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This contribution is the first systematic attempt to develop a series of nonpara-
metric, deterministic technologies and cost functions without maintaining con-
vexity. Specifically, we introduce returns to scale assumptions into an existing
non-convex technology and, dual to these technologies, define non-convex cost
functions that are never lower than their convex counterparts. Both non-convex
technologies and cost functions (total, ray-average and marginal) are character-
ized by closed form expressions. Furthermore, a local duality result is established
between a local cost function and the input distance function. Finally, nonpara-
metric goodness-of-fit tests for convexity are developed as a first step towards
making it a statistically testable hypothesis.
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1 Introduction

In applied production analysis, the boundary of technology nowadays

plays a prominent role in efficiency and productivity measurement

(Lovell, 1993). This boundary can be estimated via several methodolo-

gies. One well-known method is the use of nonparametric, deterministic

technologies and support functions. The early nonparametric test litera-

ture on production (e.g., Diewert and Parkan, 1983; Varian, 1984)

focused on directly testing ‘‘revealed behavioral’’ conditions (e.g., Weak

Axiom of Cost Minimization) that are finite in nature on a finite number
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of observations. Realizing that the production possibilities set is unob-

servable,while the producer’s objective functions are, this approach leads to

the determination of inner and outer approximations of technologies that

contain the true but unknown frontier. More recently, the introduction of

efficiency measures into these nonparametric frontier methodologies has

led to extensive efficiency and productivity decompositions. For instance,

while Farrell (1957) already measured technical and allocative efficiency,

Färe, Grosskopf and Lovell (1983; 1985) separate technical efficiency into

scale efficiencies, congestion as well as pure technical efficiencies.

A familiar result in nonparametric production analysis is that a convex

monotone hull provides an inner bound approximation to the true,

convex technology (Varian, 1984). Probably less known is that a non-

convex monotone hull, named the Free Disposal Hull (FDH) (see Deprins,

Simar and Tulkens, 1984; Tulkens, 1993), is the closest inner approxi-

mation of the true, strongly disposable (but possibly non-convex) tech-

nology so far (Färe and Li, 1998). The present paper is the first attempt to

systematically extend this non-convex technology by including scaling

laws, developing corresponding non-convex cost functions, and estab-

lishing a duality result between both non-convex technologies and cost

functions. Duality results show that these non-convex technologies, with

standard returns to scale assumptions, imply non-convex cost functions

that are not lower than their convex counterparts. In addition, both types of

cost functions coincide only under special conditions. While convexifi-

cation is innocuous when limited to the input set, this is no longer true

when extended to the input-output space. Furthermore, this work offers a

framework to test for convexity. The remainder of the introduction

develops the five main goals of the contribution as well as potential rea-

sons to test for the convexity axiom in applied production analysis.

1.1 Main Goals of the Contribution

A first major goal is to extend the FDH technology by integrating tra-

ditional returns to scale assumptions without invoking convexity at all

(in contrast to recent work that only partially relaxes convexity).1 A first

1 See, e.g., Banker and Maindiratta (1986), Bogetoft (1996), Bogetoft, Tama
and Tind (2000), Färe, Grosskopf and Njinkeu (1988), Kuosmanen (2001), and
Post (2001). Färe, Grosskopf and Lovell (1994, pp. 52–53) link most of the
different piecewise technologies presented in the literature.
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key result is that this integration of returns to scale assumptions into this

non-convex FDH creates the closest inner bound non-convex approxi-

mations to the true technology allowing for various scaling laws.

Since dropping convexity altogether precludes an appeal to traditional

duality results, a second main goal is to develop non-convex cost func-

tions corresponding to these non-convex technologies. These need to be

compared to the traditional, empirical cost functions that impose con-

vexity of technology, not partial convexity of the input set. This leads to a

second central set of results. Traditional general convex cost functions are

always lower or equal than these new, non-convex cost functions. In

particular, both types of cost functions are only identical (hence convexity

harmless) under certain strong assumptions: constant returns to scale and

a single output. Notice that this result does not undermine any of the

traditional properties of the cost function. They only refine the property

that the cost function is non-decreasing in outputs: convex (non-convex)

cost functions are convex (non-convex) in the outputs.

The leap from partial input convexity to convexity of technology when

moving from theory to empirical application may have far reaching

consequences that have so far escaped notice. Though tests for monoto-

nicity and concavity of cost and production functions have been widely

applied since the first study finding divergences between primal and dual

approaches (Appelbaum, 1978), one cannot exclude that the difference

between the theoretical assumption of convexity of the input set and the

convexity of technology maintained in all empirical methodologies is

another source of potential conflict between primal and dual results. This

adds another potential problem to the list of conflicts between theory and

practice in production (e.g., Love, 1999).

A third major goal is to come up with a duality result that allows

inferring the original non-convex technologies from these non-convex

cost functions. A third central result of this contribution is that we manage

to prove a new, local duality between non-convex technologies obeying

different scaling laws and the corresponding non-convex cost functions.

While this local duality result is the best one can hope for in a non-convex

setting, it nevertheless forms the basis for completely reconstructing

the original, non-convex technologies making use of enumerative

principles.

One may conjecture that the relaxation of convexity in applied pro-

duction analysis has been hampered by the fear of computational com-

plexity. Therefore, a fourth major goal of this paper is to explore this more
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practical issue of relevance for empirical analysis. It turns out that these

non-convex nonparametric production and cost frontiers create few

computational problems. In a fourth central series of results, we derive

simple closed-form expressions to characterize both technology and (to-

tal, marginal and ray-average) cost functions, making use of implicit

enumeration algorithms based upon vector comparisons.

A fifth and final goal is to offer a framework for testing convexity.

These tests are couched in the framework of the recent efficiency mea-

surement literature. Of course, minimal axioms are not only important

when evaluating efficiency, since the volumes of technology and cost

correspondence directly affect the amount of inefficiency one can reveal

(Grosskopf, 1986), but are of equal importance for all traditional purposes

of economic analysis. Exploiting the relationship between efficiency

measures and goodness-of-fit measures used for hypothesis testing (Färe

and Grosskopf, 1995; Varian, 1990), we derive nonparametric tests for the

convexity hypothesis for both technologies and cost functions.

Our contribution is motivated by the conviction that empirical pro-

duction analysis should build upon minimal axioms. This simply responds

to a suggestion of Fuss, McFadden and Mundlak (1978, p. 223): ‘‘Given

the qualitative, non-parametric nature of the fundamental axioms, this

suggests […] that the more relevant tests will be non-parametric, rather

than based on parametric functional forms, even very general ones.’’ By

dropping convexity altogether, the non-convex production and cost

models described in this work can differentiate sharply between the effects

of convexity and returns to scale assumptions on economic analysis.

In fact, the reasoning behind the impact of imposing convexity on

technology on the cost function carries over to both revenue and profit

functions (see also Kuosmanen, 2003). Convexity of the output set is

traditionally assumed to establish duality between output distance func-

tion and revenue function. However, empirical methods imposing con-

vexity on technology yield revenue functions that are not lower than

revenue functions dropping convexity altogether. While long-run profit

functions are obviously independent of convexity assumptions on tech-

nology, any other restricted profit function (e.g., short-run or expenditure-

constrained profit functions) is not lower when tangent to a convex

compared to a non-convex technology.

At the philosophical level, the questioning of convexity constitutes in our

opinion only a first step toward examining the production axioms more

seriously, both theoretically and empirically. Convexity is not a primitive
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axiom, but is implied by additivity and divisibility (e.g., Arrow and Hahn,

1971, p. 59–62). Apart fromquestioning convexity, this contribution takes a

rather traditional and agnostic position. For instance, we maintain tradi-

tional global returns to scale assumptions, despite the fact that constant and

non-increasing returns to scale imply divisibility. This does not imply that

we accept divisibility to reject additivity.2 While additivity is probably the

least questionable assumption of both (e.g., being related to free entry),

mainstream and efficiency literature often invokes the traditional global

returns to scale assumptions, albeit in an instrumental way. For instance, the

efficiency literature employs constant and non-increasing returns to scale

technologies mainly to obtain local returns to scale information. In a similar

vein, this paper appeals to traditional global returns to scale assumptions as

instruments for testing the convexity hypothesis in detail.

1.2 Why Test for Convexity?

While convexity is traditionally invoked in economics, its use in production

theory and in efficiency gauging in particular is questionable. We first

develop two theoretical arguments. Next, we add some arguments from an

empirical, statistical and managerial viewpoint based upon the FDH.

First, convexity is difficult to justify as a general property of technol-

ogies. Farrell (1959, p. 380) points to indivisibilities and economies of

scale as sources of non-convexities and adds: ‘‘the onus of proof rests on

those who deny their existence’’. Allais (1977) confirms Farrell’s argu-

ments and adds a few of his own: in particular, he favors local convexity,

but rejects global convexity.3 Shephard (1970, p. 15) interprets convexity

solely in terms of time divisibility of technologies and sees no other

justification for its use. His argument ignores switching costs between

the underlying activities, a questionable assumption. Moreover, recent

2 There is some innovative work on technologies dropping convexity while
maintaining additivity: see, for instance, the Free Replicability Hull mentioned in
Bogetoft (1996), and Tulkens (1993).
3 Allais (1977, p. 188) is even more severe in his judgement when stating,

‘‘this omission [of discussing convexity] is to be found in all the contemporary
literature. I do not hesitate to say that it is deliberate, for even a limited discussion
of the postulate of general convexity would rapidly lead to the inevitable con-
clusion that this postulate cannot be accepted’’. Koopmans (1957) also called the
widespread use of convexity in production theory a matter of analytical conve-
nience.
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theoretical developments have dispensed with convexity in deriving

essential results regarding, for instance, the existence of general equi-

librium (e.g., Brown, 1991). Despite this theoretical attention devoted to

non-convexities in production, no general empirical methodology is

available to handle these non-convexities.

