contract multiple risk di-
mensions over all time periods. Morey and Morey [11]
implicitly assume that the time dimension is neutral.
But, for an economic agent the present is more valuable
than the future when planning actions ahead. For retro-
spective benchmarking, the past is less valuable than the
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Table 1
Numerical example [22]

Means (%) Variance–covariance matrix

Asset 1 Asset 2 Asset 3 Asset 4

Asset 1 8 0.10 0.03 −0.08 0.05
Asset 2 9 0.03 0.20 0.02 0.03
Asset 3 10 −0.08 0.02 0.30 0.20
Asset 4 11 0.05 0.03 0.20 0.90

Table 2
Optimal solution mean return augmentation approach

MRE Optimal portfolio x1 x2 x3 x4

Variance Return

Asset 1 0.181 0.100 0.094 0.207 0.256 0.421 0.116
Asset 2 0.110 0.200 0.100 0.000 0.262 0.486 0.253
Asset 3 0.029 0.300 0.103 0.000 0.078 0.555 0.368
Asset 4 0.000 0.900 0.110 0.000 0.000 0.000 1.000

Table 3
Optimal solution shortage function approach

Shortage function Optimal portfolio x1 x2 x3 x4

Variance Return

Asset 1 0.165 0.084 0.093 0.271 0.229 0.410 0.089
Asset 2 0.101 0.180 0.099 0.000 0.313 0.465 0.221
Asset 3 0.027 0.292 0.103 0.000 0.078 0.555 0.368
Asset 4 0.000 0.900 0.110 0.000 0.000 0.000 1.000

present. To formalize this idea of positive time prefer-
ence in a portfolio context, we adapt a discounted tem-
poral efficiency measure by attributing most weight to
the most recent efficiency measures composing it. This
is accomplished by weighting the component efficiency
measures by a discount factor, denoted �. This time dis-
counting parameter is assumed to remain constant over
time.

Formally, a multi-horizon or temporal, discounted
shortage function can therefore be defined as follows.

Definition 3.1. For all temporal portfolio paths X, the
discounted temporal shortage function is defined for all
� such that 0 < � < 1 as follows:

S
�
G(X) = max

�∈RT+

{
1

T

T∑
t=1

�T −t�t : F(X) + �G ∈ DR

}
.

For a given time horizon T, this amounts to looking
for an arithmetic mean of simultaneous reductions in

risks and expansions in returns into a path of direc-
tion G such that an observed risk-return path F(X)

is projected onto the boundary of DR. This definition
proposes a weighted (discounted) temporal efficiency
measure, whereby the weights are lower as one moves
away from the present into the past.

The prospective use of the temporal model would re-
quire an alternative definition of the discounted tem-
poral shortage function to start with, whereby the fu-
ture is discounted relative to the present.6 However,

6 Indeed, one can define a prospective discounted temporal short-
age function as:

S
�
G,p(X) = max

�∈RT+

⎧⎨
⎩ 1

T

T∑
t=1

�t�t : F(X) + �G ∈ DR

⎫⎬
⎭ ,

whereby the weights decline as one moves away from the present
into the future.
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Fig. 1. Optimal portfolios: mean return augmentation versus shortage function approaches for the static numerical example.

reasons of space preclude developing this prospective
approach completely in parallel with the retrospective
benchmarking approach. Therefore, the remainder of
this contribution focuses exclusively on the retrospec-
tive approach.

One can immediately proof the following proposition
with respect to this discounted temporal shortage func-
tion.

Proposition 3.2. For all temporal paths of portfolio
X, the discounted temporal shortage function can be
written:

S
�
G(X) = 1

T

T∑
t=1

�T −t St
gt (x

t ).

Proof. The proof is similar to the one of Proposition 3
in Briec et al. [18]. �

The discounted temporal shortage function thus
corresponds to the average of a series of dis-
counted static shortage functions, one for each time
period.

