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Abstract

The shortage function, an important tool in production theory, measures potential increases in outputs and decreases

in inputs for a given direction g at a given date. To develop a temporal version of technical efficiency measurement, we

introduce the concept of a temporal shortage function. This temporal efficiency measure is easily computed using linear

programming. We also establish a duality result stating that the temporal profit function and the temporal shortage

function are dual to one another. This result has two consequences. First, one can derive a shadow price path via the

shadow prices of the temporal shortage function. Second, transposing the classic Farrell inefficiency decomposition,

temporal profit efficiency is decomposed into temporal technical and temporal allocative efficiency components.

Finally, in line with the recent literature on aggregation over firms, this contribution treats the possibilities and limits of

the aggregation of efficiency measures over time.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Temporal shortage function; Temporal profit function; Aggregation over time
1. Introduction

The main purpose of this article is the introduc-
tion of time into the analysis of technical efficiency
and duality results. The suggested methodology
looks at technical efficiency from the new angle of
global performance, which means that we consider
e front matter r 2005 Elsevier B.V. All rights reserve
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efficiency measurement over a given time period
while ignoring the possibility of technological
change altogether. The traditional efficiency ana-
lysis is static and evaluates the performance of
decision-making units (DMU) at a given date.
In our framework, which builds upon rigorous
axioms and non-parametric methods, we show
that the global performance over time corresponds
to the concept of average performance. This
notion of average performance will be made more
precise in the contribution.
d.
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1Tulkens and Vanden Eeckaut (1995) introduced the notion

of an intertemporal technology. However, this implies ignoring

the time dimension of technologies altogether and amalgamat-

ing all observations irrespective of their time dimensions in the

construction of a single production frontier. We maintain the

time dimension of technologies, because we focus on efficiency

measurement relative to each technology over time. Thus, our

focus is on the time path of efficiency. However, since we

maintain temporal separability throughout, we avoid the use of

the word dynamic or even intertemporal.
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While economics as a discipline has always
devoted much attention to technical change, it has
only fairly recently been recognized that ignoring
inefficiencies may well bias the measurement of
total factor productivity (e.g., Nishimizu and Page,
1982). This is due to the recent interest in efficiency
benchmarking based upon parametric and non-
parametric production and value frontiers (see
Lovell, 1993 for a survey). This contribution can
be interpreted as thinking this efficiency literature
into its extreme consequences: we investigate
efficiency over time while completely ignoring the
possibility of frontier changes. We do not claim
that technological change is of no importance.
Rather, we maintain that it may be useful to
abstract from frontier changes to obtain a more
precise idea of efficiency over time. Thinking these
issues through fills a gap in the literature and adds
a new empirical tool to the analysis of industries
where the role of technological changes is a priori
very limited (e.g., due to investments in large
indivisible infrastructures embodying technologi-
cal change) and the main focus is on managing the
performance over time with respect to a given
technology.

The inspirations for this work are the books by
Färe (1988), Färe and Grosskopf (1996), and
Sengupta (1995, 2003), which extends the concept
of efficiency into an intertemporal context. Jae-
nicke (2000) is one of the first empirical applica-
tions of this model, while also integrating the use
of intermediate production factors in agriculture.
Silva and Stefanou (2003) extend in a dynamic way
the traditional framework while taking into
account the fixity of inputs and the investment
decision. Indeed, they recover technological in-
formation from dynamic cost minimizing behavior
without imposing a parametric functional form on
technology and while accounting for adjustment-
costs.

In particular, we invoke the general assumption
of temporal separability of technologies between
successive time periods. While technologies in each
time period may well be different from one
another, we consider the Cartesian product of all
technologies in all time periods simultaneously.
Notice that we distinguish conceptually between
these technologies per time period, but we do not
focus on shifts in these successive frontiers, but
rather on the relative efficiency of units with
respect to these successive frontiers. Clearly, since
we do not allow for linkages between optimal
decisions between time periods, our models are
only dynamic in a limiting sense. Therefore, given
our focus on the relative efficiency of units
compared to successive frontiers over time, we
propose to use the terminology ‘‘temporal effi-
ciency measure’’.1 By contrast, the books by Färe
(1988), Färe and Grosskopf (1996), and Sengupta
(1995, 2003) do allow for time substitution, i.e., the
timing of inputs utilization. In addition, it is
worthwhile mentioning that various other dy-
namic phenomenon, like adjustment costs (i.e.,
adjustment of short run input decisions to attain
the optimal temporal trajectory in response to,
e.g., output and input price fluctuations as a model
of learning behavior), have been studied in
Sengupta (1992, 1999, 2003), among others.
While modern duality theory goes back to

Shephard (1953, 1970), McFadden (1978) and
Diewert (1982), it is the recent introduction of the
shortage function defined on the graph of technol-
ogy that enabled defining a duality in terms of the
profit function (see Chambers et al. (1998) or Färe
and Grosskopf (2000) for proofs of duality
between shortage and profit functions). Our
contribution focuses on the most general value
function, namely the profit function. The use of
these recent tools in the temporal analysis of
efficiency over time is—to the best of our knowl-
edge- an original contribution to the literature on
applied production theory.
In particular, this contribution innovates on the

following points. First, we integrate a temporal
dimension in the recently proposed efficiency mea-
sures of Luenberger (1992, 1995) and Chambers
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et al. (1996, 1998). Then, we develop a duality
result relating a temporal profit function and this
temporal efficiency measure. To this purpose, we
define a technological path in terms of prices.
Starting from this technological path and the
temporal profit function, we recover the temporal
production technology. Then, we show that we can
obtain a path of shadow prices. Finally, this
contribution treats the possibilities and limits of
the aggregation of efficiency measures over time,
in accordance with some recent articles on the
aggregation over firms within a given sector.