In addition to this theoretical objection, there is some recent empirical

evidence that non-convex costs matter in manufacturing and could explain

the volatility of production relative to sales. For instance, Hall (2000), and

Ramey (1991) find non-convex costs in the automobile industry due to

changes in the chosen number of shifts and in the eventual shutting down

of plants for a week at the time. Without entering into long-standing

controversies, it seems clear that these findings are to some extent in line

with arguments advanced by engineering production function advocates

that engineering processes yield nicely behaved (e.g., convex) technolo-

gies only under very stringent circumstances (Wibe, 1984).

While some may question the validity of these general arguments, few

would probably deny our ignorance with respect to public sector tech-

nologies in particular. Moreover, since prices are often lacking, perfor-

mance gauging in the public sector is necessarily limited to technical

rather than allocative efficiency. Under these circumstances, a detailed

knowledge of technology is indispensable and convexity may be ques-

tionable (Bös, 1988).

Second, the at times harmless convexification of production possibility

sets when developing dual value functions may have led to misinterpre-

tations about the role of convexity. Focusing on the cost function -the main

interest of this contribution- convexity is harmless if and only if convexity

of the input set is concerned (e.g., Varian, 1992). But, any other convexity

is not harmless. Duality implies that one can reconstruct the input set

underlying the cost function. Reconstructed and original input sets are

identical when the original input set is convex and monotonic. Otherwise,

the convexified and monotonized reconstruction of the input set is a

superset of the eventual non-convex or nonmonotonic original input set.

However, both original and reconstructed input sets always have the same

cost functions. Therefore, no economic information is lost when ignoring

eventual non-convex or nonmonotonic parts of the technology.

However, there are two problems with imposing partial convexity (e.g.,

on the input set only). First, doubts about convexity in general hold a

fortiori with respect to partial convexity. Second and more importantly,

most empirical methodologies impose convexity of technology, not
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partial convexity. Imposing convexity of technology, there is no guarantee

that non-convex parts of technology are irrelevant for determining min-

imum costs for given input prices. It turns out that non-convex minimal

cost levels corresponding to non-convex technologies are never situated

below the corresponding general convex cost levels. Furthermore, both

types of cost functions only coincide under specific conditions. This

consequence of imposing convexity of technology on empirical specifi-

cations has largely escaped notice. Henceforth, convexification of tech-

nology is not innocuous when defining technologies and cost functions,

but ideally requires testing.

Though empirical production analysis is still dominated by convex

technology and cost specifications, the non-convex FDH model has

proven useful from empirical, statistical and managerial viewpoints.4

First, it contributed to empirically documenting the importance of

convexity in shaping the volume of the production possibility set and the

ensuing inefficiency. For example, Cummins and Zi (1998) systematically

compare a wide range of parametric and nonparametric methodologies

and confirm that efficiency results are consistent in terms of ranking

among models of the same ‘‘family,’’ that there can be large differences

between parametric and nonparametric models, and –crucial for our

argument– that nonparametric convex and FDH models differ widely:

technical inefficiency is only about 2% on FDH while it amounts to about

40% on nonparametric convex technologies. This divergence is alarming

when realizing that regulators recently started integrating frontier

benchmarks in their policies. Last but not least, the same article also

reports that FDH efficiency scores tend to correlate at least as good with

conventional performance measures (e.g., return on equity) than scores

estimated using nonparametric convex frontiers.

Second, FDH has attractive statistical properties. Imposing free dis-

posability only, it is a consistent estimator for any monotone boundary,

although its rate of convergence is small (Simar and Wilson, 2000). When

technology is convex, which ideally requires testing, then it is possible to

improve the small sample error of FDH by either using information on its

asymptotic distribution of efficiency estimates, or by simulated (boot-

strapped) empirical distributions. In addition, asymptotically there is no

reason for imposing convexity: (i) when technology is truly convex, the

FDH estimator converges to the true estimator though its convergence is

4 The terms technology and model are treated as synonyms.
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notably slower than the convex estimator; (ii) while a convex model

causes specification error when the true technology would be non-convex.

The same arguments apply to the cost functions too.

Third, scattered in the literature, there is some evidence that managers

question the validity of convexity in efficiency measurement (e.g.,

Epstein and Henderson, 1989). They have difficulties accepting that

relative performance is determined by projections onto hypothetical

piecewise linear combinations, whose feasibility cannot be observed.

Having developed these theoretical and empirical reasons for ques-

tioning convexity, this contribution unfolds as follows. Section 2 intro-

duces basic production axioms and defines non-convex and convex

nonparametric, deterministic frontier technologies. Section 3 derives non-

convex total, marginal and ray-average cost functions corresponding to

these technologies. Section 4 establishes and interprets a local duality

result between these non-convex technologies and their corresponding

cost functions and defines general, nonparametric tests for the impact of

convexity conditional on a scaling law. Then, Sect. 5 introduces specific

nonparametric tests for the impact of convexity on an existing taxonomy

of efficiency concepts developed by Färe, Grosskopf and Lovell (1983;

1985). A brief empirical illustration is added in Sect. 6. A final section

concludes and provides directions for future research.

2 Non-convex technologies: Axioms and formulations

Efficiency is measured using deterministic, nonparametric technologies

based on activity analysis (see Koopmans, 1951). Production technolo-

gies are based on K observations using a vector of inputs x 2 <n
þ to

produce a vector of outputs y 2 <m
þ. Technology is represented by its

production possibility set T = {(x,y): x can produce y}, i.e., the set of all

feasible input-output vectors. The input set L(y) denotes all input vectors

x producing the output vector y, i.e., L(y) = {x: (x,y) ˛ T}. The output set

P(x) is defined as the set of all output vectors y that can be obtained from

the input vectors x, i.e., P(x) = {y: (x,y) ˛ T}. A final convenient char-

acterization of technology for "(x,y) ˛ T is the input distance function:

Diðx; yÞ ¼
maxfh : h � 0; ðx=h; yÞ 2 Tg if y 6¼ 0 ;
þ1 if y ¼ 0 :

�
ð1Þ

Our contribution makes selective use of the following list of assumptions

on technology:
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(A.1) No free lunch ((0,y) ˛ T � y = 0); inaction is feasible ((0,0) ˛ T).

(A.2) T is closed.

(A.3) Strong or free disposal of inputs and outputs: T ¼ ðT þ NÞ \ <nþm
þ

where N ¼ <n
þ � ð�<m

þÞ.
(A.4) T exhibits:

(i) Constant Returns to Scale (CRS): when (x,y)˛T, then d(x,y)˛T,

"d > 0;

(ii) Non-Increasing Returns to Scale (NIRS): when (x,y)˛T, then

d(x,y)˛T, "d ˛[0,1];

(iii) Non-Decreasing Returns to Scale (NDRS): when (x,y)˛T, then

d(x,y)˛T, "d ‡ 1;

(iv) Variable Returns to Scale (VRS): when (i), (ii) and (iii) do not

hold.

(A.5) T is convex.

Assumptions (A.1) and (A.2) are weak mathematical regularity assump-

tions. Strong or free disposability of inputs (outputs) means that inputs

(outputs) can be increased (decreased) while maintaining the same output

(input) levels. Specific assumptions regarding the returns to scale of

technologies, i.e., the way the production process can be scaled up and

down for each observation, are made in (A.4). The crucial question we

focus on is the usefulness of the traditional convexity assumption (A.5).

Several nonparametric technologies have been derived from these axi-

oms.5 The non-convex FDH satisfies (A.1) to (A.3) and (A.4 iv). Convex

technologies satisfying (A.1) to (A.5) have been defined (Färe, Grosskopf

and Lovell, 1985). Further, nonparametric tests focusing on (A.3) are

available (e.g., Färe, Grosskopf and Lovell, 1987). This contribution

focuses on developing nonparametric tests for (A.5).

We now present the non-convex technologies and contrast these with

standard convex models.6 An illuminating way to construct these

production models is to start off from the production possibilities sets

5 (A.1) is sometimes ignored when defining convex nonparametric technolo-
gies (e.g., Banker, Charnes and Cooper, 1984), probably because it creates some
problems for specific returns to scale assumptions. For instance, a convex tech-
nology with VRS including the origin immediately turns into a NIRS technology.
6 Convex technologies are defined in Banker, Charnes and Cooper (1984),

Färe, Grosskopf and Lovell (1983; 1985), among others. FDH-based, non-convex
technologies in this article have been partly outlined in Bogetoft (1996, p. 464),
while Kerstens and Vanden Eeckaut (1999) mainly develop the definitions in (4).
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associated with a single observation and then to build the technology of

the sample as a union of sets.

