MANAGEMENT SCIENCE

Vol. 53, No. 1, January 2007, pp. 135-149
1ssN 0025-1909 | E1ssN 1526-5501 |07 | 5301 | 0135

[l lorms}

por1 10.1287/mnsc.1060.0596
©2007 INFORMS

Mean-Variance-Skewness Portfolio
Performance Gauging: A General Shortage
Function and Dual Approach

Walter Briec
University of Perpignan, 52 Avenue Villeneuve, F-66000 Perpignan, France, briec@univ-perp.fr

Kristiaan Kerstens
CNRS-LEM (UMR 8179), IESEG School of Management, 3 Rue de la Digue, F-59000 Lille, France, k.kerstens@ieseg.fr

Octave Jokung
EDHEC Business School, 58 Rue du Port, F-59046 Lille, France, octave jokung@edhec.edu

his paper proposes a nonparametric efficiency measurement approach for the static portfolio selection prob-

lem in mean-variance-skewness space. A shortage function is defined that looks for possible increases in
return and skewness and decreases in variance. Global optimality is guaranteed for the resulting optimal port-
folios. We also establish a link to a proper indirect mean-variance-skewness utility function. For computational
reasons, the optimal portfolios resulting from this dual approach are only locally optimal. This framework per-
mits to differentiate between portfolio efficiency and allocative efficiency, and a convexity efficiency component
related to the difference between the primal, nonconvex approach and the dual, convex approach. Further-
more, in principle, information can be retrieved about the revealed risk aversion and prudence of investors. An
empirical section on a small sample of assets serves as an illustration.
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1. Introduction
The seminal work of Markowitz (1952) in modern
portfolio theory trades off the risk and expected
return of a portfolio in a static context. Portfolios
whose expected return cannot increase unless their
risk increases define an efficient frontier, i.e., a Pareto-
optimal subset of portfolios. His work maintains
strong assumptions on probability distributions and
Von Neumann-Morgenstern utility functions. Further-
more, the computational cost of solving quadratic
programs in these days led Sharpe (1963) to propose a
simpler “diagonal” model and inspired Sharpe (1964)
and Lintner (1965) to develop the capital asset pric-
ing model (CAPM), an equilibrium model assuming
that all agents have similar expectations about the
market. Widespread tools for gauging portfolio effi-
ciency, such as Sharpe (1966) and Treynor (1965) ratios
and Jensen (1968) alpha, have mainly been developed
with reference to these developments, and in partic-
ular, CAPM. Despite these and later enhancements,
the Markowitz model still offers the most general
framework.

The main theoretical difficulty with the so-called
parametric approach where utility depends on the
first and second moments (i.e., mean and variance)
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of the random variable’s distribution is that it is only
consistent with expected utility and its von Neu-
mann-Morgenstern axioms of choice when (i) asset
processes are normally distributed (hence, higher
moments can be ignored), or (ii) investors have
quadratic utility functions (e.g., Samuelson 1967).
However, a plethora of empirical studies shows that
portfolio returns are generally not normally dis-
tributed. Furthermore, investors prefer positive skew-
ness because it implies a low probability of obtaining
a large negative return. In particular, the observation
that increased diversification leads to skewness loss
and the widespread phenomenon of imperfectly
diversified portfolios may well reveal a preference for
positive skewness among investors, rather than sim-
ply capital market imperfections (Kraus and Litzen-
berger 1976, Simkowitz and Beedles 1978, Kane 1982).
Theoretically, positive skewness preference is related
to the positivity of the third derivative of the util-
ity function: the prudence notion is to marginal util-
ity what risk aversion is to u’cility.1 Furthermore, ever

! As Kimball (1990, p. 54) states: “The term ‘prudence’ is meant to
suggest the propensity to prepare and forearm oneself in the face
of uncertainty, in contrast to ‘risk aversion,” which is how much
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since Samuelson (1970) it is known that the mean-
variance (MV) approach is adequate when return
distributions are compact and when portfolio deci-
sions are made frequently (almost continuously) such
that the risk parameter becomes sufficiently small.
However, when the portfolio decision is limited to
a finite time interval and rebalancing is restricted,
then higher moments (cubic utility and beyond) are
needed because the quadratic approximation is not
locally of high contact.

While the limits of a quadratic approximation of the
utility function are acknowledged, the development
of third- or higher-degree polynomial forms for the
utility function as part of operational procedures for
constructing portfolios has been hampered mainly by
computational problems (see Markowitz 1991).2 Sev-
eral alternative criteria for portfolio selection based on
higher-order moments have been developed (Philip-
patos 1979, Wang and Xia 2002), but so far not a sin-
gle generally valid procedure seems to have emerged.
It is possible to distinguish between primal and
dual approaches to determine mean-variance-skew-
ness (MVS) portfolio frontiers. An example of the pri-
mal approach is found in Lai (1991) and Wang and
Xia (2002), who determine MVS portfolios via a mul-
tiobjective programming approach.’ In line with the
work of Farrar (1962) in the basic Markowitz model,
the dual approach starts from a specification of the
indirect MVS utility function and determines optimal
portfolios via its parameters reflecting preferences for
risk and skewness (see, e.g., Jondeau and Rockinger
2006, Harvey et al. 2003 for recent studies). In the cur-
rent state of affairs, however, there is no connection
between primal and dual approaches.

More in general, as the dimensionality of the port-
folio selection problem increases, it becomes more
difficult to develop a geometric interpretation of the
portfolio frontier and to select a most preferred port-
folio among its boundary points. While the geometric
construction of an MV portfolio frontier is trivial, no
general procedure currently exists to generate a three-
dimensional geometric representation of the MVS
portfolio frontier. Even if one could come up with
such a procedure, it would obviously be of no help for

one dislikes uncertainty and would turn away from uncertainty if
possible.”

2While a cubic utility function need not guarantee decreasing abso-
lute risk aversion everywhere, it is already more satisfactory than
a quadratic utility function which implies increasing absolute risk
aversion for all wealth levels, a counterintuitive assumption.

% The goal-programming model of Lai (1991) is by far the most pop-
ular in empirical studies: it has been applied to 14 major stock mar-
kets by Chunhachinda et al. (1997), to an extended set of 17 stock
markets in Prakash et al. (2003), and to Japanese and U.S. stocks
by Sun and Yan (2003), among others.

higher dimensions when approximating higher-order
polynomial forms of the expected utility function.

It is our basic contention that a general proce-
dure to describe the boundary of the set of portfolios
and to pick a point among these boundary points in
terms of risk preferences requires the use of a dis-
tance function. In consumer theory, the distance func-
tion is employed to position bundles of goods with
respect to a target utility level of the utility func-
tion, and this distance function turns out to be dual
to the expenditure function (e.g., Deaton 1979). In
production theory, Luenberger (1995) introduced the
shortage function as a distance function that simulta-
neously looks for reductions in inputs and expansions
in outputs and that is dual to the profit function.*
Thus, a distance (gauge) function offers a perfect rep-
resentation of multidimensional choice sets and can
position any point relative to the boundary (frontier)
of the choice set. Because points beneath the frontier
are in general inefficient, distance functions have an
interpretation as indicators of inefficiency. Obviously,
points on the frontier of a choice set are efficient. Fur-
thermore, thanks to their duality relationships, one
can select among the efficient boundary points a point
that optimizes an economically meaningful objective
function.

Briec et al. (2004) integrate the shortage function
as a representation of the MV space and as an effi-
ciency measure into the Markowitz model. They also
develop a dual framework to assess the degree of
satisfaction of investors’ preferences (see, e.g., Farrar
1962). They propose a decomposition of portfolio
performance into allocative and portfolio efficiency.’
Moreover, via the shadow prices associated with the
shortage function, duality yields information about
investors’ risk aversion.®

In this paper, the shortage function is extended to
the MVS space to account for a preference for positive
skewness in addition to a preference for returns and
an aversion to risk. The shortage function projects any
(in)efficient portfolio exactly on the three-dimensional
MVS portfolio frontier. Anticipating a major result,
we prove that the shortage function achieves a global
optimal solution on the boundary of the noncon-
vex MVS portfolio frontier. Starting from a sample of

*This shortage function generalizes the input distance function,
that is dual to the cost function, and the output distance function,
that is dual to the revenue function.