Since Sengupta [10], it is well-known that PE mea-
sures can be calculated relative to non-parametric fron-
tiers. Assuming there are n assets (or funds) observed
over the time period considered, an observed risk-return
path for any asset is evaluated using the discounted,
temporal shortage function by computing the following

quadratic program:

max
1

T

T∑
t=1

�T −t�t

s.t. V [R(yt
k)] − �t gt

V �
∑
k,l

Cov[Rt
k, R

t
l ]xt

kx
t
l

t = 1, . . . , T ,

E[R(yt
k)] + �t gt

E �
∑

i=1,...,n

xt
i E[Rt

i ] t = 1, . . . , T ,

�t �0, xt
i �0, i = 1, . . . , n, t = 1, . . . , T . (3.2)

Notice three important differences with the approach
advocated in Morey and Morey [11]. First, these authors
ignore time discounting (i.e., � = 1). Second, there is
a common efficiency measure imposed on all time pe-
riods, whereas we allow for a different efficiency mea-
sure in each time period (i.e., �t = � for ∀t). As a con-
sequence, the portfolio weights are also constant over
time (x1 =· · ·=xT ) following the long-term investment
perspective, while we allow them to vary over time to
look for a periodically rebalanced benchmark over the
time horizon, taking a short-run investment perspective.
Third, similar to the static case in expression (2.4), one
obtains their special cases of RC and MRE by a specific
choice of direction vector path.

Remark also that the block-diagonal structure of the
above mathematical program is a consequence of the
time separability assumption, since there are no tempo-
ral linkages between the estimated portfolio problems
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for each period. This structure basically allows us to
solve the static mathematical program for each time pe-
riod separately and to compute the objective function
of the above problem based on the optimal solutions
of these T sub-problems at the end (see also [18] for a
similar case in a production context).

Similar to the static mean-variance model, we can
now define a discounted temporal mean-variance utility
function over a given time horizon T:

U(�,�)(x
t ) = 1

T

T∑
t=1

�T −tUt (x
t ), (3.3)

where Ut(x
t ) stands for the static mean-variance utility

at time period t (as defined in expression (2.5)). More-
over, � and � are two T-dimensional nonnegative vec-
tors. In addition, we define the corresponding indirect
temporal utility function as

V(�, �) = max
X∈IT

U(�,�)(X). (3.4)

where IT represents the set of admissible portfolios. In
view of the temporal separability of U(�,�), this tempo-
ral indirect utility function is the discounted sum of the
indirect utility functions in each time period:

V(�, �) = 1

T

T∑
t=1

�T −tVt (�t , �t ), (3.5)

where Vt (�t , �t ) stands for the indirect utility function
at each time period t, as defined in expression (2.6) (see
again [18] for details).7

The mathematical program to compute this temporal
indirect utility function can be written as follows:

max
1

T

T∑
t=1

�T −t (�tE[Rt(xt )] − �tVar[Rt(xt )])

s.t.
∑

i=1,...,n

xt
i = 1, xt �0, t = 1, . . . , T . (3.6)

Remark again that the block-diagonal structure of the
above mathematical program allows us to solve the
static mathematical program per time period and to
compute the objective function of the above problem
based on the optimal solutions of these T sub-problems
at the end (see Proposition 4 in [18] for a similar tem-
poral profit function case in a production context).

7 This result is somewhat akin to Mossin [23] who already
showed that the solution of a sequence of single-period mean-
variance models based on expected utility maximization yields the
same answer as solving a multi-period, dynamic model under a set
of stringent conditions.

In line with the static decomposition of PE in Briec et
al. [17], one can distinguish between overall, allocative
and portfolio efficiencies in this temporal context.

Definition 3.3. Temporal OE decomposition:

(1) Temporal OE (OE) index is the quantity:

OE(X) = V(�̄, �̄) − U(�̄,�̄)(X),

where �̄=×T
t=1

�t

�t g
t
E+�t g

t
V

and �̄=×T
t=1

�t

�t g
t
E+�t g

t
V

,

(2) Temporal AE (AE) index is the quantity:

AE(X) = OE(X) − S
�
G(x),

(3) Temporal PE (PE) index is the quantity:

PE(X) = S
�
G(x).