Consider a set of production units W ¼ x1; y1ð Þ; . . . ; xK ; yKð Þf g that

contains the null input-output vector ((0,0) ˛ W). Individual production

possibilities sets are based upon one production unit (xk,yk), the strong

disposability (SD) assumption and different maintained hypotheses of

returns to scale (G):

SSD;Cðxk; ykÞ ¼ ðx; yÞ: x � dxk; 0 � y � dyk; d 2 Cf g
where C 2 VRS;CRS;NIRS;NDRSf g;
with ðiÞ VRS ¼ d: d ¼ 1f g;

ðiiÞ CRS ¼ d: d � 0f g;
ðiiiÞ NIRS ¼ d: 0 � d � 1f g;
ðivÞ NDRS ¼ d: d � 1f g:

ð2Þ

The most basic non-convex technology imposes strong disposability

(A.3) and no scaling (i.e., VRS are imposed (d ¼ 1)).7 The other tech-

nologies add a specific assumption regarding returns to scale for each

single observation. The scaling parameter d follows the definitions in

axiom (A.4). Non-convex and convex unions of these individual pro-

duction possibilities sets yield the FDH and FDH-based technologies on

the one hand and the traditional convex models on the other hand:

T NC;C ¼ [
K

k¼1
SSD;Cðxk; ykÞ and T C;C ¼ Co [

K

k¼1
SSD;Cðxk; ykÞ

� �
; ð3Þ

where NC and C represent non-convexity and convexity, respectively, G
is as defined in (2) and Co(A) denotes the convex hull of a set A. Observe

that from an economic viewpoint convexity naturally requires multiple

observations before it makes a difference in constructing technologies.

In addition to this approach, based on sets and their operations, the

unified algebraic representation of convex technologies in Bogetoft

(1996) can be extended to include non-convex technologies under dif-

ferent returns to scale assumptions as follows:

7 VRS technologies do not assume any particular scaling law to hold. In fact,
VRS technologies satisfy NDRS and NIRS in different regions (Färe, Grosskopf
and Lovell, 1994).
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T K;C ¼ ðx; yÞ: x �
XK

k¼1
xkdzk; y �

XK

k¼1
ykdzk; zk 2 K; d 2 C

( )
;

where K 2 NC;Cf g;

with ðiÞ NC ¼ zk 2 <K
þ:
XK

k¼1
zk ¼ 1 and zk 2 f0; 1g

( )
;

ðiiÞ C ¼ zk 2 <K
þ:
XK

k¼1
zk ¼ 1 and zk � 0

( )
;

ð4Þ

whereG is again as defined above.8 There is one activity vector (z) operating

subject to a non-convexity or convexity constraint and a scaling parameter

(d) allowing for a particular scaling of observations spanning the frontier.

This unified representation deviates from standard formulations of

convex models in the literature to highlight the similarity between convex

and non-convex production models (Färe, Grosskopf and Lovell, 1994).

This formulation guarantees a one-to-one correspondence between deci-

sion variables and parameters on the one hand, and underlying production

assumptions on the other hand. This advantage is important for peda-

gogical purposes, because convexity and returns to scale assumptions are

clearly separated: (i) The scaling factor (d) reflects the specific returns to
scale assumption, (ii) Inequality signs are due to the strong disposability

axioms, (iii) The sum constraint on the activity vector (z) represents the

convexity hypothesis; while the same sum constraint, together with the

binary integer constraint on z, represents non-convexity.

Intuitively, these non-convex technologies are the most conservative,

inner bound approximations of the true technology allowing for various

returns to scale hypotheses. This can be phrased in terms of the so-called

minimum extrapolation principle (Banker, Charnes and Cooper, 1984;

Bogetoft, 1996).

Definition 1: An empirical reference technology T
L,G
, an estimate of T,

satisfies the minimal extrapolation principle if T
L,G

is the smallest subset

of <MþN
þ containing the data W and satisfying certain technological

assumptions.9

8 It is also inspired by the formulation of the convex CRS model in, e.g.,
Banker, Charnes and Cooper (1984, p. 1082).
9 The minimum extrapolation principle automatically guarantees (A.2).
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The existence of a smallest technology is not automatically guaranteed

with any set of assumptions, but needs to be proven (see Bogetoft, 1996,

p. 458 for details). We are now ready to define formally that the non-

convex technologies T
NC,G

satisfy the minimum extrapolation principle.

This is the first central result of our contribution.

Proposition 1: The non-convex technologies T
NC,G

are the minimal

extrapolation technologies containing the data W ¼ x1; y1ð Þ; . . . ;f
xK ; yKð Þg � <MþN

þ and satisfying (A.1) to (A.4).

Proof: See the Appendix.

Evidently, the convex technologies T
C,G

are similarly the minimum

extrapolation technologies satisfying (A.1) to (A.5).

Remark 1: One can define another non-convex VRS model as the

intersection of non-convex NIRS and NDRS technologies:

T
NC,VRS-˙

= T
NC,NIRS ˙ T

NC,NDRS
,10 since T

NC,VRS ˝ T
NC,VRS-˙

, T
NC,VRS

is the

true VRS non-convex inner bound technology. This shows that not all

technologies necessarily satisfy the minimal extrapolation principle.11

To solve existing convex models as well as the FDH-based technolo-

gies, we develop a mathematical programming problem based on the

technology definition (4). Input efficiency (Ei(x,y)), i.e., the inverse of the

input distance function, relative to all eight production models is com-

puted by solving for each observation (x,y) the following binary mixed

integer, nonlinear programming problem (P.1):

Eiðx; yÞ ¼ ½Diðx; yÞ��1 ¼ min k: ðkx; yÞ 2 T K;C
� �

; ð5Þ

whereby G and L follow the definitions in (2) and (4). In the Farrell (1957)

tradition, a radial efficiency measure, the inverse of the input distance

10 Obviously, T
NC,VRS-˙ ˝ T

NC,NIRS
and T

NC,VRS-˙ ˝ T
NC,NDRS

. Following defi-
nitions of operations on technologies in Ruys (1974), T

NC,VRS-˙
can be explicitly

written as a conjunction of T
NC,NIRS

and T
NC,NDRS

technologies. The convex VRS

model is similarly written as: T
C,VRS

= T
C,NIRS ˙ T

C,NDRS
. Also both convex and

non-convex CRS models can be defined as a union of NIRS and NDRS tech-
nologies. These indirect ways of estimating VRS and CRS technologies are
developed in Briec et al. (2000).
11 This intersection definition also highlights the fact that in the non-convex

world several VRS technologies can be defined since the VRS definition is very
general, in that it only excludes three particular cases of scaling.
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function, indicates the maximum amount by which inputs can be decreased

while producing given outputs. Ei(x,y) is bounded above by unity, which

designates efficient production on the isoquant of technology.

Convex models require solving a nonlinear program, while non-convex

technologies are solved using nonlinear, binary mixed integer programs.

However, a simple transformation of (4) enables solving convex tech-

nologies using linear programs (Färe, Grosskopf and Lovell (1994)).

Computing Ei(x,y) on non-convex technologies only involves simple

analytical expressions. Given the binary nature of the integers and the fact

that they add up to unity, these programs can be solved using a type of

implicit enumeration algorithm based upon vector comparisons (Garfinkel

and Nemhauser, 1972, § 10.1). In particular, the construction of FDH-

based technologies as non-convex unions of individual subsets (3) allows

use of the enumerative principle (i.e., minimizing (maximizing) a func-

tion over a finite union of sets reduces to taking the minimum (maximum)

of the minima (maxima) of the subsets).12

The closed-form expression for calculating Ei(x,y) on FDH-based tech-

nologies intuitively consists of two main steps. (i) In the first part, a modified

index set of better observations is defined allowing for a rescaling of

observations in the sample according to the specific returns to scale

assumption postulated. Since the vector dominance comparison accounts for

the possibility that observations are rescaled within certain parameter

bounds, this is coined ‘‘scaled vector dominance’’. The ‘‘scaled better set’’

Bðx; y;CÞ of observation (x,y) is conditional on a returns to scale assumption:

Bðx; y;CÞ ¼ ðxk; ykÞ: dxk � x; dyk � y; d 2 Cf g; ð6Þ

where G characterizes returns to scale (2). Obviously, the next relation

holds:

ðxk; ykÞ 2 Bðx; y;CÞ , ðx; yÞ 2 SSD;Cðxk; ykÞ; ð7Þ

where SSD;Cðxk; ykÞ refers to the individual production possibilities sets

with different returns to scale (G) assumptions (2). (ii) In the second part

the input efficiency measure Ei(x,y) is calculated given some knowledge

about the scaling parameter. Instead of testing for all values of the scaling

parameter (d), for each evaluated observation one only needs to find

12 This algorithm generalizes the implicit enumeration method for FDH in the
literature: e.g., Cherchye, Kuosmanen and Post (2001), or Tulkens (1993).
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optimal values for d depending on the selected orientation of measure-

ment and the returns to scale assumption.

This intuitive procedure is condensed to a new proposition regarding

the solution of the input radial efficiency measure using scaled vector

dominance. However, to obtain an enumerative process for measuring

Ei(x,y), we first need to state precisely under which conditions (xk,yk)

‘‘dominates’’ (x,y) given G. To accommodate eventual null components,

the following notation is introduced for any input-output vector ðx; yÞ:
IðxÞ ¼ fn 2 f1; . . . ;Ng : xn > 0g and JðyÞ¼fm2f1; . . . ;Mg : ym>0g.
We are now able to state our conditions for membership to the scaled

better set without loss of generality.