The next section defines the temporal graph of
technology and exposes the axioms underlying this
same temporal technology. In Section 3 a temporal
efficiency measure is build starting from the static
shortage function. In a fourth section, we establish
duality between the temporal profit function and the
temporal shortage function. Next, we develop some
aggregation results over time. Finally, Section 6
concludes and suggests some plausible extensions.
2. A temporal technology defined as a temporal

product of technologies

In a discrete time framework, the input–output

space is denoted �
T

t¼1
ðRNþM
þ Þ ¼ ðRNþM

þ Þ
T. It consists

of all sequences of dated inputs and outputs of the
form

ðX ;Y Þ ¼ �
T

t¼1
ðxt; ytÞ

¼ ðxt; ytÞ
T
t¼1 ¼ ðx

t
1; . . . ;x

t
N ; y

t
1; . . . ; y

t
M Þ

T
t¼1.

Since the assumption of temporal separability is
maintained throughout the paper, this amounts to
working on a multidimensional technology raised
to the Cartesian product of all time periods. This
work is very similar to the work of Färe (1988,
Sections 8.1–8.2) and Färe and Grosskopf (1996,
Section 6.1).

2.1. Temporal graph of technology

The temporal graph of technology involves all
possible inputs and outputs at each date and is

defined by: GR ¼ �
T

t¼1
GRt. In fact, this simply
boils down to the product of a series of graphs of
technology in the static case.

Definition 1. A technological path is any vector
ðxt; ytÞ

T
t¼1 ¼ ðX ;Y Þ 2 GR. The trajectory ðX ;Y Þ 2

GR represents all input and output vectors such
that xt can produce yt at date t.

Fig. 1 (similar to Färe (1988, Fig. 8.1) illustrates
a possible configuration of the temporal graph
of technology on an interval f1; . . . ;Tg for n ¼

m ¼ 1. It shows the evolution of a single input and
output technology over time, where time is
represented on a third axis. Clearly, the technol-
ogies in each time period can be different from one
another, but they are unrelated to one another due
to the temporal separability assumption. By
contrast, Färe (1988), Färe and Grosskopf (1996)
and Sengupta (2003) explicitly study time substitu-
tion of inputs, i.e., the utilization of inputs over
time.

2.2. Axioms of the temporal production technology

The axioms imposed on the temporal set of
production possibilities are the following:

GR1: ð0; 0Þ 2 GR; ð0;Y Þ 2 GR) Y ¼ 0.
GR2: GRðY Þ ¼ fðX ;Y 0Þ 2 GR; jY 0pY g

is bounded 8Y 2 ðRM
þ Þ

T.

GR3: If l ¼ ðl1; l2; . . . ; lTÞ, if ðX ;Y Þ 2 GR;
ðlX ;Y Þ 2 GR 8lX1T.

GR4: 8ðX ;Y Þ 2 GR;
if ðX̂ ;Y ÞXðX ;Y Þ ) ðX̂ ;Y Þ 2 GR.

GR5: GR is closed.
GR6: If y ¼ ðy1; y2; . . . ; yTÞ, if ðX ;Y Þ 2 GR;

then ðX ; yY Þ 2 GR; 8y 2 ½0; 1�T.
GR7: 8ðX ;Y Þ 2 GR;

if ðX ; Ŷ ÞpðX ;Y Þ ) ðX ; Ŷ Þ 2 GR.
GR8: GR is convex.

By analogy to the static production axioms, we
impose traditional regularity conditions such as
possibility of inaction and no free lunch (GR1), as
well as boundedness (GR2), closedness (GR5), and
convexity of the technology (GR8). Furthermore,
we allow for strong input (GR4) or output (GR7)
disposability. Alternatively, it is possible to impose



ARTICLE IN PRESS

Fig. 1. Temporal graph of technology.
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weak input (GR3) or output (GR6) disposability.2

A rather similar axiomatic structure is discussed in
Farë (1988, pp. 119–120).
3. Temporal technical efficiency measured by the

temporal shortage function: Definition, properties

and estimation

In this section, we first define the shor-
tage function introduced by Luenberger (1992,
2Notice that it is possible to formulate an axiom of strong

(weak) disposability in the input and output dimensions

simultaneously by combining axioms GR4 and GR7 (GR3

and GR6). However, we refrain from doing so, because it is also

possible to combine strong input disposability with weak

output disposability, or the reverse. Therefore, this way of

structuring the axioms opens up more general specifications of

the temporal production technology.
1995).3 Before presenting the traditional static as
well as the new temporal version of the shortage
function, we establish a lemma that proves useful
in the remainder of this section.

Lemma 1. If A1;A2; . . . ;AT are T subsets of RNþM
þ ,

and if f 1; f 2; . . . ; f T are T functions such that

8t 2 f1; . . . ;Tg, f t is defined on At in RNþM
þ , then

the following property holds:

8t; f t : At ! R and At � RNþM
þ

inf
XT
t¼1

f tðx
tÞ; ðx1; . . . . . . ; xTÞ 2 A1 � � � � � � � � AT

( )

¼
XT
t¼1

infff tðx
tÞ;xt 2 Atg.
3Chambers et al. (1998) rename it a directional distance

function.
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Proof. The function f ðx1; . . . ;xTÞ ¼
PT

t¼1f tðx
tÞ is

separable, since is defined on a Cartesian product.
Since it is optimized on the Cartesian product

�
T

t¼1
At, it follows immediately that the inf of the

sum of the functions is the sum of the inf of the
functions. &

3.1. Temporal shortage function: A definition

To define the static shortage function intro-
duced by Luenberger (1992, 1995) and Chambers
et al. (1996, 1998), note that the vector g 2

ð�RN
þÞ � RM

þ and that gt ¼ ð�gt
i ; g

t
oÞ, the vector gt

representing a direction in the input–output space
at date t.

Definition 2. If GRt is a technology at t satisfying
GR1–GR8 and ðxt; ytÞ 2 GRt is a vector of inputs
and outputs, then the static shortage function is
defined as

Sðxt; yt; gtÞ ¼ max
dt
fdt
jðxt; ytÞ þ dtgt 2 GRtg.

Notice that the static shortage function projects
each input–output vector in the direction of g onto
the boundary of the technology. The value of
the function dt is positive or null depending on
whether the vector is situated in the interior or on
the boundary of technology.