While temporal PE guarantees that a portfolio
remains at the boundary of the temporal mean-variance
portfolio frontier, temporal AE ensures in addition that
a portfolio maximizes the temporal indirect utility func-
tion. The notion of temporal OE ensures compliance
with both of these ideals simultaneously.

A final theoretical development is a duality result
between the time-discounted temporal shortage function
and the temporal indirect utility function.

Proposition 3.4. For all portfolio temporal paths X,
we have:

S
�
G(X) = min

(�,�)∈R2×T+
{V(�, �) − U(�,�)(X) : �t g

t
V

+ �t g
t
E = 1, t = 1, . . . , T }.

Proof. See Appendix. �

This duality result confirms that our discounted, tempo-
ral shortage function does have an economic interpreta-
tion, while the Morey and Morey [11] efficiency mea-
sures are only valid when imposing extreme risk aver-
sion parameters on the temporal direct utility function.

As a matter of fact, it is possible to reinterpret Morey
and Morey [11] in our framework by computing a long-
run discounted temporal shortage function. This boils
down to simply adding the constraint x1 = · · · = xT

to the quadratic program (3.2) of the short-run dis-
counted temporal shortage function. A non-negative re-
balancing bonus can then be expressed as the difference
between the short- and long-run temporal discounted
temporal shortage functions. It indicates the potential,
gross benefits from adapting an active versus a pas-
sive portfolio management strategy. Of course, the net
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Table 4
Numerical example: temporal version

Means (%) Variance–covariance matrix

Asset 1 Asset 2 Asset 3 Asset 4

Year 1
Asset 1 8 0.1 0.03 −0.08 0.05
Asset 2 9 0.03 0.2 0.02 0.03
Asset 3 10 −0.08 0.02 0.3 0.2
Asset 4 11 0.05 0.03 0.2 0.9

Year 2
Asset 1 8.25 0.18 0.01 −0.18 0.25
Asset 2 9.50 0.01 0.25 0.12 0.13
Asset 3 10.25 −0.18 0.12 0.37 0.22
Asset 4 11.75 0.25 0.13 0.22 0.95

Year 3
Asset 1 9.50 0.1 0.05 −0.12 0.15
Asset 2 10.75 0.05 0.2 0.05 0.23
Asset 3 11.00 −0.12 0.05 0.3 0.25
Asset 4 12.50 0.15 0.23 0.25 0.8

benefits depend on the cost of management and transac-
tion costs. In an analogous way, it is possible to define
a long-run temporal indirect utility function. It can be
computed by again simply adding the constraint x1 =
· · ·=xT to the quadratic program (3.6) for the short-run
temporal indirect utility function. Again, a non-negative
rebalancing bonus can be defined in terms of the dif-
ference between short- and long-term temporal indirect
utility functions.

Analogous to result in Eq. (2.7), a final result is the
derivation of a temporal shadow risk aversion defined
by

	(X) =
T∑

t=1

�T −t �
∗
t (x

t )

�∗
t (x

t )
(3.7)

and

(�∗(X), �∗(X))

= arg min
(�,�)∈R2×T+

{V(�, �) − U(�,�)(X) : �t g
t
V

+ �t g
t
E = 1, t = 1, . . . , T } (3.8)

is a temporal adjusted risk aversion function. This tem-
poral version of the static shadow risk aversion reflects
the discounted average risk-aversion characterizing the
observed portfolio behavior over a given time period T.
It has an obvious use to trace whether the evolution of
portfolio management on an average adheres to a speci-
fied risk profile and management style and its evolution

over time can be followed easily by shifting the time
window.