Lemma 1: For k ¼ 1; . . . ;K, we have the following condition:

ðxk; ykÞ 2 Bðx; y;CÞ , max
m2J ykð Þ

ym

ykm

� �
; min

n2I xkð Þ

xn

xkn

� �� �
\ C 6¼ ;:

Proof: Condition ðxk; ykÞ 2 Bðx; y;CÞ can be written as dxk � x; dyk � y;

d 2 C. Equivalently, we get d min
n2I xkð Þ

xn
xkn

� 	
and d max

m2J ykð Þ
ym
ykm

� 	
for d 2 C.

This immediately yields the result. u

We finally end up with the following closed-form expression for the

radial input efficiency measure Ei(x,y).

Proposition 2: Ei(x,y) on non-convex technologies T NC;C is computed:13

Eiðx; yÞ ¼

ðiÞ min
ðxk ;ykÞ2Bðx;y;CÞ

min
n2IðxkÞ

xn
xkn

� 	� 

for C ¼ VRS

ðiiÞ min
ðxk ;ykÞ2Bðx;y;CÞ

max
m2JðykÞ

ym

ykm

� �
� min

n2IðxkÞ

xn

xkn

� �� 


for C 2 fCRS;NIRSg

ðiiiÞ min
ðxk ;ykÞ2Bðx;y;CÞ

max max
m2JðykÞ

ym

ykm

� �
; 1

� �
� min

n2IðxkÞ

xn

xkn

� �� 


for C ¼ NDRS:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Proof: See the Appendix.

13 No specific enumeration algorithm is developed for T
NC,VRS-˙

. As an inter-
section of technologies, Ei(x,y) is simply the minimum of two measures: Ei(x,y)

computed w.r.t. T
NC,NIRS

and on T
NC,NDRS

.
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3 Non-convex Cost Functions: Total, Marginal and Ray-average

Formulations

Except under specific conditions, when technology is non-convex, then

also the cost function fails convexity. In particular, non-convex cost

functions are not lower that convex ones, except in case of a single output

and CRS.

It is possible to derive a cost function corresponding to these non-

parametric, non-convex and convex technologies with different returns

to scale assumptions. Denote the input correspondence on T K;C as

LK;CðyÞ ¼ x : ðx; yÞ 2 T K;C
� �

. Throughout the paper, it is assumed that p

be a vector of positive input prices. Then, the cost function corresponding

to both types of technologies is defined by:

CK;C p; yð Þ ¼ min p � x: x 2 LK;CðyÞ
� �

: ð8Þ

While convex cost functions require solving linear programming

problems, we obtain the following closed-form expressions for the non-

convex cost functions.

Proposition 3: Non-convex cost functions CNC;Cðp; yÞ ¼ min p � x : x 2f
LNC;CðyÞg can be characterized as follows:

CNC;Cðp; yÞ ¼

ðiÞ min
k¼1...K

p � xk: yk � yf g for C¼ VRS;

ðiiÞ min
k¼1...K

max
m2JðykÞ

ym
ykm

� 	
� p � xk

� 

for C¼ CRS;

ðiiiÞ min

k: max
m2Jðyk Þ

ym
ykm

� 	
�1

� 
 max
m2J ykð Þ

ym

ykm

� �
� p � xk

� 


for C¼ NIRS;

ðivÞ min
k¼1...K

max max
m2J ykð Þ

ym

ykm

� �
;1

� �
� p � xk

� 


for C¼ NDRS;

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

Proof: See the Appendix.
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To illustrate the ease of computing the above non-convex cost function

and to make a comparison with the cost function found by Hall (2000) for

U.S. car manufacturing, let us consider the following example.

Example 1: For simplicity, we consider a set of data with two input-

output vectors: W ¼ fð1; 1Þ; ð2; 3Þg, and we assume a unit input price

(p ¼ 1). Furthermore, to clarify our ideas, we consider the case of a

NDRS technology. Using the above results, we obtain:

CNC;NDRSðp; yÞ ¼ min
k¼1;2

max max
y
yk

� �
; 1

� �
� 1 � xk

� 


¼ min max
y
y1
; 1

� �
� 1 � x1;max

y
y2
; 1

� �
� 1 � x2

� 


¼ min

�
maxðy; 1Þ; 2 �max

y
3
; 1

� 	

:

It is then clear that:

CNC;NDRSðp; yÞ ¼
1 if 0 � y � 1,
y if 1 � y � 2;
2 if 2 � y � 3;�
2=3
�
y if 3 � y <1.

8><
>:

This technology and cost function are illustrated in Figs. 1 and 2.

Clearly, a glance at Fig. 4 in Hall (2000) reveals that this simple

numerical example manages to reproduce the basic shape of the total cost

x

y

T NC,NDRS

0 1 2 3

1

2

3

Fig. 1. A non-convex NDRS technology
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function, with one or two shifts estimated for car manufacturing. Notice

that the non-convex cost function is non-decreasing in the outputs.

Obviously, the properties of the cost function with respect to input prices

are also preserved.

It is now important to compare this non-convex cost function to its

convex counterpart. While partial convexity of the input set is innocuous,

convexity of the technology is not. Trivial as it may seem, a second, so far

unnoticed central result is that the cost functions based on convex tech-

nologies are always lower than or equal to cost functions based on non-

convex technologies.

Proposition 4: Let the non-convex cost function CNC;Cðp; yÞ ¼ min

fp � x : x 2 LNC;CðyÞg and let the convex cost function

CC;Cðp; yÞ ¼ minfp � x : x 2 LC;CðyÞg. Then, we have the following

properties:

(1) In general: CC;Cðp; yÞ � CNC;Cðp; yÞ:
(2) In the case of C ¼ CRS and a single output: CC;Cðp; yÞ ¼ CNC;Cðp; yÞ.

Proof: (1) Let us fix some y 2
S

x2<n
þ

P NC;CðxÞ. We deduce that

LNC;CðyÞ 6¼ [. Since T NC;C � T C;C; we have LNC;CðyÞ � LC;CðyÞ and

thus LC;CðyÞ 6¼ [. Thus, CC;Cðp; yÞ and CNC;Cðp; yÞ are well defined.

Since LNC;CðyÞ � LC;CðyÞ, we deduce that CC;Cðp; yÞ � CNC;Cðp; yÞ.
(2) Assume that the output set is one-dimensional. Consider a production

technology T C;CRS enveloping the sample W ¼ fðx1; y1Þ; . . . ; ðxK ; yKÞg.

y

C

C              (p,y)NC,NDRS

1 2 3

1

2

3

0

Fig. 2. A non-convex NDRS cost function
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For k ¼ 1; . . . ;K, let us denote dk ¼ y
yk
. Now let us define the data-set

W 0 ¼ fðd1x1; d1y1Þ; . . . ; ðdKxK ; dKyKÞg ¼ fðd1x1; yÞ; . . . ; ðdKxK ; yÞg.
Clearly, LC;CRSðyÞ ¼ Coðfd1x1; . . . ; dKxKgÞ þ <n

þ ¼ fx 2 <n
þ : x �PK

k¼1 zkdkxkg. Since Coðfd1x1; . . . ; dKxKgÞ is by definition a con-

vex polyhedron, the minimum of a linear function is achieved by

some extreme point. Therefore, CC;CRSðyÞ¼ inffp �x : x2LC;CRSðyÞg¼
min

k
fp �dk �xkg¼ min

k
fp � y

yk
�xkg. Now, let us calculate the cost function for

a non-convex otherwise similar technology. From Proposition 3, we have:

CNC;CRSðp;yÞ¼ min
k¼1...K

max
m2JðykÞ

ym
ykm

� 	
�p�xk

� 

¼ min

k¼1:::K

n
y
yk
�p�xk

o
¼CC;CRSðp;yÞ

and the result is obtained. u

Remark 2: The analytical expression for the convex, single output, CRS

cost function developed near the end of the proof (i.e., CC;CRSðp; yÞ ¼
min

k¼1...K

y
yk
� p � xkg

n
) is – to the best of our knowledge – new.

This remarkable property that, in general, convex cost functions are

never higher than non-convex cost functions has far reaching implications

for the use of frontier technologies for benchmarking purposes. Imposing

convex cost targets may be excessively demanding when convexity is

doubtful. This is illustrated by the next example. Only for the single

output CRS case convex and non-convex cost functions are identical and

the convexity hypothesis cannot be tested. Notice that none of the tra-

ditional cost function properties are questioned. At best, this result refines

the property that the cost function is non-decreasing in outputs: convex

(non-convex) cost functions are convex (non-convex) in the outputs.

Obviously, as alluded to in the introduction, similar results could be

derived for the revenue function. Revenue functions based upon convex

technologies are no lower than revenue functions based upon non-convex

technologies. Only in the single input CRS case, both these revenue

functions coincide. Similarly, except for the long-run profit function, any

other restricted profit function is no lower when tangent to a convex

instead of a non-convex technology.

Example 2: Let us reconsider the set of data from Example 1. Assume

again that the input price is p ¼ 1 and consider again the NDRS case.