Building upon this definition, we seek to define a
temporal measure of technical efficiency that
summarizes the sequence of distances between
the technological path of a production unit and the
temporal production technology for a given a path
of direction. This directional path is denoted G ¼

ðg1; . . . ; gTÞ 2 �
T

t¼1
½ð�RN

þÞ � RM
þ � ¼ ½ð�RN

þÞ � RM
þ �

T,

i.e., a direction used by the decision maker to
improve efficiency. From an economic point of
view, this directional path G and each of its vector
elements g can be interpreted as reference direc-
tions for the producer over time. Thus, the
producer seeks to adjust its actual production
path over time according to a direction that also
moves over time. In brief, G provides the direc-
tions for evaluating the technical efficiency index
measuring the distance between the observed
technological path ðX ;Y Þ and the efficient path.
Definition 3. If GR is a temporal production
technology satisfying GR1–GR8, ðX ;Y Þ is an
input–output path in GR, and d ¼ ðd1; d2; . . . ; dTÞ,
then the temporal shortage function is defined as
follows:

SðX ;Y ;GÞ ¼ max
d

XT
t¼1

dt

T
jðX ;Y Þ þ dG 2 GR

( )
.

This amounts to looking for an arithmetic mean of
simultaneous reductions in inputs and expansions
in outputs into a path of direction G such that an
observed input–output path ðX ;Y Þ is projected
onto the boundary of the temporal production
technology.
We can immediately prove the following proposi-

tion regarding this temporal shortage function.

Proposition 1. If GR is a temporal production

technology satisfying GR1–GR8, ðX ;Y Þ is an

input– output path in GR, and d ¼ ðd1; d2; . . . ; dTÞ,
then the temporal shortage function SðX ;Y ;GÞ can

be written as follows:

SðX ;Y ;GÞ ¼ max
d

XT
t¼1

dt

T
jðX ;Y Þ þ dG 2 GR

( )

¼ max
d

XT
t¼1

dt

T
jðxt; ytÞ þ dtgt 2 GRt

( )

¼
1

T

XT
t¼1

max
dt
fdt
jðxt; ytÞ þ dtgt 2 GRtg

¼
1

T

XT
t¼1

Sðxt; yt; gtÞ.

Proof. It follows directly from the application of
Lemma 1. &

Thus, the temporal shortage function is easily
calculated, because it simply corresponds to the
arithmetic mean of the static shortage functions
over the whole time horizon. The value of the
components of the vector d is again positive or
zero depending on whether the evaluated point is
in the interior or on the boundary of technology in
any given time period. Fig. 2 illustrates the
temporal shortage function for n ¼ m ¼ 1 over
the period f1; . . . ;Tg. The dashed line represents
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Fig. 2. Temporal shortage function: observed and optimal paths.
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the observed path over time. In each time period,
the observation is clearly situated below the
frontier. The temporal shortage function is simply
a vector of distances to each of the respective
boundaries of the technologies evolving over time
(represented by the dash dot line).
3.2. Properties of the temporal shortage function

The temporal shortage function, as a summary
measure of efficiency over time, satisfies a number
of attractive properties summarized in the follow-
ing proposition:

Proposition 2. Assume that GR satisfies axioms

GR1–GR8, then SðX ;Y ;GÞ : �
T

t¼1
ðRNþM
þ Þ!R satis-

fies the following properties:
(1)
 If GR is convex, then SðX ;Y ;GÞ is concave in

relation to ðX ;Y Þ.
(2)
 SððX ;Y Þ þ aG;GÞ

¼ SðX ;Y ;GÞ � ā 8a 2 �
T

t¼1
ðRNþM
þ Þ.
(3)
 If ðX ;Y Þ 2 GR) SðX ;Y ;GÞX0.

(4)
 SðX ;Y ;mGÞ ¼ ð1=mÞSðX ;Y ;GÞ 8mX0.

(5)
 8ðX ;Y Þ; ðX 0;Y 0Þ 2 GR, if ð�X 0;Y 0ÞXð�X ;Y Þ
) SðX 0;Y 0ÞpSðX ;Y Þ.
Proof. (1) Let ðX ;Y Þ 2 GR and ðX 0;Y 0Þ 2 GR.
If GR is convex, we have yðX ;Y Þ þ ð1� yÞ
ðX 0;Y 0Þ 2 GR) yðxt; ytÞ þ ð1� yÞðx0t; y0tÞ 2 GRt.
So, 8t;GRt is convex.

) Sðyðxt; yt; gtÞ þ ð1� yÞðx0t; y0t; gtÞÞ

XySðxt; yt; gtÞ þ ð1� yÞSðx0t; y0t; gtÞ

)
1

T

XT

t¼1
Sðyðxt; yt; gtÞ þ ð1� yÞðx0t; y0t; gtÞÞ
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Xy
1

T

XT

t¼1
Sðxt; yt; gtÞ

þ ð1� yÞ
1

T

XT

t¼1
Sðx0

t; y0t; gtÞ

) SðyðX ;Y ;GÞ þ ð1� yÞðX 0;Y 0;GÞÞ

XySðX ;Y ;GÞ þ ð1� yÞSðX 0;Y 0;GÞ.

Hence, SðX ;Y ;GÞ is concave in relation to ðX ;Y Þ.

(2) Let a¼ða1; a2; . . . ; aTÞ and G¼ðg1; g2; . . . ;
gTÞ. We denote aG ¼ ða1g1; . . . ; aTgTÞ.

SððX ;Y Þ þ aG;GÞ

¼
1

T

XT
t¼1

Sððxt; ytÞ þ atgt; gtÞ

¼
1

T

XT
t¼1

ðSðxt; yt; gtÞ � atÞ

¼
1

T

XT
t¼1

Sðxt; yt; gtÞ �
1

T

XT
t¼1

at

¼ SðX ;Y ;GÞ � ā.

Remark that if 8t, at ¼ a, then we have

) ā ¼
1

T

XT
t¼1

at ¼
1

T
Ta ¼ a) SðX þ aG;Y ;GÞ

¼ SðX ;Y ;GÞ � a.