We end with a computational argument in favor of
the shortage function approach. The decomposability of
our approach implies a low computational cost from a
practical point of view. Assuming a certain time horizon
for evaluation purposes is maintained, then the Morey
and Morey [11] approaches necessitate recomputing
the whole mathematical program whenever new data
become available and the time window is moved one
unit of time across the data. In contrast, in the shortage
function approach the appearance of a new period just
implies computing a static mean-variance model with a
static shortage function and recomputing the composite
temporal objective function at the end.

3.2. Numerical example

This numerical example supposedly contains four as-
sets observed over three years. To simplify matters, the
first year coincides with the Benninga [22] example
above. The second and third years are simple variations
on these numbers. Table 4 contains the data for the tem-
poral numerical example with a 3 year horizon.

We only show the optimal results for the first year in
Fig. 2. Original assets and the Markowitz portfolio fron-
tier are identical to Fig. 1. Also, the shortage function
approach yields the same frontier projection. However,
the mean MRE efficiency approach now falls short of
the frontier. Indeed, by looking for a common factor to
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Fig. 2. Optimal portfolios: mean return augmentation versus shortage function approaches for the temporal numerical example.

augment returns for each of the years, it foregoes oppor-
tunities to augment return in any single year. Thus, by
computing a common scalarwise expansion of returns,
the mean MRE efficiency approach does not put the
evaluated path of portfolios onto the Markowitz frontier
in all single periods. In contrast, the proposed shortage
function approach does project each evaluated portfolio
path onto the frontier in each period.

4. Empirical illustration

To illustrate the differences between our own ap-
proach and the efficiency measures proposed by Morey
and Morey [11], we use their original data set of 26
mutual funds evaluated over three time horizons: a 3,
a 5 and a 10-year time period. All these mutual funds
were classified as aggressive growth funds according to
Morningstar. In the Morey and Morey [11] article, us-
ing monthly percentage return data one finds for each
of the 3, 5 and 10-year time periods the following in-
formation: (i) mean monthly returns (see their Table 1
on p. 249), and (ii) variance–covariance matrices (see
their Table 8 on pp. 256–257 (Appendix B)).

We report on the following results in Table 5. First,
the mean MRE and RC efficiency measures proposed
in Morey and Morey [11]. We contrast these results to
the ones based on a temporal shortage function with-
out time discounting (i.e., � = 1) and with time dis-
counting (i.e., � = 0.95). Second, given a 5% time dis-

counting rate, we complement the temporal shortage
function with time discounting (i.e., PE) with an alloca-
tive and overall efficiency component. When computing
the temporal indirect utility function, it was assumed
that the risk parameters �t = 1 and �t = 2, which im-
plies a degree of absolute risk aversion �t = 2. We only
report the efficiency measures, not the portfolio weights
and eventual slack variables. To make the mean MRE
and RC efficiency measures comparable to the tempo-
ral shortage function, we have applied the following
transformations: (i) MRE equals the original Morey and
Morey [11] mean MRE efficiency score minus 1, and
(ii) RC equals 1 minus the original Morey and Morey
[11] RC efficiency measure.

The average performance of the mutual funds is poor.
The MRE measure indicates a 23.5% potential for im-
provement, while the RC measure yields a 22.3% scope
for risk reduction. The undiscounted shortage function
is situated in between and reveals on average a 23.3%
improvement in both return and risk dimensions. The
Morey and Morey [11] measures agree that six mutual
funds are efficient. The undiscounted shortage func-
tion confirms the efficiency of two of these observa-
tions (“AIM Aggressive Growth” and “Fund Manager
Aggressive Grth”), but declares the other four observa-
tions as inefficient.