Moreover, assume that y ¼ 2. For the convex NDRS hull, we observe:

CC;NDRSð1; 2Þ ¼ 3=2. However, for the non-convex technology, we obtain

a higher cost level: CNC;NDRSð1; 2Þ ¼ 2.
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We are now interested in deriving a closed-form expression for the cor-

responding non-convex marginal cost functions. Since technology is non-

smooth, the cost function is non-smooth. Hence, the marginal cost function

is not defined everywhere. However, differentiability of the cost function

fails only at certain points and, thus, it remains almost everywhere differ-

entiable. Therefore, it is possible to obtain a closed-form expression for the

marginal cost function for any returns to scale condition on technology.

Definition 2: At points where the cost function is differentiable, the

marginal cost vector is defined by:

CK;C
m ðp; yÞ ¼

@CK;Cðp; yÞ
@y

:

Proposition 5: Let us denote KCðyÞ ¼ argmin
k
fp � x : x 2 LNC;CðyÞg and

Mðk; yÞ ¼ arg max
m2JðykÞ

ym
ykm

� 	
. The non-convex marginal cost vector CNC;C

m

satisfies the following properties:

(1) If C ¼ VRS, then the output set P(x) can be partitioned in K0 do-

mains D1;D2; . . . ;DK0
having a non-empty interior such that

CNC;C
m ðp; yÞ ¼ 0 8y 2 D

	

k for k ¼ 1; . . . ;K0, where D
	

k denotes the

interior of the domain.

(2) If C 2 fCRS;NIRSg, #ðKCðyÞÞ ¼ 1 and #ðMðk; yÞÞ ¼ 1, then the

cost function is differentiable, and we have:

@CNC;Cðp; yÞ
@ym

¼
p�xk0
yk0m0

if m ¼ m0

0 else

�
for m ¼ 1; . . . ;M

where k0 ¼ KCðyÞ and m0 ¼ Mðk; yÞ, and # denotes the cardinality

operator.

(3) If C ¼ NDRS, #ðKCðyÞÞ ¼ 1 and #ðMðk; yÞÞ ¼ 1, then the cost

function is differentiable, and we have:

@CNC;Cðp; yÞ
@ym

¼

p�xk0
yk0m0

if max
m2JðykÞ

ym
ykm

� 	
> 1 and m ¼ m0

0 if max
m2JðykÞ

ym
ykm

� 	
< 1 or m 6¼ m0

8>><
>>:

for m ¼ 1; . . . ;M

where k0 ¼ KCðyÞ and m0 ¼ Mðk; yÞ.
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Proof: See the Appendix.

At points where the cost function is not differentiable, the limit of the

marginal cost function is �1 and the limit of the marginal productivity is

þ1. The analysis of the nonparametric, convex marginal cost function in

Chavas and Cox (1995) is based upon parametric programming and no

analytical expressions can be obtained.

We now apply the above result to Example 1.

Example 3: We consider W ¼ fð1; 1Þ; ð2; 3Þg, the input price p is unity

(p ¼ 1), and we only consider the NDRS case. From Example 1, we

obtain:

CNC;NDRS
m ðp; yÞ ¼

0 if 0 < y < 1;
1 if 1 < y < 2;
0 if 2 < y < 3;�
2=3
�

if 3 < y <1:

8>><
>>:

In the context of a multi-output technology the average cost notion is

undefined, but it can be replaced by the ray-average cost function (e.g.,

Chavas and Cox, 1999).

Definition 3: For all technologies, the ray-average cost function is de-

fined as:

RACK;Cðp; yÞ ¼ inf
x;k

p � x
k

: x 2 LK;CðkyÞ; k > 0
n o

;

or in a more condensed form:

RACK;Cðp; yÞ ¼ inf
k

CK;Cðp; yÞ
k

: k > 0

� 

:

For non-convex technologies, the following result shows that the non-

convex ray-average cost function is independent of the specific returns to

scale assumption.

Proposition 6: The non-convex ray-average cost function RACNC;Cðp; yÞ
satisfies the following properties:

RACNC;Cðp; yÞ ¼ min
k¼1...K

max
m2JðykÞ

ym

ykm

� �
� p � xk

� 
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for C 2 fVRS;CRS;NIRS;NDRSg. In particular, at the optimum we find

that k
 ¼ max
m2JðykÞ

ym
ykm

� 	� ��1
for Definition 3.

Proof: See the Appendix.

The above result provides a closed-form expression for the non-convex

ray-average cost function. In contrast, the nonparametric, convex ray-

average cost function requires the solution of nonlinear programming

problems for each of the sample data (e.g., Chavas and Cox, 1999).

Furthermore, this proposition also indicates that the non-convex ray-

average cost function is independent of the returns to scale specification.

In particular, it is identical to the cost function under CRS (see also Balk,

2001, p. 175 for the convex case).

4 Non-convex Cost and Distance Functions: A Local Duality Result

and Nonparametric Tests

4.1 Local Duality between Non-convex Cost and Distance Functions

While cost functions for convex technologies are common knowledge, it

is indispensable to provide a dual characterization for the case of the non-

convex production technologies. While a duality result is hard to establish

for this global cost function, a local characterization is, however, possible

for each set SSD;Cðxk; ykÞ, because the latter is convex.

Definition 4: The function Ck;Cðp; yÞ ¼ minfp � x: ðx; yÞ 2 SSD;Cðxk; ykÞg
is called the local cost function of technology T NC;C at point ðxk; ykÞ:

Lemma 2: The local cost function of technology T NC;C at point ðxk; ykÞ
is:

Ck;Cðp;yÞ

¼

ðiÞ p �xk if yk � y for C¼ VRS;

ðiiÞ max
m2JðykÞ

ym
ykm

� 	
�p � xk for C¼CRS;

ðiiiÞ max
m2JðykÞ

ym
ykm

� 	
�p � xk if max

m2JðykÞ
ym
ykm

� 	
� 1 for C¼NIRS;

ðivÞ max max
m2JðykÞ

ym
ykm

� 	
;1

� �
�p �xk for C¼NDRS:

8>>>>>>>>><
>>>>>>>>>:
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Proof: The proof is a special case of the proof established for the global

cost function (see Proposition 3). (

This local cost function for a non-convex technology yields a dual

relationship to the input distance function (or to the related input effi-

ciency measure). In particular, the local cost function locally characterizes

technology at point ðxk; ykÞ, since the subset SSD;Cðxk ; yk Þ is convex.

Proposition 7: Ei(x, y) on non-convex technologies T NC;C is:

Eiðx;yÞ

¼

ðiÞ min
ðxk ;ykÞ2Bðx;y;CÞ

min
p2<n

þ
fp � xk: p � x¼ 1g

� 

for C¼ VRS;

ðiiÞ min
ðxk ;ykÞ2Bðx;y;CÞ

min
p2<n

þ
max

m2JðykÞ
ym
ykm

� 	
�p � xk: p � x¼ 1

� 
� 

for C2fCRS;NIRSg;

ðiiiÞ min
ðxk ;ykÞ2Bðx;y;CÞ

min
p2<n

þ
max max

m2JðykÞ
ym
ykm

� 	
;1

� �
�p �xk: p � x¼ 1

� 
� 

for C¼NDRS:

8>>>>>>>><
>>>>>>>>:

Proof: Assume that ðxk; ykÞ 2 Bðx; y;CÞ and expressEi x; y SSD;Cðxk; ykÞ
� �

with respect to the local cost function. Since ðxk; ykÞ 2 Bðx; y;CÞ, it follows
that ðx; yÞ 2 SSD;Cðxk; ykÞ. However, since SSD;Cðxk; ykÞ is convex, it

follows that Ei x; y SSD;C
�

ðxk; ykÞÞ ¼ inf
p2<N

þ

fCk;Cðp; yÞ: p � x ¼ 1g.

Now since y � yk , from Lemma 2, we replace Ck;Cðp; yÞ by its value with
respect to C 2 fVRS;CRS;NIRS;NDRSg, and we obtain the result. (

In essence, this is just a traditional, convex dual relationship between

local cost and input distance functions for the convex technology with a

single observation ðSSD;Cðxk ; yk ÞÞ. Of course, the actual technology as the

union of these individual technologies can be locally non-convex around

the single point onwhich this local duality result focuses. Consequently, the

support function for the actual technology could well be nowhere near the

support function of the technology with a single observation.

But, the local nature of this duality result does not prevent a straight-

forward reconstruction of the complete non-convex technologies with

specific returns to scale assumptions from their corresponding cost

functions, and vice versa. Since FDH-based technologies and cost func-

tions are simply non-convex unions of individual subsets (3) respectively

local cost functions (Definition 4), both technologies and cost functions
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can always be reconstructed using the enumerative principle. Clearly, a

non-convex technology reconstructed on the basis of a non-convex cost

function is identical to the initial non-convex technology. Since initial and

reconstructed technologies have the same non-convex cost functions, no

economic information is lost.

While this duality result may seem specific for the given non-convex

input distance function and cost function defined, the same line of rea-

soning could in principle be applied to prove local duality results for other

non-convex distance and cost functions. Since any non-convex technol-

ogy can be reconstructed as a (finite or infinite) non-convex union of

convex individual technologies, one can at best hope to establish a local

duality result along the same lines. In this particular sense, the duality

result is general, because it applies to the class of theoretical, non-convex

technologies that are (finite or infinite) non-convex unions of convex

individual technologies.