(3) Let ðX ;Y Þ 2 GR3ðxt; ytÞ 2 GRt; 8t. Ac-
cording to Luenberger (1992) and Chambers et al.
(1996, 1998): 8t;Sðxt; yt; gtÞX0) 1=T

PT
t¼1 Sðxt;

yt; gtÞX0) SðX ;Y ;GÞX0. Then, if ðX ;Y Þ 2 GR
) SðX ;Y ;GÞX0.

(4) Let mt ¼ m; 8t.

SðX ;Y ;mGÞ ¼
1

T

XT
t¼1

Sðxt; yt;mgtÞ

¼
1

T

XT
t¼1

1

m
Sðxt; yt; gtÞ

¼
1

m
1

T

XT
t¼1

Sðxt; yt; gtÞ

 !

¼
1

m
SðX ;Y ;GÞ.
Thus, the shortage function is homogeneous of
degree �1 in relation to G.
(5) Suppose that ð�X 0;Y 0ÞXð�X ;Y Þ, this in-

volves that ð�x0t; y0tÞXð�xt; ytÞ, 8t ¼ 1; . . . ;T .
According to Chambers et al. (1996, 1998), we
have

Sðx0
t; y0t; gtÞpSðxt; yt; gtÞ )

1

T

X
Sðx0

t; y0t; gtÞ

p
1

T

X
Sðxt; yt; gtÞ

) SðX 0;Y 0;GÞpSðX ;Y ;GÞ: &

These properties of the temporal shortage function
can be briefly clarified as follows. If the temporal
technology is convex, then the temporal shortage
function is concave in relation to the evaluated
technological path. The second property corre-
sponds to the static translation homotheticity
property and states that the value of the temporal
shortage function of an observed technological
path translated by aG equals the value of the
shortage function of the technological path ðX ;Y Þ
minus the mean value of a. Property 3 shows that
the temporal shortage function provides a total
description of the temporal technology. Moreover,
according to property 4 it is homogeneous of
degree �1 in relation to G. This implies that when
the directional path is multiplied by a number, then
the function is reduced in the opposite proportion.
Finally, the temporal shortage function satisfies a
weak monotonicity property, i.e., for any techno-
logical path that weakly dominates another path
ðX ;Y Þ, the value of the function is weakly lower.
Following Chambers et al. (1996,1998), one can
therefore interpret the temporal shortage function
as an efficiency measure.
After this theoretical analysis of the temporal

shortage function, we now turn to its estimation
using a non-parametric frontier methodology.

3.3. Non-parametric frontier estimation of the

temporal shortage function

It is well-known that technical efficiency mea-
sures can be calculated relative to non-parametric
production frontiers providing piecewise linear
approximations of the underlying true, but
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unknown technology. The resulting production
boundary is simply an envelopment of observed
data and any observation can be positioned
relative to this boundary by computing a simple
linear programming problem (e.g., Lovell, 1993).
Assuming there are k DMU’s over the time period,
an observed technological path for any observation
is evaluated using the temporal shortage function
by computing the following linear program:

max
1

T

XT
t¼1

dt

s:t: x jo;t
n � dtgt

i;nX

XK

k¼1

zk;txk;t
n ,

n ¼ 1; . . . ;N; t ¼ 1; . . . ;T ,

y jo;t
m þ dtgt

o;np
XK

k¼1

zk;tyk;t
m ,

m ¼ 1; . . . ;M ; t ¼ 1; . . . ;T ,

dt
X0; zt 2 G; k ¼ 1; . . . ;K ; t ¼ 1; . . . ;T ,

where G 2 fGCRS;GVRS;GNIRS;GNDRSg, with:
(i)
(ii)

(iii)
GCRS ¼ RK
þ,� �
GVRS ¼ z 2 RK
þ;
PK
k¼1

zk ¼ 1 ;
GNIRS ¼ z 2 RK
þ;
PK
k¼1

zkp1

� �
;

and
(iv)
 GNDRS ¼ z 2 RK
þ;
PK
k¼1

zk
X1

� �
representing, respectively, the following main-
tained returns to scale hypotheses (i) constant
returns to scale; (ii) variable returns to scale; (iii)
non-increasing returns to scale; and (iv) non-
decreasing returns to scale.

Notice that from a computational point of view,
this block-diagonal LP for each technological path
can be eventually decomposed into T sub-pro-
blems, since there are no temporal linkages
between each of the estimated technologies in each
sub-period.
3.4. A discounted temporal shortage function

When proposing the arithmetic mean of static
measures as a global technical efficiency measure,
it is implicitly assumed that the time dimension is
neutral. But, for an economic agent the present is
more valuable than the past. To formalize this idea
of positive time preference in a production context,
we adapt the temporal efficiency measure by
attributing most weight to the most recent
efficiency measures composing it. This is accom-
plished by weighting the component efficiency
measures by a discount factor, denoted x. This
parameter is assumed to remain constant over
time. The goal of this subsection is then to model a
weighted or discounted global performance index.

Definition 4. If GR is a temporal production
technology satisfying GR1–GR8, ðX ;Y Þ is an
input–output path in GR. 0oxo1, then the dis-
counted temporal shortage function SxðX ;Y ;GÞ is
defined as follows:

SxðX ;Y ;GÞ

¼ max
d

XT
t¼1

xT�tdt

T
jðX ;Y Þ þ dG 2 GR

( )
.

This definition proposes a weighted (discounted)
temporal efficiency measure, whereby the weights
are lower as one moves away from the present into
the past. By analogy to the temporal efficiency
measure, one can immediately proof the following
proposition with respect to this discounted tem-
poral shortage function.