® This work generalizes earlier contributions transposing efficiency
measures from production theory into basic portfolio analysis: for
instance, Morey and Morey (1999) focus either on return expansion
or on risk reduction, but ignore that in general investors may be
assumed to prefer higher returns and reduced risk simultaneously.

¢ This procedure has the additional advantage of being simple com-

pared to other nonparametric estimators (see, for instance, Lien
2002 and the references cited therein).
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observed portfolios with unknown efficiency status,
this shortage function projects a portfolio for which
improvements can be found, in terms of increasing
return and skew and decreasing risk, onto the MVS
frontier and labels these inefficient. By contrast, when
no such improvements can be found, then the initial
portfolio must have been part of the MVS frontier
right at the outset and it obtains the label efficient.
Proceeding in this way, the shortage function recon-
structs parts of the unknown MVS portfolio fron-
tier. Just like in the MV case, all points on the MVS
portfolio frontier are Pareto efficient. Furthermore, to
choose among these frontier portfolios, we develop a
dual approach specifying an MVS utility function. For
given risk aversion and prudence parameters, we can
pick an optimal point on the boundary of the non-
convex MVS portfolio frontier. Furthermore, by prov-
ing a duality result between the shortage function
and the indirect MVS utility function, we show that
our shortage function approach is not devoid of eco-
nomic interpretation, but rather that both approaches
are firmly integrated.

In general, the shortage function accomplishes four
goals of both theoretical and practical importance:
(i) it rates portfolio performance by measuring a dis-
tance between a portfolio and its optimal benchmark
projection onto the primal MVS efficient frontier;
(ii) it provides a nonparametric estimation of an inner
bound of the true but unknown portfolio frontier;
(iii) it judges simultaneously return and skewness
expansions and risk contractions; and (iv) it provides
a new, dual interpretation of this portfolio efficiency
distance. To expand on the latter possibility, thanks to
the above mentioned duality result the shortage func-
tion can under some specific conditions reveal via its
shadow prices the (shadow) risk aversion and pru-
dence compatible with the projection of an inefficient
portfolio at the frontier.

This framework based on the shortage function im-
proves on various attempts to determine MVS port-
folio frontiers.” First looking at the primal approach,
the estimation of MVS portfolio frontiers via the mul-
tiobjective programming problem does not comply
with the theoretical notion of a frontier portfolio.
Minimizing deviations from three objectives simul-
taneously only guarantees a solution “close” to the
frontier. Furthermore, there is no clear performance
measure and there is no link whatsoever between
the parameters weighting the deviations from the
three moment objectives and the parameters of the
expected utility function. By contrast, the use of dis-
tance functions avoids any compromise between the

7Early attempts looking at skewness but ignoring co-skewness
(e.g., Arditti and Levy 1975) are disregarded.

three objectives, provides a clear performance mea-
sure, and is via duality firmly linked with risk pref-
erences. Furthermore, there are a series of primal
contributions that tend to solve the MVS portfolio
problem by privileging one or two of the objectives at
the cost of the other(s). Konno and Suzuki (1995) trace
the MVS portfolio frontier by maximizing skewness,
and focus thereby on finding approximate optimal
solutions using piecewise linear approximations of
nonlinear objective function and constraints. Adopt-
ing the efficiency measures proposed in Morey and
Morey (1999), Joro and Na (2006) determine MVS
portfolio frontiers by minimizing the risk reduction
for a given MVS portfolio. Athayde and Flores (2004)
look for the analytical solution characterizing the
MVS portfolio frontier assuming a risk-free asset and
shorting, whereby the objective is to minimize the
variance for given mean and skewness. Womersley
and Lau (1996) maximize the skewness divided by the
standard deviation cubed, assuming that maximizing
the third moment tends to minimize the variance.

While all approaches are capable to determine some
Pareto efficient points on the MVS frontier (with a
qualification perhaps for the multiobjective program-
ming approach), these primal approaches are discon-
nected from any preference information eventually
allowing to select one portfolio among those on the
Pareto efficient MVS frontier. In fact, it is shown
below that most of these approaches can be re-inter-
preted as special cases of our shortage function,
whereby the direction of projecting onto the fron-
tier privileges one of the three dimensions: e.g., one
only looks for improvements in skewness. Therefore,
one should realize that some of these methods may
lead to points on the unknown MVS frontier that
are probably unattractive from the viewpoint of gen-
eral investor preferences. By contrast, our approach
caters for more general investor preferences in that
we seek simultaneously improvements in return and
skewness and reductions in risk. Furthermore, our
approach is more general in that we impose the weak-
est of possible assumptions. For instance, we ignore
the presence of a risk-free asset as well as the possi-
bility of shorting.

Current dual approaches are hampered by a lack
of knowledge of preferences for risk and skewness
(e.g., Jondeau and Rockinger 2006, Harvey et al. 2003)
and suffer from their lack of integration with pri-
mal approaches. Because the MVS portfolio fron-
tier is nonconvex, the optimization of an indirect
utility function in the dual approach only ensures
local optimal solutions from a computational point
of view. This inherent characteristic of the MVS deci-
sion problem can only be remedied via the develop-
ment of global optimization algorithms. Furthermore,
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it inevitably convexifies part of the underlying non-
convex MVS portfolio frontier. This may carry the
risk that certain target portfolios based on particu-
lar specifications of the utility function are infeasi-
ble in practice. But, our shortage function approach
is compatible with general investor preferences and
selects optimal portfolios without assuming a detailed
knowledge on the preference parameters defining the
indirect utility function. Furthermore, it can in the
long run contribute to a better understanding of risk
preferences via its estimation of (shadow) risk aver-
sion and prudence. This is a major advantage of
opting for a micro-economic tool like the shortage
function integrating primal and dual approaches.

The limited experience with MVS portfolio selec-
tion established so far shows that the composition of
an optimal MVS portfolio differs from the MV port-
folio, and that the resulting return (risk) may well
be lower (higher) in trade-off with a higher posi-
tive skewness that is achieved (see Lai 1991, Prakash
et al. 2003, among others). Sun and Yan (2003) make
the observation that while many studies indicate that
ex post stock returns are positively skewed, most of
them find skewness to be persistent only for indi-
vidual stocks not for portfolios (e.g., Simkowitz and
Beedles 1978). However, these studies do not start
from MVS efficient portfolios. These authors show
that taking skewness preference seriously and using
the Lai (1991) goal programming method of selecting
MVS efficient portfolios for U.S. and Japanese stocks
guarantees skewness persistence over time. If their
results are corroborated, this implies that even ex post
skewness could be used as a crude proxy for ex ante
skewness when selecting optimal MVS efficient port-
folios to guarantee skewness persistence.

While limiting ourselves to the three-dimensional
MVS space, this contribution paves the way to any
portfolio selection approach using a higher-order
Taylor expansion of the utility function, as ideally
dictated by the number of statistical moments that
turn out to count in explaining asset prices. Finally,
the interest of this approach based on cubic (nonlin-
ear) programming concerns not only the MVS model
with short sales excluded. This nonlinear program-
ming approach remains valid as a general framework
for any other traditional portfolio extension (e.g.,
buy-in thresholds for assets, cardinality constraints
restricting the number of assets, transaction round lot
restrictions, dedicated cash flow streams, immuniza-
tion strategies, etc.; see Jobst et al. 2001).

The rest of this paper is organized as follows. Sec-
tion 2 lays down the foundations of the analysis. Sec-
tion 3 introduces the shortage function and studies
its axiomatic properties. Section 4 studies the link
between the shortage function and the direct and indi-
rect MVS utility functions. A simple empirical illus-
tration using a small sample of 35 assets (all part of

the French CAC40 index) is provided in §5. Conclu-
sions and possible extensions are formulated in §6.