Obviously, a similar duality result could be established for non-convex

output distance and revenue functions. With the exception of the long-run

profit function, that is obviously independent of convexity of technology,

the same line of reasoning could be applied to a non-convex directional

distance function and a corresponding restricted profit function (e.g., a

short-run variable profit function).14

4.2 General Nonparametric Tests for the Convexity of Cost and Distance

Functions

In principle, the appropriateness of the convexity axiom can be tested for

any comparison between convex and non-convex technologies and sup-

port functions imposing a similar returns to scale hypothesis, since dif-

ferences between efficiency measures and support function levels in these

components are completely attributable to convexity. Each of these can be

considered a nonparametric goodness-of-fit test of the convexity axiom.

To be more explicit, we define tests for the convexity of technology

(CTi (x,y)) and of the cost function (CCi (p,y)) as ratios between the convex

and non-convex input efficiency measures respectively cost functions.

14 Duality between profit function and directional distance function is estab-
lished in Chambers, Chung and Färe (1998). The duality we allude to in the text,
between a short-run directional distance function and a short run profit function,
has not yet been established in a convex setting.
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Definition 5: Nonparametric goodness-of-fit tests for the convexity of

technologies respectively cost functions conditional on a specific scaling

law G are:

(1) CT C
i ðx; yÞ ¼ EC;C

i ðx; yÞ=ENC;C
i ðx; yÞ;

(2) CCC
i ðp; yÞ ¼ CC;C

i ðp; yÞ=CNC;C
i ðp; yÞ.

Since EC;C
i ðx; yÞ � ENC;C

i ðx; yÞ, 0 � CT C
i ðx; yÞ � 1. A similar reasoning

applies to CCC
i ðp; yÞ. If CT C

i ðx; yÞ ¼ 1 (CCC
i ðp; yÞ ¼ 1), then the

hypothesis that technologies (cost functions) are convex cannot be re-

jected. In the literature so far, comparisons between traditional FDH and

convex VRS production models were the only way of capturing this

convexity effect. This new approach provides a perfect base to disen-

tangle the precise impact of convexity and the returns to scale hypotheses.

5 Efficiency Decompositions and the Testing of Convexity

In the efficiency literature several taxonomies of efficiency notions have

been developed (e.g., Färe, Grosskopf and Lovell, 1983; 1985; Seitz,

1971). Because it is the most widespread, in this contribution we stick to

the conceptual framework developed in Färe, Grosskopf and Lovell

(1983; 1985). Specific nonparametric tests for convexity are integrated

into this efficiency framework.

Informally defined, Technical Efficiency (TE) requires production on

the boundary of technology under the least restrictive returns to scale

assumption (i.e., VRS). Production in the interior implies technically

inefficiency. It is a private goal defined in terms of the best interest of the

producer. Second, Overall Technical Efficiency (OTE) is always mea-

sured relative to a CRS technology, thereby conflating scale and technical

efficiencies. Finally, a producer is Scale Efficient (SCE) if its size of

production corresponds to a long run zero, profit competitive equilibrium

configuration; it is scale inefficient otherwise. This social goal measures

any divergence between the actual (VRS) and ideal (CRS) technological

configuration. Overall Efficiency (OE) requires computing a cost function

relative to a CRS technology with strong disposability and taking the ratio

of minimal to actual costs. OE is the multiplicative result of OTE and

Allocative Efficiency (AE), a residual term bridging the gap between OE

and OTE. AE requires that there is no divergence between actual and

optimal costs. A producer is allocatively inefficient otherwise.
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The radial efficiency measure Ei(x,y) used relative to different tech-

nologies entails the different concepts in this efficiency taxonomy.
15
This

is reflected in the notation of Ei(x,y) that can be conditioned on, e.g., a

particular returns to scale hypothesis. A formal characterization of all of

these notions is provided in the following definition.

Definition 6: A formal definition of input-oriented efficiency notions is

provided by:

(1) Technical Efficiency TEi (x,y) = Ei(x,yjVRS).
(2) Overall Technical Efficiency OTEi (x,y) = Ei (x,yjCRS).
(3) Scale Efficiency SCEi (x,y) = Ei (x,yjCRS) / Ei (x,yjVRS).
(4) Overall Efficiency OEi (x,y,p) = C(y,pjCRS) / pÆx.
(5) Allocative Efficiency AEi (x,y,p) = OEi (x,y,p) / OTEi (x,y).

Since Ei (x,yjCRS) £ Ei (x,yjVRS), evidently 0 < SCEi (x,y) £ 1.
16
This

ratio indicates the lowest possible input combination able to produce the

same output in the long run as a technically efficient combination situated

on a VRS technology. It is easy to verify that all of these components are

less than or equal to unity (Färe, Grosskopf and Lovell, 1994).

The embeddedness of technologies in terms of the strength of the

returns to scale assumptions determines the relations between these effi-

ciency measures. These static efficiency concepts are mutually exclusive

and exhaustive and their radial measurement yields a multiplicative

decomposition (Färe, Grosskopf and Lovell, 1985, pp. 188–191). Using

Definition 6, the following identity readily follows:

OEiðx; y; pÞ ¼ AEiðx; y; pÞ:OTEiðx; yÞ; ð9Þ

where OTEiðx; yÞ ¼ TEiðx; yÞ:SCEiðx; yÞ:

15 Radial efficiency measures project onto the isoquant and may leave some
technical inefficiency unmeasured. Nonradial efficiency measures (Lovell, 1993)
project onto the efficient subset of technology (see Koopmans, 1951, definition of
TE) and are particularly attractive on FDH. However, we focus on radial effi-
ciency measures for the ease of exposition.
16 For the initial proposal, see Førsund and Hjalmarsson (1974; 1979). Färe,

Grosskopf and Lovell (1983) stress that technical optimal scale, and not a price-
dependent (dual) notion of optimal scale, is used as the benchmark. See also
Banker, Charnes and Cooper (1984).
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A characteristic of production that can be further analyzed is the nature

of returns to scale. For both observations on and below the frontier, it is

possible to obtain qualitative information on local scale economies (i.e.,

for its bounding hyperplane). Since traditional methods do not apply for

non-convex technologies, a more general procedure based on goodness-

of-fit has been devised (Kerstens and Vanden Eeckaut, 1999).
17

To define tests for convexity, we first clarify the relationship between

convex and non-convex decompositions. As is obvious from (3), non-

convex technologies are nested in their convex counterparts. As a con-

sequence, non-convex OTEi (x,y) and TEi (x,y) components are larger

than their convex counterparts. However, there is no a priori ordering

between non-convex and convex SCEi (x,y) components. While the

underlying efficiency measures can be ordered, it is impossible to order

the ratios between these efficiency measures. Non-convex cost functions

never assign lower cost levels than their convex counterparts. We sum-

marize and prove these findings in the following lemma.

Lemma 3: Relations between convex and non-convex decomposition

components are:

(1) OTEC
i ðx; yÞ � OTENC

i ðx; yÞ;
(2) TEC

i ðx; yÞ � TENC
i ðx; yÞ;

(3) OEC
i ðx; y; pÞ � OENC

i ðx; y; pÞ.

Proof: Trivial (depends on the nestedness of technologies and cost

functions) and thus discarded. (

Clearly, convex technologies and cost functions may overestimate

technical and overall inefficiency, making tests of the convexity

hypothesis a necessity. Note that scale and allocative efficiency compo-

nents cannot be ordered, because they are ratios or residuals of the other

components. To be explicit, we have:

17 For inefficient observations, this characterization obviously depends on the
chosen measurement orientation. Briec et al. (2000) show that the earlier com-
parison between CRS, NIRS and VRS models (Färe, Grosskopf and Lovell,
1983) does not apply for non-convex models, because VRS technologies are not
uniquely defined (see Remark 1) and therefore no longer implicitly reveal
information about NIRS and NDRS parts of technology.
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SCEC
i ðx; yÞT SCENC

i ðx; yÞ and AEC
i ðx; yÞTAENC

i ðx; yÞ: ð10Þ

The difference between both OTEi (x,y) and OEi (x, y, p) components

can be completely attributed to convexity. Therefore, it is useful to define

convexity-related technical efficiency (CRTEi (x,y)) and cost efficiency

(CRCEi (x,y,p)) components as a ratio between these convex and non-

convex components:

Definition 7: A nonparametric goodness-of-fit test for the convexity of

the efficiency components based upon constant returns to scale technol-

ogies respectively cost functions is:

(1) CRTEiðx; yÞ ¼ OTEC
i ðx; yÞ=OTENC

i ðx; yÞ;
(2) CRCEiðx; y; pÞ ¼ OEC

i ðx; y; pÞ=OENC
i ðx; y; pÞ.

Clearly, 0 < CRTEi (x,y) £ 1, since OTEC
i ðx; yÞ � OTENC

i ðx; yÞ. A similar

reasoning applies to CRCEi (x,y,p). When CRTEi (x,y) = 1 (CRCEi (x,y,p)

=1), then the hypothesis that CRS technologies (cost functions) are

convex cannot be rejected.