Proposition 3. If GR is a temporal production

technology satisfying GR1–GR8, ðX ;Y Þ is an

input– output path in GR, and d ¼ ðd1; d2; . . . ; dTÞ,
then the discounted temporal shortage function

noted SxðX ;Y ;GÞ can be written as follows:

SxðX ;Y ;GÞ

¼ max
d

XT
t¼1

xT�tdt

T
jðX ;Y Þ þ dG 2 GR

( )

¼ max
d

XT
t¼1

xT�tdt

T
jðxt; ytÞ þ dtgt 2 GRt

( )
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¼
1

T

XT
t¼1

xT�t max
dt
fdt
jðxt; ytÞ þ dtgt 2 GRtg

¼
1

T

XT
t¼1

xT�tSðxt; yt; gtÞ

Proof. It is straightforward by Lemma 1. &

Thus, by analogy with the temporal shortage
function, the discounted temporal shortage func-
tion corresponds to the average of discounted
static shortage functions. It is straightforward to
show that the properties of the temporal shortage
function carry over to the discounted temporal
shortage function. For reasons of space we refrain
from summarizing the main properties of this
discounted temporal shortage function in a pro-
position entirely analogous to Proposition 2.
4. Duality between temporal profit and temporal

shortage functions

In this section, the main focus is on establishing
a duality result between the temporal shortage
function and the temporal profit function. Ob-
viously, temporal economic objective functions are
not new in the economic literature. For instance,
dynamic cost functions are discussed in Sengupta
(2003), while dynamic revenue and short-run profit
functions are treated in Färe and Grosskopf
(1996). However, we are unaware of any duality
results in this type of literature. Therefore, using
the temporal shortage function, compatible with
the most general behavioral assumption of profit
maximization, to establish a duality result may
well come timely. Specialized duality results
between an input-oriented (output-oriented) tem-
poral shortage function and a temporal cost
(revenue) function follow suit.

The first subsection defines the temporal profit
function and studies its properties. The next
subsection first formulates the main duality result.
Thereafter, it looks at the definition of shadow
price paths and it proposes a temporal version of
the overall efficiency decomposition into temporal
allocative and temporal technical components.
4.1. Temporal profit function

The profit of a firm is described by the profit
function pðw; pÞ ¼ py� wx. By analogy, one can
define the temporal profit function of a production
unit by: PY �WX ¼

PT
t¼1 ptyt � wtxt, or in a

more formal way by:
Q
ðW ;PÞ ¼

PT
t¼1 pðw

t; ptÞ.
Assuming the economic objective of the firm is to
maximize its profits, one derives the following
proposition:

Proposition 4. Let GR be a temporal production

technology satisfying GR1–GR8 and ðX ;Y Þ an

input– output path in GR. Let ðW ;PÞ 2 ðRNþM
þ Þ

T

be the price path corresponding to this input– output

path. Then, the temporal profit function isQ
ðW ;PÞ ¼ sup

ðX ;Y ÞX0

fPY �WX jðX ;Y Þ 2 GRg

¼
XT
t¼1

sup
ðxt ;ytÞX0

fptyt � wtxtjðxt; ytÞ 2 GRtg.

Proof. We haveQ
ðW ;PÞ ¼ sup

ðX ;Y ÞX0

fPY �WX jðX ;Y Þ 2 GRg

¼ sup
ðX ;Y Þ

XT
t¼1

ptyt � wtxt

(

jðx1; y1; . . . ;xT; yTÞ 2 GR

)
.

From Lemma 1, one derives that:

Q
ðW ;PÞ ¼

XT
t¼1

sup
xt;yt

fptyt � wtxtjðxt; ytÞ 2 GRtg

¼
XT
t¼1

pðwt; ptÞ: &

Thus, the temporal profit function corresponds to
the sum of the static profit functions defined over
each time period. This result is somewhat similar
to aggregation results over production units
developed in the literature (see Färe and Gross-
kopf (2004) for a survey).

Proposition 5. When GR satisfies the axioms

GR1–GR8, then the temporal profit function
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Q
ðW ;PÞ : ðRNþM

þ Þ
T
! Rþ satisfies the following

properties:
(1)

Q
ðlW ; lPÞ ¼ l

Q
ðW ;PÞ.Q Q
(2)
 8X 0XX and Y 0pY ; ðW 0;P0ÞX ðW ;PÞ.Q Q

(3)
 8P0XP and W 0pW ; ðW 0;P0ÞX ðW ;PÞ.Q

(4)
 ðW ;PÞ is continuous in ðW ;PÞ.Q

(5)
 ðW ;PÞ is convex in ðW ;PÞ.
Proof. (1) Let lt
¼ l 8t,Q

ðlW ; lPÞ

¼
1

T

XT
t¼1

pðlwt; lptÞ ¼
1

T

XT
t¼1

lpðwt; ptÞ

¼ l
1

T

XT
t¼1

pðwt; ptÞ

 !
¼ l

Q
ðW ;PÞ.

(2) This follows from the definition of the profit
function.

(3) According to Varian (1992), pðwt; ptÞ is
continuous 8t following the maximum theorem.
It follows that 1=T

PT
t¼1 pðw

t; ptÞ is continuous.
(4) Let two price paths ðW ;PÞ; ðW 0;P0Þ 2
ðRNþM
þ Þ

T. According to Varian (1992), we have

) pðywt þ ð1� yÞw0t; ypt þ ð1� yÞp0tÞ

Xypðwt; ptÞ þ ð1� yÞpðw0t; p0tÞ

)
1

T

XT
t¼1

pðywt þ ð1� yÞw0t; ypt þ ð1� yÞp0tÞ

X
1

T

XT
t¼1

ypðwt; ptÞ þ ð1� yÞ
1

T

�
XT
t¼1

ð1� yÞpðw0t; p0tÞ

)
Q
ðyW þ ð1� yÞW 0; yPþ ð1� yÞP0Þ

Xy
Q
ðW ;PÞ þ ð1� yÞ

Q
ðW 0;P0Þ: &

Property 1 states that the temporal profit function
is homogeneous of degree 1, i.e., it varies
proportionally to the price path. Property 2
implies that it is non-decreasing in relation to the
output path and non-increasing in relation to the
input path. The same also applies in terms of
the price paths. Finally, the temporal profit
function is continuous and convex with respect
to the price path ðW ;PÞ.
4.2. Duality relation between the temporal profit

and shortage functions

We first introduce some notations that are
needed in the remainder of this subsection. Let
G ¼ ðg1; . . . ; gTÞ be a directional path and G 2

ðRNþM
þ Þ

T. Moreover, we have gt ¼ ð�gt
i ; g

t
oÞ for all

t ¼ 1; . . . ;T . Let ðW ;PÞ 2 ðRMþN
þ Þ

T be the price
path corresponding to the output–input path. We
define the product ðW ;PÞ � G as follows:

ðW ;PÞ � G ¼

p1g1
o þ w1g1

i

..