2. Portfolio and Efficient Frontier:
Definitions

To develop some basic definitions, consider the prob-

lem of selecting a portfolio (or fund of funds) from n

financial assets (or funds). Assets are characterized by

an expected return E[R;] for i € {1, ..., n}, by a covari-

ance matrix (), ; =Cov[R;, R;] for i, j e {1, n}, and
by a co-skewness matrix
CSK, = E[(R; - E[R]D(R; = E[R;D(R, — E[R,])]

fori,j, ke{l,...,n}® Following Athayde and Flores
(2004), we transform the n x n x n CSK matrix into a
useful n x n* matrix A by slicing each n x n layer and
pasting them in the same order.

A portfolio x = (xy, ..., x,) is composed by a propor—
tion of each of these n f1nar1c1al assets (.,
When short sales are excluded, the condition x; z 0is
imposed. In general, the set of admissible portfolios
can be written as follows:’

> xi=1,x20}. 1)

i=1,...,n

Sz{xeR”;

It is assumed throughout this paper that I # @.

The return of portfolio x is given by R(x) =
> iz1,...» X;R;. The expected return, its variance, and its
skewness can be calculated as follows:

E[R(x)] > %E[R]=x'M, @)

Var[R(x)] = E[(R(x) — n(x))’]
_ZxxCovR,,R]—xQx 3)

= pu(x) =

Sk[R(x)]
=E[(R(x) — p(%))’] 4)
= > x5 E[(R; — () (R; — (%) (R, — (x))] ()

ik
=x'A(x®x), (6)

where A = E[(R; — u(x))(R; — p(%)) ® (R — u(x))’]
has dimension (1, n%) to maintain a standard matrix

8In line with Chunhachinda et al. (1997) and Lai (1991), among
others, skewness and co-skewness are defined in terms of central
moments. Other definitions are available, but the choice of defini-
tion does not affect our basic results.

® When investors face additional constraints (e.g., transaction costs
or upper limits on any fraction invested) that can be written as
constraints that are linear functions of asset weights, then the set
of admissible portfolios can be easily adapted (Pogue 1970, Rudd
and Rosenberg 1979). See Briec et al. (2004) for this development
in a similar context.
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format and ® stands for the Kronecker product.
Because of certain symmetries, not all elements of
these matrices need to be computed. Indeed, while
the variance-covariance matrix has dimension (n, n),

only
(n ;L 1) =(n+1)n/2

of its elements must be computed. Similarly, while the
skewness—co-skewness matrix has dimension (1, 11, n),
only
n+2
< 3 > =n+2)(n+1)n/6
are independent (see Athayde and Flores 2004,
p- 1338).
We introduce the function ®: 3 — R* defined by

®(x) = (E[R(x)], Var[R(x)], SK[R(x)])

to represent, for a given portfolio x, its expected re-
turn, variance, and skewness.

It is useful to define the MVS representation of the
set J of portfolios as the range of ® on J:

R={D(x); x€3}. (7)

The above set can be extended by defining an MVS
(portfolio) disposal representation set through

IR =R+ R, x (-R,) xR,). )

The disposal representation set %% can be rewritten
as follows:

9% ={(E,V,S)eR’; Ixey, (E,-V,9)
< (E[R(x)], —Var[R(x)], SK[R()])}.  (9)

The addition of the cone is necessary for the definition
of a sort of “free disposal hull” of the MVS represen-
tation of feasible portfolios.

To measure portfolio efficiency, it is necessary to
define a subset of this representation set known as the
efficient frontier:

DEerINITION 2.1. In the MVS space, the weakly effi-
cient frontier is defined as

MEQ)={(E,V,S); (-E,V',=S) <(-E,V,-S)
= (E,V',S) ¢ DR}

From the above definition, the weakly efficient fron-
tier is the set of all the MVS points that are not strictly
dominated in the three-dimensional space.'

The above definition allows defining the set of
weakly efficient portfolios:

07t is also possible to define a strongly efficient frontier, but the
above formulation simplifies most results in this contribution.

DEerINITION 2.2. The set of weakly efficient portfo-
lios is defined, in the simplex, as

M) =[x e3; D(x) € M(I)).

By analogy to its role in the MV approach (see Briec
et al. 2004), the next section introduces the shortage
function (Luenberger 1995) as a performance indica-
tor for the MVS portfolio optimization problem.

3. Shortage Function and the Frontier
of Efficient Portfolios

In production theory, the shortage function measures
(intuitively stated) the distance between some point of
the production possibility set and the Pareto frontier
(Luenberger 1995). The basic properties of the sub-
set %R on which the shortage function is defined are
discussed in Briec et al. (2004) in the setting of MV
portfolio theory. It is now possible to extend their
definition to obtain an efficiency measure in the spe-
cific context of MVS portfolio selection. Therefore, the
shortage function is introduced and its properties are
studied in the context of MVS portfolio theory.

DEerINITION 3.1. Let ¢ = (g, —8v, gs) € Ry x (—R,)
x R,. The function S;: I — R, defined as S (x) =
sup{d; ®(x) + 63 € YR} is the shortage function for
portfolio x in the direction of vector g.

The pertinence of this shortage function as a port-
folio management efficiency indicator stems from its
elementary properties. Because these properties can
be immediately transposed from the MV into the MVS
space, these properties are stated without extensive
comments and proof.

ProrosiTiON 3.2. S, satisfies the following properties:

(@) If (8, 8v, &s) € RS, then S, (x) =0 x € OM(J)
(weak efficiency).

(b) S, 1s MV'S weakly monotonic, i.e.,

(EIR(x")], —Var[R(x)], SK[R(x")])
< (E[R(x)], —Var[R(x)], Sk[R(x)])

implies that 0 < S, (x) < S,(x').
() If (36, 8v~ 8s) R, then S, is continuous.

When the shortage function equals zero, the port-
folio is part of the weakly efficient frontier. This only
guarantees weak efficiency because it does not ex-
clude projections on vertical or horizontal parts of the
nonconvex frontier allowing for additional improve-
ments (see expression (8)). In addition, a portfolio that
is weakly dominated in terms of its return, risk, and
skewness characteristics is classified as weakly less
efficient. Note that the condition (g;, gv, gs) € R is
not necessary in this case to guarantee weak mono-
tonicity. Finally, this shortage function is continuous
when the direction vector g is strictly positive.
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The representation set %, defined by expres-
sion (9), can be directly used to compute the short-
age function by standard cubic optimization methods.
Assume a sample of m portfolios (or investment
funds) x', x%, ..., x™. Now, consider a specific portfo-
lio y* for x!, x?,...,x™ whose performance needs to
be gauged. The shortage function for this portfolio y*
under evaluation (S,(y")) is computed by solving the
following cubic program:

max o
s.t. B[R(y¥)]+ 8¢ <E[R(x)],
Var[R(y*)] — 8¢y = Var[R(x)], ®,)

SK[R(y")]+ 8gs = Sk[R(x)],

Z xl»=1,

i=1,...,n

x;>0,i=1,...,n.

Making use of equations (2)—(4), program (P;) is
rewritten as follows:

max o

s.t. E[R(yk)]+6ggs_ > xE[R],

i=1,..., n

Var[R(y")] - gy = >_ Q; jxx;,
ij P,)
Sk[R(yk)] —+ 8g5 < Z CSKi,j,kxl‘x]‘xk/
ijk

n
Yox;=1, x>0, i=1,...,n
i1

Thus, gauging the performance of a sample of m port-
folios requires computing one cubic program for each
of these m portfolios in turn. Indeed, the logic is that
each observation is positioned with respect to the
boundary of the choice set with the help of the short-
age function. All possible combinations of returns,
risk, and skewness of the portfolios in the sample that
can be combined to constitute the MVS portfolio fron-
tier are situated on the right-hand side (rhs) of (P,). In
turn, an evaluated portfolio is represented on the left-
hand side (lhs) of (P,): by maximizing &, one attempts
to augment its return and skewness and reduce its
risk in the direction of vector g. If § =0, then the eval-
uated portfolio is efficient and part of the boundary.
Otherwise, there exists a combination of other portfo-
lios that yields a higher return and skewness and a
lower risk; the evaluated portfolio is situated below
the boundary, thus inefficient.