Furthermore, the definition of CRTEi (x,y) makes it possible to link

non-convex and convex decompositions of OTEi (x,y) by means of the

identity:

OTEC
i ðx; yÞ ¼ OTENC

i ðx; yÞ:CRTEiðx; yÞ: ð11Þ

The same holds true for the convexity-related cost efficiency component

(CRCEi (x,y)):

OEC
i ðx; y; pÞ ¼ OENC

i ðx; y; pÞ:CRCEiðx; y; pÞ: ð12Þ

Which of these differences between convex and non-convex decompo-

sitions proves to be most important is an empirical matter. For reasons of

space, this contribution provides only a simple empirical illustration in the

next section.

6 Empirical Illustration

For the empirical analysis, we partially duplicate earlier research by

selecting a small sample analyzed earlier by Coelli (1996). Over the
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period 1953 to 1987, he analyzed the performance of the broad-acre

Western Australian agricultural sector. The detailed sample data is used to

construct Törnqvist quantity indices on 5 inputs ((i) livestock, (ii) mate-

rials and services, (iii) labor, (iv) capital, and (v) land) and on 3 outputs

((i) grain, (ii) sheep, and (iii) other outputs), as well as Törnqvist price

indices (see Coelli, 1996, for details). Comparing the observations over

the 34 years period, changes in technology are ignored. Descriptive sta-

tistics for both convex and non-convex decomposition results are pre-

sented in Table 1. The upper part of this table analyzes the technology,

the lower part the cost function. To facilitate the comparison between the

decompositions, we duplicate the OTEi(x,y) component in both parts of

the table. To respect the multiplicative nature of these decompositions, we

compute geometric averages. For reasons of space, we do not depict

frequencies, but the distributions are markedly skewed to the right.

Our main findings are as follows. First, TEi(x,y) is of less importance

than SCEi(x,y), whereby in the non-convex world TEi(x,y) is close to

unity. Second, convexity-related technical inefficiency affects 11 obser-

Table 1. Non-convex and convex decompositions of overall efficiency

Technology analysis

Non-convex decomposition Convex decomposition

TEi

(x,y)
SCEi

(x,y)
OTEi

(x,y)
CRTEi

(x,y)
TEi

(x,y)
SCEi

(x,y)
OTEi

(x,y)

Average
a
0,9967 0,9120 0,9089 0,9569 0,9654 0,9010 0,8698

Stand.
Dev.

0,0186 0,0948 0,0967 0,0360 0,0537 0,1052 0,1143

Minimum 0,8901 0,7301 0,7301 0,8752 0,8112 0,6968 0,6683
# Effic.
Obs.

33 14 14 11 22 11 11

Cost function analysis

Non-convex decomposition Convex decomposition

OTEi

(x,y)
AEi

(x,y)
OEi

(x,y)
CRCEi

(x,y)
OTEi

(x,y)
AEi

(x,y)
OEi

(x,y)

Average
a
0,9089 0,8447 0,7678 0,9776 0,8698 0,8629 0,7506

Stand.
Dev.

0,0967 0,0909 0,1470 0,0239 0,1143 0,0884 0,1548

Minimum 0,7301 0,6737 0,5357 0,9381 0,6683 0,6741 0,5047
# Effic.
Obs.

14 5 5 15 11 5 5

a
Geometric average
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vations and accounts for about 4.2% on average and 12.5% at most.

Third, allocative inefficiencies related to the cost function dominate all

other sources of ill performance and both decompositions come up with

somewhat similar percentages. Fourth, convexity-related cost inefficiency

affects 15 observations and is only about 2.2% on average and 6.2% at

worst. Finally, the bottom row reveals that the number of efficient

observations per component is in the non-convex case obviously greater

or equal to the numbers obtained in the convex case.

Without attributing too much weight to this empirical analysis based on

a small sample, we conclude that convexity seems to make a difference

on the average level as well as on individual observations. In particular,

the nonparametric tests reject the convexity axiom for about a third of the

observations. Hence, practitioners should be aware of the potential impact

of convexity on performance gauging. Obviously, more extensive

empirical analyses are called for.

7 Conclusions and Directions for Future Research

Starting from an existing non-convex production model (FDH), several

nonparametric deterministic technologies have been explored introducing

various returns to scale assumptions. The corresponding non-convex cost

functions have also been derived. A key result is that non-convex cost

functions are never lower than convex cost functions. This result refines

the property that cost functions are non-decreasing in outputs: while

convex cost functions are convex in the outputs, non-convex cost func-

tions are non-convex in outputs.

This contribution has obtained analytical solutions to characterize both

non-convex input distance functions (or their inverse, the input efficiency

measure) and total cost functions. In addition, closed-form expressions

have equally been obtained for the marginal and ray-average cost func-

tions. This obviously opens up a wide range of possibilities for their

empirical application. Furthermore, a local duality result has been

established between input distance functions and the corresponding

‘‘local’’ cost functions. The resulting series of non-convex technologies

and cost functions yield a decomposition of overall efficiency

(OEi (x,y,p)) that is similar to the existing one based on convex models.

The formal relations between convex and non-convex decompositions

and their respective technical, scale and allocative efficiency components

have been spelled out in detail. In general, the use of convex technologies
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and cost functions overestimates both technical and overall inefficiencies.

A hitherto unnoticed result worth stressing is that convex and non-convex

cost functions are in general not identical, except in the particular case of

single output CRS models. Some simple numerical examples and a small

empirical application show the tractability of the approach and reveal the

potentially different results that may emerge as a consequence of

imposing convexity.

Our study was limited to input distance functions and cost functions.

As pointed out in the text, one obvious extension to our work is to derive

similar results from the revenue and short-run profit perspectives.

Empirical methodologies imposing convexity on technology, indeed,

yield revenue functions that are not lower than revenue functions without

convexity, while any restricted profit function (e.g., due to short-run input

or output fixity, expenditure-constraints, etc.) is not lower when tangent to

a convex compared to a non-convex technology. The traditional argument

about the long-run profit functions being independent of convexity

remains valid, but it turns out to be the exception rather than the rule (see

also Kuosmanen, 2003).

In addition, three further methodological extensions may seem

worthwhile to pursue in the future. First, having illustrated the importance

of dispensing with convexity for technical, scale and overall efficiency

measurement, it is worthwhile to enlarge the range of non-convex tech-

nologies such that the congestion component could also be evaluated.

This would complete the development of a static non-convex efficiency

decomposition. Second, recently Simar and Wilson (2002) have devel-

oped proper statistical tests for nonparametric frontier models, though

they have limited themselves so far to testing the global scale behavior of

technologies. Extending their tests to the convexity hypothesis would be

most valuable. Third, when panel data are available, it is obviously

possible to employ these non-convex technologies and cost functions for

a dynamic analysis of productivity change (e.g., Chavas and Cox, 1988;

Diewert and Parkan, 1983). For instance, it would be interesting to

investigate the effect of using non-convex instead of convex technologies

when computing Malmquist productivity indices.
18

18 Productivity measures based on FDH have been applied in Tulkens and
Malnero (1996). Furthermore, this new non-convex decomposition can be inte-
grated into any of the available decompositions of the Malmquist productivity
index (Balk, 2001; Färe, Grosskopf and Lovell, 1994).
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Overall, this methodological development should make people more

cautious about invoking the convexity assumption in performance

gauging. In particular, since convex costs are less than, or equal to, non-

convex costs, imposing the former for benchmarking purposes may be

unrealistic when convexity is in doubt. We hope these new technologies

and cost functions, as well as the resulting efficiency decomposition,

prove useful in enlarging the methodological choices open to practitio-

ners. Lacking proper statistical tests when comparing specifications, it is

important that practitioners have a precise idea of the effect of each

assumption. Using the relation between efficiency measures and good-

ness-of-fit tests, our convexity related efficiency component provides

exactly such a tool.

Appendix

Proof of Proposition 1: First, it is clear that T
NC,G

contains W and

satisfies (A.1)–(A.4). We need to prove that for any technology T

containing W ¼ x1; y1ð Þ; . . . ; ðxk; ykÞf g � <MþN
þ and satisfying (A.1) to

(A.4), we have T
NC,G�T. Assume that (x,y)˛T

NC,G
. Then, by definition,

there exists some ðxk; ykÞ 2 W such that ðx; yÞ 2 SSD;Cðxk; ykÞ. Conse-
quently, there are some �xk; �ykð Þ 2 SSD;C and some d 2 C, such

that ðxk; ykÞ ¼ d �xk;�ykð Þ. But, since T contains W and satisfies (A.1) to

(A.4), then ðxk; ykÞ 2 T . Consequently, T K;C � T and this terminates

the proof. (

Proof of Proposition 2: (i) By definition, we have Ei x; y SSD;Cðxk; ykÞ
� �

=

min k : kx � xk; yk � yf g ¼ min k : k � max
n2IðxÞ

xkn
xn

� 	
; yk � y

� 

. However,

since x � xk , clearly xkn > 0) xn > 0. Thus, max
n2I xð Þ

xkn
xn

� 	
¼ min

n2I xkð Þ
xn
xkn

� 	
.

