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Abstract

The purpose of this short article is to simplify goodness-of-fit methods to obtain qualita-
tive information about returns to scale for individual observations. Traditional and new
goodness-of-fit methods developed for estimating returns to scale on nonparametric deter-
ministic reference technologies are reviewed. Using composition rules for technologies
with specific returns to scale assumptions, we show how these goodness-of-fit methods
can be simplified in the case of convex technologies (Data Envelopment Analysis (DEA)
models).
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1. Introduction

Kerstens and Vanden Eeckaut (KVE) (1999) review traditional methods for estimating re-
turns to scale for nonparametric deterministic technologies. They propose a general method
based on goodness-of-fit measures suitable for all reference technologies (including the var-
ious DEA and FDH models). For determining individual scale economies, their approach
requires estimation of technologies under three returns to scale assumptions: Constant
Returns to Scale (CRS), Non-Increasing Returns to Scale (NIRS), and Non-Decreasing
Returns to Scale (NDRS).

In this article, we show that, conditional on convexity, NIRS and NDRS technologies suf-
fice for retrieving all information on efficiency measurement and scale properties. For more



268 BRIEC ET AL

general technologies, however, the initial results remain valid and three technologies are
needed. Furthermore, we bring some clarifications in the vast literature on scale economies
and prove the link between goodness-of-fit methods and the F¨are, Grosskopf and Lovell
(FGL) (1983, 1985, 1994) approach, the former generalising the latter.

Seiford and Zhu (1999), reviewing returns to scale methods in DEA, remark that the FGL
approach has the advantage of being unaffected by alternate optima, but “the only drawback
to the scale efficiency index method seems to be the requirement of three computational
runs”. As a consequence of our results, efficiency must only be computed under two
alternative returns to scale assumptions for convex models to yield both technical and scale
efficiency scores as well as the characterisation of local returns to scale. This is useful to
deal with large samples or for bootstrap computations (e.g., Simar and Wilson (1998)). This
simplification makes the KVE (1999) method at least as computationally parsimonious as
the best of alternative methods (see Table 6 in Appa and Yue (1996) and Golany and Yu
(1997)). Furthermore, given its generality, this clearly makes the goodness-of-fit method
the first choice in applied analysis.

This simplification of the goodness-of-fit method builds upon results based on opera-
tions on technologies with specific returns to scale assumptions. These results are—to our
knowledge—nowhere available in the literature. The next section of the paper systemati-
cally develops all results. Section 3 concludes.

2. Efficiency Measurement and Estimating Returns to Scale

2.1. Technologies and Returns to Scale: Introductory Definitions

Technology is represented by its production possibility setT = {(x, y) : x can produce
y}, based onk observations (DMUs) of inputsx ∈ R

m
+ and outputsy ∈ R

n
+. Returns to

scale can be defined in terms ofT . Traditionally, four assumptions on returns to scale are
considered.

Definition 1.TechnologyT = {(x, y) : x can producey} exhibits:

(i) Constant Returns to Scale (CRS) ifδT ⊆ T,∀δ > 0;

(ii) Non-Increasing Returns to Scale (NIRS) ifδT ⊆ T,∀δ ∈ [0,1];

(iii) Non-Decreasing Returns to Scale (NDRS) ifδT ⊆ T,∀δ ≥ 1;

(iv) Variable Returns to Scale (VRS) if (i), (ii) and (iii) do not hold (in this case, only
conditionδ = 1 is warranted).

In terms of observed production combinations, this definition, for example, requires that
any observation of a CRS technology can be scaled up or down by a semi-positive scalar
(∀(x, y) ∈ T andδ > 0, δ(x, y) ∈ T). It is of interest to classify technologies according to
this definition.
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LEMMA 1 Let T be a production set satisfying the core Shephard axioms (see Färe (1988)):

a) If T satisfies CRS, then T satisfies NDRS

b) If T satisfies CRS, then T satisfies NIRS

c) If T satisfies both NDRS and NIRS, then T satisfies CRS

d) If T violates both NDRS and NIRS, then T satisfies VRS.

Proof. The proof is obvious from Definition 1.