In addition to existing portfolios, it is also possi-
ble to evaluate fictitious portfolios. In that case, one
simply fills out the target values for return, risk, and
skewness one would be eager to achieve in the lhs,
and program (P,) computes whether there is a combi-
nation of portfolios in the sample that could generate

these values or improve on them. If the target val-
ues happen to lay on the nonconvex portfolio frontier,
then the optimal delta equals zero. In the more likely
event that these target values are situated below the
frontier, delta is positive. When the target values can-
not be generated from the current sample, then (P,) is
simply infeasible (the target values are “outside” the
portfolio frontier). Theoretically, one could in this way
define a grid of target values as a starting point to
find a series of projection points on the portfolio fron-
tier. With a sufficiently fine grid, this could allow to
draw a three-dimensional geometrical representation
of the primal nonconvex portfolio frontier. As indi-
cated before, this procedure is only relevant up to the
three-dimensional MVS portfolio space and its com-
putational feasibility and practical relevance remain
to be explored.

Note that, as mentioned before, the rhs of the con-
straints with the variance-covariance matrix and the
skewness—co-skewness matrix can be rewritten to
exploit all symmetries."! Note furthermore that drop-
ping the third constraint leads to computing a short-
age function relative to the MV model (Briec et al.
2004).

The above programs are special cases of the follow-
ing standard, nonlinear (cubic) program:

min ¢’z
st. Li(z)<q;, j=1...q,
Q(2) =<Bx, k=1...r, (P3)
I\]](Z)f’yl, lzlt,
zeRp,

where L; is a linear map for j=1...4q, Q; is a positive
semidefinite quadratic form for k=1...r, and N, is
cubic form for [=1...¢t. In the case of program (P,),
p=nand g=r=1t=1. Program (P;) is not a standard
convex nonlinear optimization problem (see Fiacco
and McGormick 1968, Luenberger 1984).

Due to this nonconvex nature, we need to state a
sufficient condition showing that a local optimal solu-
tion is also a global optimal solution. The next propo-
sition clearly demonstrates a condition such that the
shortage function achieves a global optimum for the
cubic program (P,).

ProrosITION 3.3. Assume that x* is not a strict local
maximum of the skewness on 3. If (6*, x*) is a local opti-
mum of (P,), then it is a global solution. Therefore, if the
first-order and second-order Kuhn-Tucker conditions hold
at point (6*, x*), then (6*, x*) is a global maximum of (P,).

' To be explicit, the rhs of the second constraint can be rewritten
as follows: 3, ; Q; ix;x; =3, Q, i(x,)* + 2%, Q; ;x:x;, while the
ths of the third constraint can be rewritten as 3, ;  CSK ; ,x;x;x;, =
Yok CSK () 4+ 33, 1k CSK (%) + 62, ;. CSK; -

X X
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ProoF. See the online appendix (provided in the
e-companion).'?

This proposition clearly makes our approach stand
out compared to existing primal approaches listed in
the introduction only guaranteeing a local optimal
solution. Thus, the shortage function offers the only
tool known so far providing a global optimum for the
MVS portfolio approach.

REMARK 3.4. S, encompasses all existing primal
proposals mentioned in the introduction. In particu-
lar, setting two subvectors of the direction vector g
equal to zero generates the following possibilities:
(a) g =1(gr,0,0) yields a return maximization model;
(b) g =(0, —gv, 0) yields a risk minimization model;
and (c) g =(0,0, gs) yields a skewness maximization
model. Other special cases can be imagined by setting
only one subvector equal to zero rather than two.

For instance, the approach of Athayde and Flores
(2004) characterizes analytically the MVS portfolio
frontier by minimizing the variance (thus, in our
approach it coincides with part (b)), apart from them
allowing for a risk-free asset and shorting. As another
series of examples, Joro and Na (2006) use a spe-
cial efficiency measure that solely minimizes portfolio
risk (thus, coinciding with part (b)), while Konno and
Suzuki (1995) focus on maximizing skewness (thus,
coinciding with part (c)).

Note that in these special cases, (gz, gv,gs) # 0.
Hence, there is no guarantee that the shortage func-
tion characterizes a weakly efficient portfolio. While
the fact that the shortage function equaling zero only
guarantees a weakly efficient portfolio is true in gen-
eral, it is intuitively clear that setting part of the direc-
tion vector g equal to zero increases the chances of
projecting onto vertical or horizontal parts of the non-
convex frontier.

REMARK 3.5. S, defined on the MVS space is smaller
or equal to S, defined relative to the MV space.

This remark describes a simple consequence of
adding a constraint to a maximal value function: pro-
gram (P,) contains one more constraint, namely, the
third skewness—co-skewness constraint, compared to
the MV model using a similar shortage function. It
can provide a basis for developing statistical tests for
the relevance of including additional moments in the
approximation of the expected utility function.

The result in the previous Proposition 3.3 has an
immediate consequence in terms of Kuhn-Tucker op-
timality, complementary slackness, and second-order

2 The e-companion to this paper, which is part of the online ver-
sion, is available at http://mansci.pubs.informs.org/.

B1t is possible to improve the small sample error of our nonpara-
metric frontier estimator using either information on its asymptotic
distribution of efficiency estimates, or by simulated (bootstrapped)
empirical distributions (see Simar and Wilson 2000).

conditions. As can be shown in Corollary 3.6 (see
the online appendix), these otherwise local conditions
become global conditions thanks to this proposition.

The next section studies the shortage function from
a duality standpoint.

4. Mean-Variance-Skewness Utility
and Duality: Shadow Risk Aversion
and Prudence

4.1. Motivation

To show how the shortage function is linked to the
dual approach based on the specification of an MVS
utility function, we must establish a duality result
between the shortage function and the MVS utility
function. However, this cannot be done straightfor-
wardly because the MVS portfolio frontier is non-
convex. One can only establish a duality result after
convexifying this MVS portfolio frontier. Therefore,
we can define another shortage function relative to
this convexified MVS portfolio frontier and establish
a duality result between this new shortage function
and the MVS utility function. This duality result indi-
cates that this new shortage function has an economic
interpretation, which transposes to the initial shortage
function.

This duality result also leads to the definition of an
efficiency decomposition. Similar to standard micro-
economic approaches in production and consumption
theory, we distinguish principally between port-
folio efficiency, the distance from the interior to the
boundary of the primal MVS portfolio frontier, and
allocative efficiency, the deviation from an eventual
boundary portfolio to the most preferred portfolio
based on some specification of an MVS utility func-
tion. Finally, we can determine the conditions under
which shadow prices of the initial shortage func-
tion are valid in the sense that they convey infor-
mation about the supporting MVS utility function at
the tangency point. This happens when these shadow
prices coincide to the shadow prices obtainable from
the shortage function defined relative to the convexi-
fied MVS portfolio frontier. Basically, this presupposes
that the initial shortage function projects onto a “con-
vex” part of the primal MVS portfolio frontier. Other-
wise, one cannot attribute any economic significance
to these shadow prices.

These developments serve to establish a connec-
tion between our new primal approach and existing
dual approaches. They also reveal that the shortage
function approach has a meaningful economic inter-
pretation. Therefore, this section is structured as fol-
lows. In the next subsection, we define an MVS utility
function as a third-order polynomial approximation
of expected utility. Then, we define another short-
age function relative to a convexified MVS portfolio
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frontier and establish a duality result between it and
the MVS utility function. We also define an efficiency
decomposition. Finally, we study the properties of the
shortage function that assume differentiability at the
point where the function is evaluated in an effort to
determine the conditions for the validity of shadow
prices.