.

ptgt
o þ wtgt

i

..

.

pTgT
o þ wTgT

i

0
BBBBBBBBB@

1
CCCCCCCCCA
.

Denote 1T ¼

1

..

.

1

0
B@

1
CA 2 RT

þ the temporal unit vector.

In the same way, one can define a temporal scalar

d ¼

d1

..

.

dT

0
BB@

1
CCA.

Proposition 6. Let GR be a temporal production

technology and ðX ;Y Þ 2 GR an input– output path

of GR. Let G 2 �
T

t¼1
ðRNþM
þ Þ be a directional path.

Then, we have
(1)

Q
ðW ;PÞ ¼ sup

ðX ;Y ÞX0

fPY �WX

þ T � SðX ;Y ;GÞ � ðW ;PÞ � Gg.
(2)
 SðX ;Y ;GÞ

¼
1

T
min
ðW ;PÞX0

Q
ðW ;PÞ

n
�ðPY �WX ÞjðW ;PÞ � G ¼ 1T

o
.
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Proof.

ð1Þ
Q
ðW ;PÞ ¼ sup

ðX ;Y ÞX0

fPY �WX jðX ;Y Þ 2 GRg

¼
XT
t¼1

pðwt; ptÞ

¼
XT
t¼1

sup
ðxt ;ytÞX0

fptyt � wtxt þ Sðxt; yt; gtÞ

� ðptgt
o þ wtgt

iÞg.

According to Lemma 1, this yields:

¼ sup
x1;y1

..

.

xT;yT

0
BB@

1
CCA

XT
t¼1

ðptyt � wtxtÞ þ
XT
t¼1

ðSðxt; y;tgtÞ

(

�ðptgt
o þ wtgt

iÞÞ

)
.

Since SðX ;Y ;GÞ¼1=T
PT

t¼1 Sðxt; yt; gtÞ, is straight-
forward to obtain:

¼ sup
ðX ;Y ÞX0

fPY �WX þ T � SðX ;Y ;GÞ

� ðW ;PÞ � Gg.

ð2Þ SðX ;Y ;GÞ ¼
1

T

XT
t¼1

Sðxt; yt; gtÞ

¼
1

T

XT
t¼1

sup
dt

fdt
2 Rþjðx

t; ytÞ

� dtgt 2 GRtg

¼
1

T

XT
t¼1

min
ðwt;ptÞ
fpðwt; ptÞ � ðptyt � wtxtÞ

�jptgt
o þ wtgt

i ¼ 1g.

According to Lemma 1, one obtains:

¼
1

T
min
w1;p1

..

.

wT;pT

0
BB@

1
CCA

XT
t¼1

ðpðwt; ptÞ � ðptyt � wtxtÞÞjptgt
o

(

þwtgt
i ¼ 1; 8t ¼ 1; . . . ;T

)

¼
1

T
min
ðW ;PÞ

Q
ðW ;PÞ � ðPY �WX ÞjðW ;PÞ

�
�G ¼ 1T

�
: &

The duality between the temporal profit and
shortage functions can be summarized as follows.
The first part of the proposition establishes that
the temporal profit function corresponds to the
maximum of the observed temporal profit in-
creased by the temporal shortage function normal-
ized over the time horizon. The second part
indicates that the temporal shortage function
corresponds to the average of the difference
between the temporal profit function and the
observed temporal profits.
Fig. 3 illustrates the above Proposition 6 when

n ¼ m ¼ 1. Along the time axis, one observes for
each technology prevailing in a given time period
how an eventually inefficient input–output path is
projected onto the boundary of technology and
how a profit hyperplane supports the same
projection point for a specific price path. Both
the observed and optimal technological paths are
traced.
Starting from the temporal profit function and

the temporal shortage function, it is straightfor-
ward to find a shadow price path. Recall that the
temporal shortage function provides a complete
primal representation of the temporal technology.
Moreover, thanks to the envelope theorem, duality
theory makes it possible to find the shadow prices
supporting the frontier projections of each ob-
served input–output path. Thus, the temporal
shortage function allows deriving a shadow price
path. This makes the temporal shortage function a
powerful tool, similar to the traditional production
function, especially in the dual price space because
of its connection to the temporal profit function.

Definition 5. Let GR be a temporal production
technology satisfying GR1–GR8. The point to set

correspondence ð ~W ; ~PÞ : GR! 2ðR
NþP
þ Þ

T

defined as

ð ~W ; ~PÞðX ;Y Þ ¼ arg min
ðW ;PÞX0

Q
ðW ;PÞ

n
�ðPY �WX ÞjðW ;PÞ � G ¼ 1T

o
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is called the temporal adjusted price correspon-
dence.

Following Definition 7, the temporal adjusted
price correspondence establishes a link between an
observed input–output path and the shadow price
paths minimizing the average of the difference
between the temporal profit function and the
observed temporal profits (see Proposition 6).
Along this line—assuming differentiability of the
temporal shortage function—the following result
is established.