We now turn to the temporal efficiency decomposi-
tion with time discounting. On the one hand, adding a
time discounting parameter reduces the average level
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Table 5
Empirical temporal decomposition results

Fund name MRE MRC PEa PEb AEb OEb

20th Century Ultra Investors 0.000 0.000 0.373 0.175 0.344 0.519
44 Wall Street Equity 0.049 0.055 0.027 0.182 0.091 0.272
AIM Aggressive Growth 0.000 0.000 0.000 0.023 0.436 0.459
AIM Constellation 0.000 0.000 0.235 0.125 0.336 0.461
Alliance Quasar A 0.602 0.465 0.398 0.381 0.054 0.436
Delaware Trend A 0.178 0.339 0.325 0.215 0.251 0.466
Evergreen Aggressive Grth A 0.234 0.384 0.334 0.253 0.238 0.492
Founders Special 0.127 0.179 0.236 0.194 0.193 0.387
Fund Manager Aggressive Grth 0.000 0.000 0.000 0.199 0.013 0.212
IDS Strategy Aggressive B 0.292 0.276 0.329 0.332 0.051 0.383
Invesco Dynamics 0.172 0.299 0.207 0.159 0.240 0.399
Keystone Amer Omega A 0.121 0.174 0.281 0.226 0.139 0.365
Keystone Small Co Grth (S-4) 0.169 0.307 0.185 0.188 0.316 0.504
Oppenheimer Target A 0.277 0.264 0.206 0.200 0.102 0.301
Pacific Horizon Aggr Growth 0.257 0.355 0.424 0.335 0.152 0.487
PIMCo Adv Opportunity C 0.000 0.000 0.060 0.103 0.378 0.481
Putnam Voyager A 0.006 0.012 0.158 0.142 0.225 0.366
Security Ultra A 1.070 0.526 0.453 0.442 0.024 0.466
Seligman Capital A 0.332 0.311 0.346 0.297 0.086 0.383
Smith Barney Aggr Growth A 0.208 0.357 0.331 0.290 0.209 0.500
State St. Research Capital C 0.056 0.120 0.165 0.141 0.333 0.474
SteinRoe Capital Opport 0.352 0.358 0.231 0.247 0.185 0.432
USAA Aggressive Growth 0.697 0.444 0.326 0.361 0.126 0.486
Value Line Leveraged Gr Inv 0.162 0.165 0.131 0.189 0.131 0.321
Value Line Spec Situations 0.746 0.404 0.291 0.363 0.087 0.451
Winthrop Focus Aggr Growth 0.000 0.000 0.008 0.029 0.080 0.109

Average 0.235 0.223 0.233 0.223 0.185 0.408
St. deviation 0.270 0.172 0.135 0.105 0.118 0.099
Max. 1.070 0.526 0.453 0.442 0.436 0.519
Min. 0.000 0.000 0.000 0.023 0.013 0.109

a� = 1 (no time discounting).
b� = 0.95.

Table 6
Product–moment correlations between efficiency measures

MRE MRC PEa PEb AEb OEb

MRE 1.000 0.839 0.629 0.854 −0.528 0.279
MRC 1.000 0.747 0.850 −0.414 0.409
PEa 1.000 0.798 −0.217 0.588
PEb 1.000 −0.610 0.336
AEb 0.542
OEb 1.000

a� = 1 (no time discounting).
b� = 0.95.

of inefficiency compared to the levels measured by
the undiscounted temporal shortage function. On the
other hand, according to the discounted temporal short-
age function not a single mutual fund is efficient. For
our given choice of absolute risk aversion, temporal
overall inefficiencies are substantial: on an average
funds could improve its return and reduce its risk

dimensions by 41%. Not a single mutual fund perfectly
suits the investors preferences. Only “Winthrop Focus
Aggr Growth” comes close with a temporal overall
inefficiency of only about 11%. The residual degree of
temporal allocative inefficiency is of about equal size
as the temporal portfolio inefficiency (18.5% compared
to 22.3%).
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In addition to knowing the exact performance levels
of each benchmarking method, it is interesting to see to
which extent these methods generate the same rankings.
To that purpose, we report the product–moment corre-
lations in Table 6. The agreement among Morey and
Morey [11] efficiency measures and the temporal short-
age functions (both with and without time discounting)
is rather high. This could indicate that the difference
between adopting a short-term and a long-term invest-
ment perspective has not that great implications for the
current sample of mutual funds in terms of ranking.