Definition 2.TechnologyT exhibits locally (see F¨are (1988)):

a) Decreasing Return to Scale (DRS) if there exists some(x0, y0) ∈ T, δ0 > 1, δ0(x0, y0)

6∈ T .

b) Increasing Return to Scale (IRS) if there exists(x0, y0) ∈ T, δ0 ∈]0,1], δ0(x0, y0) 6∈ T .

Following Definition 2, an IRS technology exhibits NDRS and not CRS; and a DRS tech-
nology exhibits NIRS but not CRS.

2.2. Estimating Returns to Scale and Operations on Technologies

Following Farrell (1957), efficiency is traditionally measured in a radial way. This paper
concentrates on the radial input efficiency measure:DFi (x, y) = min{λ|λ ≥ 0, (λ x, y) ∈
T}. However, the results can be easily generalised for output- and graph-oriented efficiency
measurement (FGL (1985)), or to the recently defined efficiency measures based upon
directional distance functions (Briec (1997), Chambers, Chung and F¨are (1998)).

For estimation purpose, an operational definition of the production possibility set for a
representative series of nonparametric deterministic technologies is as follows:

Ts=
{
(x, y)

∣∣∣∣∣x ≥ δ K∑
k=1

zk, xk, y ≤ δ
K∑

k=1

zkyk,

K∑
k=1

zk = 1, zk ≥ 0, δ ∈ 0(s),
}

(1)

where0(CRS) = [0,+∞[, 0(NIRS) = [0,1], 0(NDRS) = [1,+∞[, and0(VRS) = {1}.
This definition ofTs leads to a non-linear program when computing radial input efficiency.
But substitutingλk = δzk and some straightforward manipulations render the program
linear.

For convex nonparametric deterministic technologies, it is straightforward to show the
validity of the following union and intersection operations on technologies. We state this
result, so far unnoticed in the literature, in Proposition 1. We denote byJ the set of all
possible technologies satisfying the Shephard axioms.
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PROPOSITION1 For convex nonparametric deterministic technologies:

a) TCRS= TNIRS∪ TNDRS; and

b) TVRS= TNIRS∩ TNDRS.

Proof. First, let us prove a). From Definition 1, we haveTNDRS= ∪δ≥1δTVRS. Obviously
TNIRS= ∪0≤δ≤1δTVRSandTCRS= ∪δ≥0δTVRS. Thus,T ∈ J ⇒ ∪δ≥0δT = (∪0≤δ≤1δT) ∪
(∪δ≥1δT), andTCRS= ∪δ≥0δTVRS= ∪0≤δ≤1δTVRS) ∪ (∪δ≥1δTVRS) = TNIRS∪ TNDRS and
a) is shown. Part b) can be proven in a similar way. From the above relationships, we
deduce that:TVRS= ∪δ=1δTVRS= (∪0≤δ≤1δTVRS)∩ (∪δ≤1δTVRS) = TNIRS∩ TNDRSand b) is
proven.

This intuitive result seems trivial, but was never given rigorous attention. Clearly, a CRS
technology is the union of NIRS and NDRS technologies. Likewise, the VRS model
equals, in the convex case, the intersection of NIRS and NDRS counterparts. Consequently,
only two computations are needed to determine efficiency relative to all four technologies.
Proposition 2 formulates this result.

PROPOSITION2 DFi (x, y | CRS) and DFi (x, y | VRS) on convex technologies can be
estimated from NIRS and NDRS technologies:

a) DFi (x, y | CRS) = min{DFi (x, y | NIRS),DFi (x, y | NDRS)} and,

b) DFi (x, y | VRS) = max{DFi (x, y | NIRS),DFi (x, y | NDRS)},
where DFi (x, y | CRS),DFi (x, y | VRS),DFi (x, y | NIRS), and DFi (x, y | NDRS)
indicate input efficiency measures computed relative to CRS, VRS, NIRS and NDRS tech-
nologies.