4.2. Mean-Variance-Skewness Utility
Functions: Definition

From the outset, portfolio selection was conceived as
a two-step procedure: the determination of the effi-
cient set of portfolios is just the first step, preparing
the selection of an optimal portfolio for a given pref-
erence structure. To provide a dual interpretation of
the shortage function, a corresponding indirect utility
function must first be defined.

Let the MV utility function be defined by U, , (x) =
WE[R(x)] — pVar[R(x)]. This utility function satisfies
positive marginal utility of expected return, and neg-
ative marginal utility of risk.

To determine an optimal portfolio corresponding
to a given degree of risk aversion within the MV
approach, Markowitz (1959) formalizes a quadratic
optimization program maximizing the above MV util-
ity function:

max E[R(x)] — ¢Var[R(x)]

st. Y x=1,

i=l..n

(10)

x>0,

with ¢ = p/u € [0, +o0] representing the degree of
absolute risk aversion.

To integrate the skewness, we propose another opti-
mization program that determines the optimal port-
folio corresponding simultaneously to a given degree
of risk aversion and prudence. The concept of pru-
dence, introduced by Kimball (1990), is related to
skewness preference. In combination with risk aver-
sion, it allows to handle simultaneously variance and
skewness. Kimball (1990) develops the relationship
between prudence and the third derivative of the util-
ity function in a consumption-savings approach. Since
at least Kraus and Litzenberger (1976) (see Harvey
et al. 2003 and Jondeau and Rockinger 2006 for recent
developments), it is known that this link between
the third derivative of the utility function and the
skewness can be simply illustrated by taking a Taylor
expansion of the expected utility of the final wealth
(wy) of an investor around his expected wealth (@) as
follows:

u'(w)
2

u(wy) = u(w) 4 u'(w)(w; — ) + (w; — )

This implies

E[u(wy)] = E[u(@)] + ' (@) E[(w; — )]

u//(z_u)

+ — E[(wf — @)2]
n Ll//’éZ_U) E[(wf _ 770)3] 4o,

which finally leads to the expression
u//(w) u///(w)
2 6

E[u(w/)] = u(w) + Var[w,]+ Sk[ws]+---.

Clearly, u”(-) and u"’(-) are respectively related to vari-
ance and skewness: while a negative second deriva-
tive of the utility function implies variance aversion, a
positive third derivative of the utility function entails
a preference for positive skewness." Along this line,
we define an MVS utility function and a correspond-
ing indirect utility function:

DEerINITION 4.1. The function U
fined as

.Cox _
o)t S —> R de

U, p, 0 (X) = wE[R(x)] — pVar[R (x)] + k SK[R(x)]

is called the MVS utility function. The function
U*: R3 — R defined as

Us(u, p, K):Inax{llw,p,,()(x); x=1, sz}

i=1l..n

is called the indirect MVS utility function.
This nonlinear optimization program can be rewrit-
ten as follows:

max E[R(x)] — ¢Var[R(x)] + ¥ Sk[R(x)]

st. Y x=1,

i=1l..n

x>0, (11)

where ¢ = p/u >0 and ¥ = «k/p > 0, where the latter
ratio represents the degree of absolute prudence. This
utility function satisfies positive marginal utility of
expected return and skewness and negative marginal
utility of risk. Therefore, the maximum value func-
tion for the decision maker is simply determined for
a given set of parameters (u, p, k) > 0 representing
his/her absolute risk aversion and absolute prudence.
Knowledge of these parameters allows selecting a

4 This positive preference direction for the third moment is widely
accepted: see, e.g., Kane (1982) or Scott and Horvath (1980). The
determination of the preference direction of the fourth moment
in relation to the first three moments has been treated in Scott
and Horvath (1980). However, Brockett and Kahane (1992) cast
serious doubt on the leap from derivatives of utility functions
to preferences for moments of arbitrary distributions. Jondeau
and Rockinger (2006) describe some recent literature investigating
under which conditions adding higher moments improves or dete-
riorates the approximation.
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unique efficient portfolio among those on the weakly
efficient frontier maximizing the decision maker’s
direct MVS utility function.

Lai (1991) and Konno and Suzuki (1995) mention
the possibility of directly optimizing this third-order
approximation of expected utility, but decline it as
impractical given the difficulty of specifying the nec-
essary parameters.'” This same dual approach is effec-
tively pursued by Jondeau and Rockinger (2006) and
Harvey et al. (2003), among others. Because the objec-
tive function is nonconcave, it is impossible to guar-
antee global optimality in the dual approach. By its
very nature, one can only verify whether conditions
of local optimality are satisfied.

4.3. A Duality Result Between the Hyper-Shortage
Function and the Mean-Variance-Skewness
Utility Function

Since the representation set % is incompatible with

a dual representation because of its nonconvexity, we

can define the convex representation set as follows:

€R={(E,V,S)eR’ ¥(u,p, k) eR’,
U*(w, p, k) = pE — pV + «S}. (12)

Basically, Z% is convexified by imposing tangent iso-
utility surfaces compatible with the set of admissible
MVS portfolios. Now we are in a position to define
another shortage function corresponding to ‘€% and
state its properties.'®

DEerFINITION 4.2. Let ¢ = (gr, —8v, &) € R, x
(—R,) xR. The function S,: I — R, defined as S (x) =
sup{d; ®(x) + 6g € 6%} is the hyper-shortage func-
tion for portfolio x in the direction of vector g.

ProOPOSITION 4.3. §g satisfies the following properties:

(@) If (Se, Sy g5) € R, then S,(x) =0 & x € OM(3)
(weak efficiency).

(b) Sg is MV S-weakly monotonic, i.e.,

(EIR(x")], —Var[R(x")], SK[R(x")])
< (E[R(x)], —Var[R(x)], Sk[R(x)])

implies that 0 < §g(x) < gg(x/).
(c) S, is continuous.

This hyper-shortage function defined on €% shares
almost all the properties of S, mentioned in Proposi-
tion 3.2. Its proof is similar and therefore discarded.

To grasp duality in our framework, it is useful
to distinguish between overall, allocative, convexity,
and portfolio efficiency when evaluating the scope

for improvements in portfolio management."” The fol-

1> Konno and Suzuki (1995) also develop a piecewise linear approx-
imation for this direct utility maximization approach.

16 This development is partly inspired by the way Luenberger (1992)
defines the hyper-benefit function in a similar nonconvex setting.

17 This framework from production theory was transposed to port-
folio analysis in Briec et al. (2004).

lowing definition clearly distinguishes between these
concepts. For all (E, V,S) € 9% and (u, p, k) € R3, we
denote

(m, —p,k)-(E,V,S)=uE —pV +«S.

DEFINITION 4.4. The overall efficiency (OE) index is
defined as the quantity

OE(x; p, p, k) =sup{8; (k, —p, k) - (P(x) + 8g)
<U*(w, p, K)}.

The allocative efficiency (AE) index is defined as the
quantity AE(x; w, p, k) = OE(x; u, p, k) — S_g(x). The
convexity efficiency (CE) index is defined as the quan-
tity CE(x) = §g (x) — S¢(x). The portfolio efficiency (PE)
index is defined as the quantity PE(x) =S, (x).

Portfolio efficiency only guarantees reaching a point
on the nonconvex primal portfolio frontier, not nec-
essarily a point on the frontier maximizing the
investor’s indirect MVS utility function. In this sense,
it is similar to the notion of technical efficiency in pro-
duction theory. Convexity efficiency measures the dif-
ference between the shortage functions computed on
both the convex representation set ‘€% and the initial
nonconvex representation set 2%. Allocative efficiency
measures the portfolio adjustment along the convexi-
fied portfolio frontier to achieve the maximum of the
indirect MVS utility function. This may imply reshuf-
fling an eventual portfolio efficient and convexity effi-
cient portfolio in function of relative prices (i.e., the
parameters of the MVS utility function). Finally, over-
all efficiency ensures that all these ideals are achieved
simultaneously. In fact, OE is simply the ratio of
(i) the difference between indirect MVS utility (Def-
inition 4.1) and the value of the direct MVS utility
function for the observation evaluated, and (ii) the
normalized value of the direction vector g for given
parameters (w, p, K):

U*(/"L' P, K) - u(;.L,p,K)(x)

OE(x; u, p, k) =
M8+ P8y +K&s

(13)

Obviously, the following additive decomposition iden-
tity holds:

OE(x; 1, p, k) = AE(x; u, p, k) +CE(x)+PE(x). (14)

Luenberger (1995) established duality between the
expenditure function and the shortage function. Sim-
ilarly, the following result proves that the hyper-
shortage function can be computed over the dual of
the MVS space. The support function of the represen-
tation set ‘€% is the indirect MVS utility function U*.