Consequently, Ei x; y SSD;Cðxk; ykÞ
� �

¼ min k : k � min
n2I xkð Þ

xn
xkn

� 	
; yk � y

� 


and we obtain the result. For parts (ii) and (iii), first, assume that

ðxk; ykÞ 2 Bðx; y;CÞ and calculate Ei x; y SSD;Cðxk; ykÞ
� �

. We have

dyk � y; d 2 C. This implies d � max
m2J ykð Þ

ym
ykm

� 	
for d 2 C. We immediately

deduce:
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Ei x;y SSD;Cðxk;ykÞ
� �

¼min k:kx�dxk;d� max
m2JðykÞ

ym

ykm

� �
;d2C

� 


¼min k:k� max
n2IðxkÞ

xkn

xn

� �
�d;d� max

m2J ykð Þ

ym

ykm

� �
;d2C

� 

:

Now, there are two cases: (1) Under CRS (C ¼ <þ) or NIRS (C ¼ ½0; 1�),

the lower bound of the set max
m2J ykð Þ

ym
ykm

� 	
; min

n2I xkð Þ
xn
xkn

� 	� �
\ C is necessarily

dmin ¼ max
m2J ykð Þ

ym
ykm

� 	
. Consequently, we obtain Ei x; y SSD;Cðxk; ykÞ

� �
¼

max
n2I xkð Þ

xkn
xn

� 	
� max

m2J ykð Þ
ym
ykm

� 	
and from the enumerative principle, this con-

cludes the proof. (2) Under NDRS C ¼ 1;þ1½ ½ð Þ, the lower bound is

dmin ¼ max max
m2J ykð Þ

ym
ykm

� 	
; 1

� �
. In particular, dmin ¼ 1 if

max
m2J ykð Þ

ym
ykm

� 	
; min

n2I xkð Þ
xn
xkn

� 	� �
6� ½1;þ1½. Hence, Ei x; y SSD;Cðxk; ykÞ

� �
¼

max
n2I xkð Þ

xkn
xn

� 	
�max max

m2J ykð Þ
ym
ykm

� 	
; 1

� �
. This terminates the proof from the

enumerative principle. (

Proof of Proposition 3: (i) If C ¼ VRS, then LNC;CðyÞ ¼
x : ðx; yÞ 2 T NC;C
� �

= [
yk�y

x 2 <N
þ : ðx; yÞ 2 SSD;Cðxk; ykÞ

� �
. But since

min p � x : ðx; yÞ 2 SSD;Cðxk; ykÞ
� �

¼ p � xk , the result follows. (ii) Under

CRS: LNC;CðyÞ = [
k

x 2 <N
þ : ðx; yÞ 2 SSD;Cðxk; ykÞ

� �
. The cost function is

then given by: min p � x : ðx; yÞ 2 SSD;Cðxk; ykÞ
� �

= min p � x : x � dxk;f

y � dykg = min p � x : x � dxk; d � max
m2J ykð Þ

ym
ykm

� 	� 

= max

m2J ykð Þ
ym
ykm

� 	
� p � xk

and the result follows. (iii) If C ¼ NIRS, then the minimum cost is

achieved by some xk if there exists some d 2 ½0; 1� such that

dyk � y , d � max
m2J ykð Þ

ym
ykm

� 	
. The existence of such a d satisfying

d � max
m2JðykÞ

ym
ykm

� 	
and d � 1 implies that max

m2JðykÞ
ym
ykm

� 	
� 1. Then, we

deduce that LNC;CðyÞ = [
max

m2Jðyk Þ
ym
ykm

� 	
�1

x 2 <N
þ : ðx; yÞ 2 SSD;Cðxk; ykÞ

� �
.
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Therefore, the cost function over SSD;Cðxk; ykÞ is given by:

min p �x : ðx;yÞ 2 SSD;Cðxk;ykÞ
� �

¼min p �x : x� dxk;y� dyk;df 2 ½0;1�g =

min p � x : x� dxk;d� max
m2J ykð Þ

ym
ykm

� 	� 

= max

m2J ykð Þ
ym
ykm

� 	
�p � xk and the result is

proven. (iv) If C¼NDRS, then minimum cost is achieved by some xk if

there exists some d� 1, such that dyk � y, dP max
m2J ykð Þ

ym
ykm

� 	
. This con-

dition always holds. Consequently, we deduce that LNC;CðyÞ = [
k

x2<N
þ :

�
ðx;yÞ 2 SSD;Cðxk;ykÞg. The cost function over the set SSD;Cðxk;ykÞ is

therefore given by: min p �x : ðx;yÞ 2 SSD;Cðxk;ykÞ
� �

= min p � x : x�f

dxk;y� dyk;d� 1g¼min p � x : x� dxk;d�max max
m2J ykð Þ

ym
ykm

� 	
;1

� �� 

=

max max
m2J ykð Þ

ym
ykm

� 	
;1

� �
�p �xk and the result follows. (

Proof of Proposition 5: (1) Let the set KðyÞ ¼ k 2 1; . . . ;Kf g :f
yk � yg. Let the function F : y ! F ðyÞ ¼ # KðyÞð Þ. Let

Im Fð Þ ¼ F ðyÞ : y 2 <M
þ

� �
. It is immediate that ImðF Þ � 1; . . . ;Kf g. Let

us denote K0 ¼ # Im Fð Þð Þ Thus, y 2 <M
þ

� �
¼ [

k2Im Fð Þ
F �1 kð Þ. It is then

clear that for each y 2 F �1 kð Þ, we have F ðyÞ ¼ k is constant. Ranging the

subset F �1 kð Þ from 1 to K0, we obtain the partition of the output set.

Moreover, it is easy to show that each Dk has a non-empty interior D
	

k
.

Consequently, for each interior point y there is a neighborhood

Nðy; eÞ � D
	

k
such that F is constant. Thus, F is constant over D

	

k
. However,

when F is a constant, then KðyÞ ¼ k 2 1; . . . ;Kf g : yk � yf g stays the

same on the interior of Dk and CNC;Cðp; yÞ ¼ min
k2KðyÞ

p � xk is also constant.

This implies that the derivative is defined and CNC;C
m ¼ 0 on the interior D

	

k
.

(2) To prove this result we need an intermediate result. Assume there are k

differentiable functions f1;f2; . . . ;fk . Assume there is some i0, such that

i0¼ argmin
i

fif g. In this case, fi0 xð Þ¼min
i

fif g is differentiable. Note that

differentiability is not guaranteed if # argmin
i

fif g
� �

� 2. Now, under

conditions # KCðyÞ
� �

¼ 1 and # Mðk;yÞð Þ¼ 1, we obtain:
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CNC;Cðp;yÞ¼ min
k¼1;...;K

max
m2J ykð Þ

ym
ykm

� 	
�p � xk

� 

=

ym0

yk0m0

� 	
�p �xk0 . Thus, we

end up with the marginal cost function
@CNC;Cðp;yÞ

@ym
¼

p�xk0
yk0m0

if m¼m0

0 else

�
.

(3) The proof is obtained in a similar way. 4) If k0 ¼ KCðyÞ
� �

and

m0 ¼ Mðk; yÞf g, then we have CNC;Cðp; yÞ ¼ max
ym0

yk0m0

; 1
� 	

� p � xk , and

by enumeration of the two cases the result follows. (

Proof of Proposition 6: First, it is clear that for any y 2 <M
þ and

k ¼ 1; . . . ;K , there exists some k > 0 and some x 2 <N
þ such that

x; y
k

� �
2 SSD;Cðxk; ykÞ (because we can choose k sufficiently small). It

follows that:

RACNC;Cðp; yÞ ¼ inf
x;k

p � x
k

: x 2 LNC;C kyð Þ; k > 0
n o

¼ min
k¼1;...;K

inf
x;k

p � x
k

: x 2 SNC;Cðxk; ykÞ; k > 0
n o� 


:

Now for C2 VRS;CRS;NIRS;NDRSf g we have inf
x;k

p�x
k :x2SNC;Cðxk; ykÞ;

�
k > 0g = inf

x;k

p�x
k : x � dxk; ky � dyk; d 2 C; k > 0

� �
. Letting x0 ¼ x

k we

obtain inf
x0;k

p � x0 : x0 � d
k xk; y � d

k yk; d 2 C; k > 0
� �

. Let us denote

AC ¼ d
k : d 2 C; k > 0
� �

. Now making the change l ¼ d
k the optimization

problem can be written inf
x0;l

p � x0 : x0 � lxk; y � lyk;l 2 AC
� �

. But,

for C 2 VRS;CRS;NIRS;NDRSf g, we have the inclusion <þþ ¼
l : l > 0f g � AC ¼ d

k : d 2 C; k > 0
� �

. Furthermore, since at the opti-

mum we have necessarily the condition l � max
m2J ykð Þ

ym
ykm

� 	
> 0, we deduce

immediately the following equalities inf
x0;l

p � x0 : x0 � lxk;f
y � lyk; l 2 ACg ¼ inf

x0;l
p � x0 : x0 � lxk; y � lyk; l > 0f g ¼

inf
x0;l

p � x0 : x � lxk; l � max
m2J ykð Þ

ym
ykm

� 	� 

= max

m2J ykð Þ
ym
ykm

� 	
� p � xk . Also, we

deduce by the enumeration principle that RACNC;Cðp; yÞ ¼
min

k¼1;...;K
max

m2J ykð Þ
ym
ykm

� 	
� p � xk

� 

for C 2 VRS;CRS;NIRS;NDRSf g. (
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Färe, R., Grosskopf, S., and Lovell, C. A. K. (1994): Production Frontiers.
Cambridge: Cambridge University Press.
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