Proof. The a) part follows immediately from Proposition 1. b) From (1), it is obvious
thatλmax= max{DFi (x, y | NIRS),DFi (x, y | NDRS)} ≤ DFi (x, y | VRS). To prove the
reverse inequality, note that by definition(DFi (x, y | NIRS)x, y) ∈ TNIRS and(DFi (x, y |
NDRS)x, y) ∈ TNDRS. Since inputs are free disposable(λmaxx, y) ∈ TNIRS∩ TNDRS. This
implies thatλmax≥ DFi (x, y | VRS) and thus equality holds and b) is proven.

Proposition 2 immediately allows to derive the decomposition of technical and scale effi-
ciency (FGL (1983, 1985, 1994)), whereby scale efficiency (SCEi (x, y)) is defined as the
ratio between overall technical efficiency (DFi (x, y | CRS)) and pure technical efficiency
(DFi (x, y | VRS)).

2.3. Simplifying Goodness-of-Fit Methods

Appa and Yue (1996), KVE (1999) and Seiford and Zhu (1999) review the literature on
the estimation of individual DMU’s returns to scale. As a brief reminder, we summarise in
chronological order (year of publication) the three main methods proposed in the literature
to obtain qualitative information regarding local scale economies.
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First, FGL (1983) compare the components ofSCEi (x, y)with a third efficiency measure
evaluated on a NIRS technology. Exploiting a priori knowledge on distances between these
frontiers, observations are classified in terms of returns to scale (see below). A second
method uses the sum of the optimal activity vector on a CRS technology to classify the
observations (Banker (1984)). The final method determines the intercept of the supporting
hyperplane at the reference unit on a VRS technology (Banker, Charnes and Cooper (1984)).
This amounts to a classification based upon the sign of the shadow price of the convexity
constraint.

KVE (1999) proposed a more general method based on goodness-of-fit measures (Varian
(1990)) suitable for all reference technologies, including the various FDH models where
the second and third methods simply fail. As in the case of efficiency measurement (see
§2.2), we simplify their method to test for returns to scale when using convex technologies.
The following proposition states the main result of this article, simplifying Proposition 2 in
KVE (1999).

PROPOSITION3 Using DFi (x, y) and conditional on the optimal projection point, a convex
technology is locally characterised by:

a) IRS⇔ DFi (x, y | NDRS) = max{DFi (x, y | NIRS),DFi (x, y | NDRS)};

b) CRS⇔ DFi (x, y | NDRS) = DFi (x, y | NIRS) = max{DFi (x, y | NIRS),DFi (x, y |
NDRS)};

c) DRS⇔ DFi (x, y | NIRS) = max{DFi (x, y | NIRS),DFi (x, y | NDRS)}.

Proof. Follows directly from Proposition 2, Lemma 1 and Definition 2.

Only two computations are needed to determine the returns to scale of each DMU. Comput-
ing efficiency relative to a CRS technology, mentioned in Proposition 2 of KVE (1999), is
redundant for convex models.1 This local returns to scale determination of individual DMUs
remains conditional on the choice of measurement orientation. Appa and Yue (1996) in-
dependently propose a method that yields the same results. But their formulation is more
complex and they state, but do not proof, a limited version of our Propositions 1 and 5.

Banker, Chang and Cooper (1996) prove equivalence of three existing methods to charac-
terise local returns to scale, including the FGL one. Therefore, we only need to prove that
the new method is equivalent to the FGL method. UsingDFi (x, y) and conditional on the
optimal projection point, the FGL method states that technology is characterised locally by:

IRS⇔ DFi (x, y | CRS) = DFi (x, y | NIRS) < DFi (x, y | VRS) ≤ 1;

CRS⇔ DFi (x, y | CRS) = DFi (x, y | NIRS) = DFi (x, y | VRS) ≤ 1;

DRS⇔ DFi (x, y | CRS) < DFi (x, y | NIRS) = DFi (x, y | VRS) ≤ 1.

PROPOSITION4 The method in Proposition 3 is equivalent to the FGL method.
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Proof. As a direct consequence of Proposition 2,

a) if DFi (x, y | NIRS) = DFi (x, y | NDRS), thenDFi (x, y | CRS) = DFi (x, y | VRS);

b) if DFi (x, y | NIRS) 6= (DFi (x, y | NDRS), thenDFi (x, y | CRS) < DFi (x, y | VRS);

c) if DFi (x, y | NIRS) < DFi (x, y | NDRS), then DFi (x, y | CRS) = DFi (x, y |
NIRS) < DFi (x, y | NDRS) = DFi (x, y | VRS);

d) if DFi (x, y | NIRS) > DFi (x, y | NDRS), then DFi (x, y | CRS) = DFi (x, y |
NDRS) < DFi (x, y | NIRS) = DFi (x, y | VRS);

which clearly includes the FGL inequalities.