ProPOSITION 4.5. Let 58 be the hyper-shortage function
defined on 3. 58 has the following properties:
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(1) Forall x ey,
ég(x) = l;]zllf)zo{U*(l‘L/ P, K) - u(p,,p,K)(x);
Kge+pgy +rgs=1}.
(2) For all (u, p, k) €R3,

U+(u, p, k) = SUP{U(M,;:,K) (x) — gg(x)}.

xXed

(m

Proor. The proof follows from Luenberger (1995). O

REMARK 4.6. The special cases of S, in Remark 3.4
lead to three equivalent special cases for §g: (a) return
maximization (g = (gz,0,0)), (b) risk minimization
(§=1(0,—gy,0)), and (c) skewness maximization (g =
(0,0, g5)). These three approaches imply particular
versions of the above duality result with extreme
investor preferences in terms of absolute risk aversion
and absolute prudence.

It is clear that these special types of projections
on the MVS frontier are only compatible with rather
extreme investor preferences. Note first that Propo-
sition 4.5 is established for all nonnegative triplets
(85, 8v, &s)- Hence, because the hyper-shortage func-
tion is derived from the convex set €%, the above
duality result holds true in these special cases.
Returning now to some of the examples commented
on after Remark 3.4, for instance, it is clear that Joro
and Na (2006) focus on variance reduction and Konno
and Suzuki (1995) only on skewness augmentation.
In our view, these alternative methods may some-
times lead to points of the unknown MVS frontier
that are probably unattractive from the viewpoint of
general investor preferences (e.g., when a projection
is made on vertical or horizontal parts of the non-
convex portfolio frontier). This fact is to some extent
masked by these methods because the link to a dual
(utility-based) approach is missing. By contrast, the
standard shortage function adapted here, by simulta-
neously looking for improvements in return, risk, and
skew, is compatible with what are widely supposed
to be more general investor preferences.

4.4. Shadow Prices: Conditions for Their Validity
Next, we devote some attention to study the proper-
ties of the shortage function that presume differentia-
bility at the point where the function is evaluated. To
this end, the adjusted risk aversion and prudence function
is introduced:

(1, p, k) (x) =argmin{U*(u, p, ) = U, p, 0 (X);
M8E+ng+KgS=1/(M/PIK)EO}, (15)
that implicitly characterizes both the agent’s risk aver-

sion and prudence.’® Another possible name is the

8 Luenberger (1995) defines an adjusted price function in consumer
theory. Due to its similarity, we label it the adjusted risk aversion and
prudence function.

shadow indirect MVS utility function because it
adopts a reverse approach by determining the param-
eters (u, p, k) and their implied shadow risk aversion
and shadow absolute prudence that render the cur-
rent portfolio optimal for the investor. Note that for
these parameters (u, p, k): OE = PE because AE =0
and CE =0 by definition.

The fact that, in principle, absolute risk aversion
and absolute prudence can be revealed using this
adjusted risk aversion and prudence function expands
our possibilities to directly optimize the third-order
approximation of expected utility indicated in Defini-
tion 4.1 above based on “realistic” parameter values.
Therefore, we are slightly more optimistic than, e.g.,
Lai (1991) about the potential of specifying the neces-
sary parameters.

PROPOSITION 4.7. Let S_g be the hyper-shortage function
defined on 3. At the points where §g is differentiable, it has
the following properties:

95, (x) _ WUy, p, 0w ()

1
) ox dx
= p(x)M —2p(x)Qx + 3k(x)A(x ® x).
)
We have
S, (x)
(i) =5 = pu(x),
JE[R(x)] Var[R(x)]=Ct, SK[R(x)] =Ct
aS, (x)
(i) —s ) — _p(x), and
IVar[R(x)] |grreo=ct, skirej=ct
as, (x)
(i) ot — k(¥),
I SK[R()] | gire=ct, varrw=ct

where M denotes the vector of expected asset returns, €} is
the co-variance matrix, and A is the modified co-skewness
matrix.

ProoF. See the online appendix.

In result (1), it is shown that changes of the hyper-
shortage function with respect to x are identical to
the variation of the indirect utility function, computed
with respect to the adjusted risk aversion and pru-
dence function. Furthermore, this same variation can
be linked to the return of each asset, the co-variance
and co-skewness matrices. Finally, result (2) shows
that the hyper-shortage function increases when the
expected return or the skewness increases, or when
the variance decreases.

Turning again to the computational aspects, the
only requirement to obtain the decomposition from
Definition 4.4 is to compute the additional cubic pro-
gram from Definition 4.1. Then, applying expres-
sion (13) and Definition 4.4 itself, the components OE
on the one hand and the sum of both components
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AE and CE on the other hand follow from taking
the difference between OE and PE. However, because
we know of no practical way to compute the hyper-
shortage function gg, we cannot sharply distinguish
between AE and CE.

In contrast to the shortage function, one can-
not guarantee global optimality for OE in the dual
approach because of the nonconcave nature of the
objective function. However, despite the fact that con-
ditions of local optimality do not guarantee global
optimality, there is a simple way to detect certain
deviations of global optimality for the indirect MVS
utility function.

REMARK 4.8. In some circumstances, one can infer
the nature of the dual optimal solution:

(a) When PE =0 and overall efficiency (hence also
allocative efficiency) turns out to be negative, then the
current optimal solution for the indirect utility func-
tion (U*(u, p, k)) is not a global optimum.

(b) When PE =0, then one cannot infer global opti-
mality for the same indirect utility function.

This finding may well imply that it is better to
develop portfolio optimization approaches using a
primal rather than a dual framework. However, the
development of global optimization algorithms may
well soon solve this problem from a computational
point of view.

Although the distinction between AE and CE can-
not be made, there is a way to determine whether
CE is equal to or larger than zero. It suffices to com-
pute PE and to insert its shadow prices as parame-
ters in the objective function when computing OE. If
both these components yield identical optimal port-
folio weights, then CE =0 (hence, gg = §,). Other-
wise, CE > 0, although its precise magnitude remains
unknown. This is expressed more exactly in the fol-
lowing proposition.

ProrosITION 4.9. Let k € {1,...,m} such that pro-
gram (P,) has a reqular optimal solution. Let Ay >0, Ay, >
0, and Ag >0 be, respectively, the Kuhn-Tucker multipli-
ers of the first three constraints in program (P,). If S, is
differentiable at point y* € 3, and if

k )
y eargmax{U,, ,, ) (X); x €3},

then CE(y*) =0.

Proor. See the online appendix.

It turns out that Proposition 4.9 is especially of great
practical significance when CE = 0 because in that
case the shadow prices from PE are identical to the
ones of S_g (because S, = ég). Thus, the adjusted risk
aversion and prudence function (14) can be derived
from the Kuhn-Tucker multipliers in program (P,)
when CE =0 for a specific portfolio y* under evalua-
tion, as shown in the next proposition.