Proposition 7. Let GR be a temporal production

technology satisfying GR1–GR8 and ðX ;Y Þ an

input– output path in GR. For the entire path,
whenever ð ~W ; ~PÞ is single-valued, then the temporal

shortage function is differentiable and we obtain:

qSðxt; yt; gtÞ

qxt
;
qSðxt; yt; gtÞ

qyt

� �T

t¼1

¼ ð ~W ;� ~PÞ.
Proof. If the temporal adjusted price correspon-
dence is single valued, then the temporal shortage
function is differentiable. Then, the result is a
direct consequence of the envelope theorem, which
is obtained by differentiating the temporal ad-
justed price correspondence. &

This proposition indicates that—under some
regularity conditions—the total derivative of the
temporal shortage function allows finding the
price path solution for the maximization of the
temporal profit function, i.e., the shadow price
path. Notice that the above proposition guaran-
tees uniqueness of the obtained shadow prices. An
alternative way to obtain unique shadow prices is
to impose a strict version of convexity on the
temporal production technology (i.e., assuming a
strict version of GR8). But this would exclude, for
instance, imposing the hypothesis of constant
returns to scale on the temporal technology.
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However, the above approach imposes slightly
milder assumptions and is therefore to be pre-
ferred.

A direct application of duality is the definition
and decomposition of overall efficiency. Similar to
the proposition in Farrell (1957), overall efficiency
can be separated into technical and allocative
efficiency. To see this, let us take up again
Proposition 6:Q
ðW ;PÞ ¼ sup

ðX ;Y ÞX0

fPY �WX þ T � SðX ;Y ;GÞ

� ðW ;PÞ � Gg.

Noticing that the temporal profit function is given
for the maximum of the temporal profit function,
one can write:Q
ðW ;PÞXPY �WX þ T � SðX ;Y ;GÞ

� ðW ;PÞ � G.

After some rearranging, one obtains

1

T

Q
ðW ;PÞ � ðPY �WX Þ

ðW ;PÞ � G
XSðX ;Y ;GÞ�

The term on the left-hand side corresponds to the
measure of the temporal overall efficiency, denoted
SOEðW ;P;X ;Y Þ. The term on the right-hand side
corresponds to the temporal technical efficiency,
denoted STEðX ;Y Þ. Notice that STEðX ;Y Þ ¼
SðX ;Y ;GÞ. Finally, temporal allocative efficiency
SAEðW ;P;X ;Y Þ is defined as the difference
between these two efficiency components:

SAEðW ;P;X ;Y Þ ¼ SOEðW ;P;X ;Y Þ

� STEðX ;Y Þ.

Finally, the decomposition of temporal profit
efficiency can be summarized as follows:

SOEðW ;P;X ;Y Þ ¼ STEðX ;Y Þ

þ SAEðW ;P;X ;Y Þ.

Remark that in line with Section 3.4 it is
possible to define a discounted temporal profit
function where profits in the distant past receive
less weight than those close to the present. Then,
all properties and duality results developed in this
section could be duplicated without any difficulty.
Furthermore, it is also possible to separate out
another type of technical inefficiency known as
congestion. This would simply require evaluating
temporal technical efficiency relative to both
weakly (GR3 and GR6) and strongly (GR4 and
GR7) disposable technologies (see Färe et al.
(1985) for this development using traditional
radial efficiency measures that yield a multi-
plicative rather than an additive decomposition).
5. Aggregation of production over time

Recently, there has been an active interest in
investigating the conditions under which firm
performance indicators can be aggregated across
firms to evaluate the performance of an industry
(see Färe and Grosskopf (2004) for a recent survey
of these issues). In a similar vein, we ask here
whether it is possible to aggregate the performance
of a firm over time: how does the performance of
the firm average over time relate to the average
performance of the firm within a given time
period. The performance of a firm average over
time is somewhat related to the structural effi-
ciency notion. The latter notion is essentially an
efficiency index over an entire industry allowing
for reallocation of inputs and outputs among the
firms composing the industry. In the case of the
performance of a firm average over time, one
allows for reallocations of production over time
within each firm.
First, we specify more precisely what we mean

by an efficiency index satisfying a temporal
aggregation condition.

Definition 6. Let GR be a temporal production
technology and ðX ;Y Þ 2 GR an input–output

path of GR. Assume that G ¼ �
T

t¼1
g ¼ gT where

g 2 RMþN
þ . Let us consider the aggregate shortage

function defined by

AS
1

T

X
t¼1...T

ðxt; ytÞ; g

 !

¼ sup d :
1

T

X
t¼1...T

ðxt; ytÞ þ dg 2
1

T

X
t¼1...T

GRt

( )
.
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We say that ðX ;Y Þ 2 GR satisfies the temporal
aggregation condition if

AS
1

T

X
t¼1...T

ðxt; ytÞ; g

 !
¼ SðX ;Y ; gTÞ.

In words, the temporal aggregation condition is
satisfied when the aggregate shortage function
(evaluating the performance of the firm average
over time) equals the temporal shortage function.
As the following proposition indicates, it turns out
that this condition ensuring consistent aggregation
over time is rather strong.

Proposition 8. Let GR be a temporal production

technology and ðX ;Y Þ 2 GR an input– output path

of GR. We have:

AS
1

T

X
t¼1...T

ðxt; ytÞ; g

 !
XSðX ;Y ; gTÞ.

Proof. By definition, we have the following
relationship:

1

T

X
t¼1...T

ðxt; ytÞ þ
1

T

X
t¼1...T

Sðxt; yt; gÞ � g

2
1

T

X
t¼1...T

GRt.

Therefore, we obtain the inequality

AS
1

T

X
t¼1...T

ðxt; ytÞ; g

 !
X

1

T

X
t¼1...T

Sðxt; yt; gÞ

¼ SðX ;Y ; gTÞ.

This terminates the proof. &

Indeed, the aggregate shortage function is larger or
equal to the temporal shortage function. This
result is similar to one obtained for the aggrega-
tion over firms (see Färe et al. (2001), Briec et al.
(2003)).

Following Briec et al. (2003), this inequality
allows defining a measure of aggregation bias over
time between both performance measures.

Definition 7. Let GR be a temporal production
technology and ðX ;Y Þ 2 GR an input–output
path of GR. The difference:

TABðX ;Y ; gTÞ ¼ AS
1

T

X
t¼1...T

ðxt; ytÞ; g

 !

� S X ;Y ; gT
� �

is called the temporal aggregation bias.