In contrast, the temporal allocative inefficiency and
overall inefficiency components correlate well with
one another, but stand apart from the rest. To some
extent, this underlines the importance of the choice of
risk parameters and the implied degree of absolute risk
aversion.

5. Conclusion

In this contribution, we have proposed to benchmark
portfolios by looking simultaneously for RC and MRE
using the discounted temporal shortage function within
a multi-horizon framework. This complements the work
of Morey and Morey [11] that employs a common pro-
portional factor to either contract all risk dimensions
or expand all return dimensions, a perspective suitable
for evaluating long-term investment. The fact that our
discounted temporal shortage function is dual to a dis-
counted temporal indirect utility function underscores
the natural interpretation of this generalized efficiency
measure in terms of investor’s preferences. Furthermore,
the fact that time discounting is traditionally applied
to multi-horizon indirect utility functions implies that
proper time discounting should also apply to the un-
derlying temporal efficiency measure when adopting
a short-term or long-term investment perspective. We
think that the general idea of looking for both RC and
MRE over a given time horizon may prove useful in a
wide range of financial models.

Of course, one should be aware of the limitations
of the proposed approach. These models are mainly
aimed at retrospectively gauging portfolio performance
over a given time horizon. This is in line with the ini-
tial idea of Morey and Morey [11] to come up with
an alternative rating scheme for mutual funds relative
to the rankings provided by companies like Lipper
Analytical Services, Morningstar, among others. Of
course, as briefly pointed out, the same models can in
principle also be applied for prospective benchmark-
ing provided adequate information on future returns is
available.

A straightforward extension of the currently de-
veloped models is to include higher moments when
determining optimal portfolios. For instance, as shown
by Joro and Na [24] the use of efficiency measures
allows us to include a preference for positive skew-
ness in addition to the two-dimensional mean-variance
model. Furthermore, these models can probably be
made more useful as a planning tool for assessing
optimal dynamic portfolio management in a more ac-
tive portfolio management strategy by considering the
following avenues for future work. First, it could be
interesting to relate the long-term investment perspec-
tive implicit in the Morey and Morey [11] contribution
to the expected geometric mean optimization advo-
cated for long-term investments by Markowitz [19],
Hakansson [25], and many others (see also [26] for
a recent contribution). Second, apart from some other
conditions, we know since Mossin [23] that single-
period models are no longer good approximations to
multi-period, dynamic models when temporal sep-
arability no longer holds (e.g., because returns are
temporally dependent). Thus, for planning purposes
one would ideally need truly dynamic portfolio opti-
mization models in either continuous (e.g., [27]) or
discrete (e.g., [28]) time. These models continue to
develop in a variety of directions: from the management
of fixed-income portfolios with embedded options (see,
e.g., [29]) to the derivation of analytical optimal solu-
tions under specific conditions (e.g., [30]). It remains
an open question whether efficiency measures could
be integrated into these type of models to evaluate and
compare alternative future portfolio paths.
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Appendix

Proof of Proposition 3.4. We have shown that:

S
�
G(X) = 1

T

T∑
t=1

�T −t St
gt (x

t ).

From Briec et al. [17], at each time period the shortage
function satisfies the dual relationship:

St
gt (x

t )

= min
(�t ,�t )∈R2+

{Vt (�t , �t ) − U(�t ,�t )
(xt ) : �t g

t
V

+ �t g
t
E = 1}.
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Hence,

S
�
G(X) = 1

T

T∑
t=1

�T −t

× min
(�t ,�t )∈R2+

{Vt (�t , �t ) − U(�t ,�t )
(xt ): �t g

t
V

+ �t g
t
E = 1}.

The temporal separability of this optimization program
yields:

S
�
G(X)

= min
(�t ,�t )∈R2+

�t g
t
V +�t g

t
E=1,t=1,...,T

{
1

T

T∑
t=1

�T −tVt (�t , �t )

− 1

T

T∑
t=1

�T −tU(�t ,�t )
(xt )

}
,

which ends the proof. �
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