ProrosiTiON 4.10. Let k € {1, ..., m} such that pro-
gram (P,) has a regular optimal solution. Let A >0, Ay, >
0, and Ag > 0 be, respectively, the Kuhn-Tucker multipli-
ers of the first three constraints in program (P,). If S, is
differentiable at point y* € 3, and if there exists a neigh-
borhood V (y*, €) such that CE(y) =0 for all y € V(y*, €),
then this yields

as
(1) HE[éI){((y_))] y=yk Z)\El
YN Nar(R(y)] = Var[R ()]
SKIR(y)] = SKIR(y)]
45, (y)
8
—_ =—A Llf’ld
y=y" v/
aVar[RU)I | giriy) = erreoy
SKIR(y)] = SIR(y")]
95, (y) k Y
y=y = As-
SKIRUW iriyy) = ErRM]

Var[R(y)] = Var[R(y¥)]

(2) The adjusted risk aversion and prudence function is
identical to the Kuhn-Tucker multipliers:

(M, p, K)(yk) = (Ag, Ay, Ag).

Proor. See the online appendix.

Note that this last result only holds true when
CE=0.

To conclude, the introduction of the hyper-shortage
function only serves to establish the above duality
result and to obtain an economic interpretation for
the initial shortage function. The fact that the hyper-
shortage function cannot be computed creates no
practical difficulties because it is in general not mean-
ingful to obtain estimates of shadow risk aversion
and prudence for all observations based on the hyper-
shortage function. Shadow prices are only meaningful
if the convexity efficiency is zero because only then
the initial shortage function and the hyper-shortage
function coincide. If both functions coincide, then the
shadow prices coincide too (see Proposition 4.10).
Proposition 4.9 establishes a simple way to verify
whether CE =0 or not, and thus whether the shadow
prices of the initial shortage function have an eco-
nomic meaning.

In general, it would of course be desirable to have
a way of computing the hyper-shortage function S_g.
First, this would allow to separate AE and CE sharply
instead of only being able to determine whether CE =
0. Second, §g could also be instrumental in the com-
putation of the indirect MVS utility function. Indeed,
starting from a projection of an initial (eventually inef-
ficient) portfolio using S_g onto the boundary of €%,
computing OE (Definition 4.4) with current optimiza-
tion tools would guarantee a global optimum.
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5. Empirical Illustration: Assets
Composing the French CAC40

Index

Just as an empirical illustration, we compute the
decomposition of overall efficiency for a small sam-
ple of 35 assets being part of the French CAC40 index
between February 1997 and October 1999.' This sam-
ple contains 567 daily return observations in com-
mon for all assets on which the first three centered
moments have been computed. As stated before, our
analysis can be applied to both assets and funds when
keeping the proper interpretation in mind. When
evaluating assets, each of the assets in turn is pro-
jected onto the MVS frontier and furthermore evalu-
ated with respect to the optimal point on the same
frontier given certain parameters of the indirect MVS
utility function. This yields an optimal portfolio start-
ing from a given asset with specific characteristics.
This perspective may seem unusual, but it should be
kept in mind that our approach does not try to trace
the whole frontier, but only evaluates existing assets
relative to this same frontier. When evaluating funds,
each fund is projected onto the frontier and evaluated
against an optimal point on the frontier in an effort to
define a fund of funds. This adheres to a more tradi-
tional interpretation.

The calculation of the cubic program (P,) yields PE.
Then, solving the cubic program (11) with parame-
ters u=1, p=15, and k = 1.5 determines the maxi-
mum of the indirect MVS utility function in Definition
4.1. These parameters of the MVS utility function fix
absolute risk aversion (¢ = 1.5) and absolute prudence
(¥ =1) around conventional values. Finally, apply-
ing the decomposition in Definition 4.4 and using (13)
leads to the decomposition results in Table 1. Note
that our AE component also includes CE: that is, no
effort was done to determine whether CE is larger
than or equal to zero. To save space, portfolio weights
and slack variables are not reported. These results are
contrasted with the MV results using basically (P,)
without the skewness constraint and quadratic pro-
gram (10) (see Briec et al. 2004 for all details).

A technical remark on the choice of a direction
vector when computing (P,) needs to be added.
The direction vector retained is the return, vari-
ance, and skewness of the evaluated asset itself. This
turns the shortage function into a proportional short-
age function: return and skewness are proportionally
increased, while variance is proportionally reduced.
In particular, we assume that g = |E[R(x)]|, gv =
Var[R(x)], and g5 = |Sk[R(x)]|. Taking absolute values
of return and skewness is needed because one cannot

¥ Changes in the CAC40 index over this period explain our focus
on these 35 out of the total of 40 assets.

Table 1 Mean-Variance-Skewness vs. Mean-Variance Benchmarking

Mean-variance-skewness Mean-variance

Assets from

CAC40 OF  AE PE OE  AE PE

1. Accor 1192 0366 0.826 1.082 0.256 0.826

2.  AGF 7174 6.587 0587 9.634 9.047 0.587

3. AirLiquide 2426 1596 0.830 2.049 1.219 0.830

4. Alcatel 1385 0469 0916 1.266 0.350 0.916

5. Aventis 1640 1.640 0.000 1.468 0.598 0.870

6. AXA 1206 0.607 0.600 1.084 0.327 0.757

7. BNP 0989 0989 0.000 0.935 0.094 0.841

8.  Bouygues 0.334 0.000 0.333 0.341 0.007 0.334

9.  Capgemini 1137 0248 0.889 1.053 0.164 0.889
10.  Carrefour 1121 1121 0.000 1.019 0.261 0.758
11.  Casino 1331 0612 0719 1182 0.462 0.720
12.  CreditLyonnais 0.602 0602 0.000 0.566 0.046 0.520
13.  Danone 1964 1199 0.766 1.700 0.935 0.765
14.  Dassault 0996 0.159 0.837 0.933 0.096 0.837
15.  Dexia 2726 1957 0770 2292 1522 0.770
16. Lafarge 1421 0827 0594 1270 0428 0.843
17.  Lagardere 1674 0787 0887 1469 0582 0.887
18.  LOreal 1731 1.034 0.697 1514 0.648 0.865
19. LVMH 1195 1195 0.000 1.092 0.266 0.826
20.  Michelin 2.851 2207 0.644 3.487 2.602 0.885
21.  Peugeot 1247 0412 0835 1127 0.292 0.835
22.  PPR 0896 0704 0192 0.836 0.103 0.733
23.  Renault 0.897 0897 0.000 0.860 0.042 0.819
24.  Gobain 1.808 0963 0.844 1571 0.727 0.843
25.  Sanofi 1570 1570 0.000 1.396 0.534 0.861
26.  Schneider 2742 1849 0893 2228 1335 0.893
27.  SocGenerale 1119 0.271 0.848 1.029 0.181 0.848
28.  Sodhexo 1819 0971 0.847 1592 0.745 0.847
29. ST Micro 0.102 0.102 0.000 0.167 0.167 0.000
30. Suez 2513 2383 0129 2140 1.392 0.748
31. TH 0.330 0.330 0.000 0.341 0.009 0.332
32.  Thales 2269 1366 0.903 1.898 0.995 0.903
33.  Total 1318 0492 0827 1183 0356 0.827
34.  Vinci 0922 0580 0.342 0.855 0.115 0.741
35.  VivendiUniversal 1.573 1,573 0.000 1.389 0.648 0.740
Mean 1606 1.105 0502 1544 0.787 0.757
Std. dev. 1183 1133 0374 1544 1538 0.191
Max 7174 6587 0916 9.634 9.047 00916

*Includes CE.

preclude negative values. In practice, this amounts to
taking a positive (negative) ¢ in (P,) for positive (neg-
ative) values of return and skewness.

To develop some intuition with the above theoret-
ical developments, we first interpret the decomposi-
tion results for a few single assets. First, we focus on
the asset “Vinci” and show how the above procedures
can be applied in practice. Then, as an illustration of
the fact that sometimes the differences between the
MVS and MV results are wide, we discuss the asset
“Credit Lyonnais.” Thereafter, we make some com-
ments on the sample results on the average.