Obviously, we note that TABðX ;Y ; gTÞX0 for all
ðX ;Y Þ 2 GR. Other properties have been devel-
oped in Briec et al. (2003) and could be similarly
derived.
Having dealt with technical efficiency, we turn

our attention to the effect of aggregation over time
on the measures of overall and allocative effi-
ciency. First, we define an index of structural
overall efficiency as follows:

SOEðW ;P;X ;Y Þ ¼
1

T

X
t¼1...T

pðwt; ptÞ � ðptyt � wtxtÞ

ðwt; ptÞ:g

¼
1

T

X
t¼1...T

OEðwt; pt;xt; ytÞ,

where

OEðwt; pt;xt; ytÞ ¼
pðwt; ptÞ � ðptyt � wtxtÞ

ðwt; ptÞ:g
.

In other words, structural overall efficiency equals
the time average of the static firm overall
efficiencies. This identity is similar to the Koop-
mans (1957) result about the aggregation of profit
functions over firms within an industry. Now we
define the aggregate overall efficiency as the
performance of the firm average over time by:

AOE
X

t¼1...T

ðxt; ytÞ;W ;P; g

 !

¼
1

T
sup d :

X
t¼1...T

ð�wt; ptÞ½ðxt; ytÞ � dg�

(

p
X

t¼1...T

ptðwt; ptÞ

)
.

Following these developments above, we derive
the identity:

AOE
X

t¼1...T

ðxt; ytÞ;W ;P; g

 !
¼ SOEðW ;P;X ;Y Þ

¼
1

T

X
t¼1...T

OEðwt; pt;xt; ytÞ.
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Hence, aggregate overall efficiency equals struc-
tural overall efficiency, a result similar to the one
in Briec et al. (2003) on the aggregation across
firms.

Finally turning to the allocative efficiency
component, we introduce two more concepts.
First, the aggregate allocative efficiency is defined
by:

AAEðX ;Y ;W ;P; gTÞ

¼ AOE
X

t¼1...T

ðxt; ytÞ;W ;P; g

 !

� AS
1

T

X
t¼1...T

ðxt; ytÞ; g

 !
.

Second, we define the structural allocative
efficiency as follows:

SAEðW ;P;X ;Y Þ ¼ SOEðW ;P;X ;Y Þ � SðX ;Y ; gTÞ.

Now we are in a position to connect both the
aggregate allocative efficiency and the structural
allocative efficiency notions to the temporal
aggregation bias introduced in Definition 7.

Proposition 9. Let GR be a temporal production

technology and ðX ;Y Þ 2 GR an input– output path

of GR. We have

SAEðW ;P;X ;Y Þ � AAEðX ;Y ;W ;P; gTÞ

¼ TABðX ;Y ; gTÞ.

Proof. From Koopmans (1957), we have shown
that SOEðW ;P;X ;Y Þ ¼ AOEðW ;P;X ;Y Þ. Con-
sequently:

SOEðW ;P;X ;Y Þ

¼ SAEðW ;P;X ;Y Þ þ
1

T

XT
t¼1

Sðxt; yt; gÞ

¼ SAEðW ;P;X ;Y Þ þ SðX ;Y ; gTÞ

¼ AAEðX ;Y ;W ;P; gTÞ þ AS
X

t¼1...T

ðxt; ytÞ; g

 !
.

Therefore, we deduce that

SAEðW ;P;X ;Y Þ � AAEðX ;Y ;W ;P; gTÞ

¼ AS
X

t¼1...T

ðxt; ytÞ; g

 !
� SðX ;Y ; gTÞ

¼ TABðX ;Y ; gTÞ: &
Thus, structural allocative efficiency is larger or
equal to aggregate allocative efficiency and the
temporal aggregation bias (being positive) fills up
the gap between both. This result is similar to
Corollary 1 in Briec et al. (2003).

Proposition 10. Let GR be a temporal production

technology and ðX ;Y Þ 2 GR an input– output path

of GR. We have:

SAEðW ;P;X ;Y ÞXTABðX ;Y ; gTÞ.

Proof. We have shown that

SAEðW ;P;X ;Y Þ � AAEðX ;Y ;W ;P; gTÞ

¼ TABðX ;Y ; gTÞ.

But, AAEðX ;Y ;W ;P;gTÞX0. Consequently, SAE

ðX ;Y ;W ;P; gTÞXTABðX ;Y ; gTÞ. &

Thus, structural allocative efficiency is larger or
equal to the temporal aggregation bias. The
temporal aggregation bias thus provides a lower
bound for the structural allocative efficiency
measure. This last result duplicates exactly the
aggregation results over firms developed in Pro-
position 8 of Briec et al. (2003).
6. Conclusions

This paper has offered a temporal generalization
of the popular analysis of static efficiency mea-
surement. The temporal efficiency measure gen-
eralizes the shortage function, introduced by
Luenberger (1992, 1995) and Chambers et al.
(1996, 1998). The definition of temporal technical
efficiency allows us to verify the efficiency in panel
data of production units, while ignoring the
possibility of technological change and its precise
measurement. Moreover, the development of a
temporal duality result between the temporal



ARTICLE IN PRESS

W. Briec et al. / Int. J. Production Economics 103 (2006) 48–63 63
shortage and profit functions allows obtaining a
shadow price path and a temporal inefficiency
decomposition. Finally, some aggregation results
were derived allowing some statements about the
average performance of a unit over time.

Obvious potential extensions of this approach
are the derivation of similar temporal analysis for
the special cases of the (i) input-oriented direc-
tional distance function and the cost function and
the (ii) output-oriented directional distance func-
tion and the revenue function. Equally so, the
derivation of the detailed results for the discounted
temporal shortage function may be worthwhile
pursuing. In addition, it could be valuable to
extend our development by linking it to the
literature allowing for time substitution (e.g., Färe
and Grosskopf, 1996; Sengupta, 1995, 2003) or for
dynamic phenomena like adjustment costs (e.g.,
Sengupta, 1992, 1999).

We hope this contribution proves inspiring
when evaluating the performance of industries
where technological change is a priori of little
relevance because of its embodied nature in large
and indivisible infrastructures.
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