Only the a) part of Proposition 1 holds true for nonconvex technologies. Any VRS
technology cannot be reconstructed from intersecting NIRS and NDRS hulls of technology.
The latter construction critically depends upon the convexity hypothesis.

PROPOSITION5 For general, nonparametric deterministic technologies:

a) T ∈ J⇒ ∪δ≥0δT = (∪0≤δ≤1δT) ∪ (∪δ≥1δT)

b) T ∈ J and T convex⇒ T = (∪0≤δ≤1δT) ∩ (∪δ≥1δT)

Proof. Part a) is trivial, and can, e.g., follow the proof of Proposition 1. Let us now show
b). Obviously, we haveT ⊂ ((∪0≤δ≤1δT)∩ (∪δ≥1δT)). To prove the converse, assume that
(x, y) ∈ ((∪0≤δ≤1δT) ∩ (∪δ≥1δT)). In such a case there existsµ ∈ ]0,1[, and(x′, y′) ∈ T
such that(x, y) = µ(x′, y′). Moreover, there existsγ ≥ 1, and(x′′, y′′) ∈ T such that
γ (x′′, y′′) = (x, y) ∈ T . Now, it is easy to see that(x, y) belongs to the line segment
[(x′′, y′′), (x′, y′)]. Thus, we deduce immediately that(x, y) = θ(x′, y′)+ (1− θ)(x′′, y′′)
with θ = (µ − µ/γ )/(1− µ/γ ). SinceT is convex, we deduce that(x, y) ∈ T , thus
((∪0≤δ≤1δT) ∩ (∪δ≥1δT)) ⊂ T . Hence, the converse is proven and b) holds true.

The intuition is straightforward. A CRS hull is always the intersection of NIRS and NDRS
hulls. But property b) does not hold without convexity.2 Therefore, the goodness-of-fit
method developed in KVE (1999) cannot, in general, be simplified.

3. Conclusion

For convex technologies, this article simplified a new, intuitive method for computing
efficiency measures and estimating local returns to scale. Its advantages are that it is
perfectly general (all other methods fail in this respect), and, at the practical level, that
it requires only two LP’s. In addition, the note has clarified the link between FGL and
goodness-of-fit methods. This simplified method is useful when treating large samples or
for bootstrap estimations.

We end by noting that this paper reasoned in the framework of standard LP solution al-
gorithms found in conventional software. Recently, Hackman, Passy and Platzman (1994)
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offered a simple pivoting type algorithm to compute the vertices of radial two-dimensional
sections of convex frontier models. When their algorithm is successfully implemented, the
computational effort to obtain constant and variable returns to scale radial input- and output-
oriented efficiency measures is (in their own words) “almost the same as that of solving a
single LP problem” (page 162). Besides being an attractive device for graphical represen-
tations of the production possibility set, instead of focusing on projection points only, this
offers a promising alternative provided their algorithm becomes more widely available.3

However, when any type of non-radial efficiency measure is utilised, the applicability of
their algorithm becomes questionable, while our own method remains valid.
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Notes

1. The same formula applies for graph-oriented efficiency measures. For output efficiency measurement, tradi-
tionally defined to be larger or equal to unity, the max operator should be replaced by a min operator. For
efficiency measures based upon directional distance functions, defined to be larger or equal to zero, again a
min operator is applicable.

2. For a simple example with non-convex, FDH-based technologies: see Kerstens and Vanden Eeckaut (1998).

3. We are grateful to the referee for pointing this out. Actually, Rosen, Schaffnit and Paradi (1998) use the same
algorithm to derive marginal rates in DEA-type models.
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Färe, R., S. Grosskopf, and C.A.K. Lovell. (1985).The Measurement of Efficiency of Production. Boston:
Kluwer.
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