ExamMpLE 5.1. For the single asset “Vinci,” its ini-
tially observed mean return is 0.0013, its risk is
0.00056, and its skewness is 2.9258E—06. These ob-
served values are entered on the lhs of program
(P,), and the model is solved. Holding all wealth in
this asset and projecting using its direction vector
leads to a portfolio that is doing 92% better in terms
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of OE compared to this asset. That is, by applying
the optimal portfolio weights one can simultaneously
improve return and skewness and reduce risk of this
same asset by 92%. The decomposition indicates that
34% of this poor performance is due to PE (i.e., oper-
ating below the nonconvex portfolio frontier), while
the remaining 58% of the gap is due to AE (ie,
choosing a wrong mix of return, skewness, and risk
given postulated risk aversion and prudence param-
eters). At the PE optimum, its return has increased
to 0.0022, its risk has been reduced to 0.00037, and
its skewness has risen to 3.9253E—06. The optimal
weights for this solution are x; = 0.056, x5 = 0.087,
X9 = 0.031, x,, = 0.096, x,9 = 0.480, x5, = 0.165, and
x33 = 0.085. By contrast, in the traditional MV model
we obtain a PE optimum with a higher return of
0.0023 and a lower risk of 0.00014, but its skewness
has now actually decreased to 2.88173E—07 compared
to its initial skewness. The optimal weights are now
xg = 0.174, x1y = 0.035, xy; = 0.023, x;, = 0.250, x;, =
0.012, xp = 0.013, x,3 = 0.023, x,9 = 0.214, x5, = 0.190,
and x;, = 0.065. Note that the MVS model implies
an average nonzero weight of 0.143 and a maximum
weight of 0.480, while the MV model leads to an aver-
age nonzero weight of 0.1 and a maximum weight of
0.250. Thus, the MVS model leads to less diversifica-
tion compared to the MV model in an effort to win in
terms of skewness. By contrast, the MV model offers
better results in terms of return and risk, but at the
cost of ignoring the skewness dimension altogether.

ExaMPLE 5.2. “Credit Lyonnais” is deemed very
portfolio inefficient in MV space, while it is span-
ning the MVS frontier (PE = 0). Starting off from
an observed return of 0.0017, a risk of 0.00041, and
a skewness of 9.57366E—06, the MVS model claims
that these result cannot be improved on, while the
MYV model yields a PE improved optimum return of
0.0026 and a reduced risk of 0.00020, but at the cost
of reducing the skewness to only 5.84529E—07. Thus,
the performance improvement suggested by the MV
model turns out to be completely illusory: in fact, no
improvement can be made once the skewness dimen-
sion is taken into account.

The average performance of the individual assets is
poor. In MVS space, they could improve their OE per-
formance by about 160% (compared to 154% in MV
space). The decomposition results indicate that the
majority of these inefficiencies can be attributed to AE
(compared to PE in MV space). Average portfolio inef-
ficiency is only about 50% (compared to about 76% in
MYV space). When looking at individual assets, no sin-
gle asset perfectly corresponds to the investors’ pref-
erences in that the minimum OE is 10% (“ST Micro”).
However, in total 10 assets are portfolio efficient and
span the MVS frontier (compared to only one asset in
the MV space). Obviously, as stated above, PE in MVS
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Table 2 Optimal Portfolio Composition
Number of Average Std. dev.
Portfolio models nonzero weights weight* weight
Mean-variance-skewness 6.12 0.163 0.420
MVS: Maximum return 1.42 0.705 0.331
MVS: Minimum risk 8.78 0.114 0.379
MVS: Maximum skewness 1.28 0.779 0.273
Mean-variance 12.45 0.080 0.168

Note. MVS = Mean-variance-skewness.
*Geometric mean.

space is always smaller or equal to PE in MV space
because of the additional constraint. This explains, for
instance, why the first three assets have identical PE
in both spaces.

Table 2 reports in a condensed form the distribu-
tion of the optimal portfolio weights. In particular,
we report the number of nonzero weights as well as
the mean and standard deviation of these portfolio
weights. Furthermore, the portfolio weights corre-
sponding to the following approaches are contrasted:
the shortage function in full MVS space, as well as its
three special cases, the (i) maximum return, (ii) mini-
mum risk, and (iii) maximum skewness models.

Comparing the MVS and the MV results first, one
observes that the latter implies a higher diversification
with on average lower weights and less dispersion
among weights. The minimum risk model resembles
the MV approach in that, on average, it has 8.78
nonzero portfolio weights. These weights are some-
what higher than the MV weights, but lower than the
optimal MVS portfolio weights. The maximum return
and maximum skewness models turn out to gener-
ate rather extreme solutions by concentrating wealth
in less than two assets with extremely high-average
weights as a consequence. This casts some doubts on
the approaches in the literature advancing these mod-
eling strategies.

An effort was done to determine whether CE is
larger than or equal to zero. It turns out that for
eight out of 35 observations, CE = 0. However, among
these eight observations, several observations contain
some slack(s) in one of the three dimensions. There-
fore, it is hard (if not impossible) to obtain reliable
information on the implied shadow risk aversion and
prudence. If one could obtain reliable estimates for
enough observations in the sample, then, in princi-
ple, the confrontation between postulated risk aver-
sion and prudence parameters and the shadow risk
aversion and shadow prudence would allow inferring
whether actual portfolio management strategies con-
form to certain ideal pre-specified risk aversion and
prudence profiles.

As a final remark, it is worthwhile pointing out that
decomposition results depend on specific risk aver-
sion and prudence parameters. But, if one is reluctant
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to specify these parameters, then nothing prevents
one from simply computing PE while ignoring OE
and AE. The only inconvenience may be that it may
be difficult for an investor to have a clear idea about
the position of certain portfolio efficient points in a
three-dimensional MVS space. The specification of an
indirect MVS utility function has the advantage of
picking an optimal point without the need to consider
the exact geometry of the three-dimensional frontier.

6. Conclusions

This paper has introduced a general method for
benchmarking portfolios in the nonconvex MVS space
using the shortage function framework (Luenberger
1995). Portfolio efficiency is evaluated by looking for
risk contraction on the one hand, and mean return
and skewness augmentation on the other hand. This
shortage function is linked to an indirect MVS utility
function. Exploiting this duality allows to differenti-
ate between portfolio efficiency, allocative efficiency,
and a convexity efficiency component. The latter com-
ponent is related to the difference between the primal,
nonconvex approach and the dual, convex approach.
A brief empirical application has served to illustrate
the computational tractability of the approach.

The proposed framework approximates the true
frontier by a nonparametric frontier using an effi-
ciency measure that is perfectly suitable for perfor-
mance gauging and that guarantees global optimality.
In addition, this shortage function can specialize to
any of the existing approaches focusing on return
maximization, skewness maximization, or risk min-
imization. Further virtues are that interesting dual
interpretations are available without imposing any
simplifying hypotheses. Unfortunately, no global opti-
mal solution can be guaranteed for the indirect MVS
utility function. These findings indicate that future
research should probably focus on developing portfo-
lio optimization methods using a primal rather than
a dual approach.

One could first of all hope for some further im-
provements in the proposed framework. For instance,
it would be good to have a computational proce-
dure to obtain the hyper-shortage function because
this would enable identifying the convexity efficiency
component. Furthermore, the recent development of
proper statistical inference for nonparametric frontier
models in a production context could probably be
transposed in an investment context (see Simar and
Wilson 2000).

But more drastic extensions are possible. Because
the shortage function is a distance function capa-
ble of representing multidimensional choice sets, one
obvious theoretical extension is to treat the general,
higher-order moment portfolio problem correspond-
ing to a general, higher-order Taylor expansion of the

expected utility function. This would, for instance,
allow integrating the full kurtosis—co-kurtosis matrix
into the current MVS portfolio-gauging framework.
This would allow to improve on the recent efforts of,
e.g., Athayde and Flores (2003) who come up with
a mean-skewness-kurtosis model, but they ignore the
variance dimension. Because the transition from the
traditional MV to the MVS space necessitated deal-
ing with nonconvexities, one could hope these further
generalizations would not be hindered by too many
computational problems.

An e-companion to this paper is available as part
of the online version that can be found at http://
mansci.pubs.informs.org/.
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