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This contribution compares existing and newly developed techniques for geometrically representing
mean–variance–skewness portfolio frontiers based on the rather widely adapted methodology of polyno-
mial goal programming (PGP) on the one hand and the more recent approach based on the shortage func-
tion on the other hand. Moreover, we explain the working of these different methodologies in detail and
provide graphical illustrations in relation to the goal programming literature in operations research.
Inspired by these illustrations, we prove two new results: a formal relation between both approaches
and a generalization of the well-known one fund separation theorem from traditional mean–variance
portfolio theory.
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1. Introduction

The limitations of modern portfolio theory trading off risk and
expected return are meanwhile well-documented. A host of empir-
ical studies rejects the hypothesis that portfolio returns are charac-
terized by normal distributions. Furthermore, there is ample
evidence that investors care about higher moments of return dis-
tributions. A recent study evaluating the out-of-sample perfor-
mance of a variety of sample-based mean–variance (MV)
portfolio models designed to reduce the effect of estimation error
reveals that none of these methods consistently outperforms a na-
ive portfolio diversification rule (see DeMiguel et al., 2009).

Nevertheless, a continuous stream of new proposals aims at
improving the traditional MV portfolio model: for instance, Roman
et al. (2007) combine two risk measures (i.e., variance and Condi-
tional Value-at-Risk (CVaR)) and transform this multi-objective
problem into a single objective problem, or one can regularize
(i.e., stabilize) the MV optimization problem by considering it as
a constrained least-squares regression problem by adding a pen-
alty term proportional to the sum of the absolute values of the
portfolio weights (see Brodie et al., 2009). A host of alternative risk
measures have been inserted into the traditional Markowitz bi-cri-
teria model (e.g., semi-variance (or various other lower partial mo-
ments), mean absolute deviation, quantile shortfall risk, Gini mean
difference, etc.). Part of these proposals aim at linearizing the port-
folio optimization problem. Especially when portfolios face multi-
ple additional constraints (minimal lots, transaction costs, etc.),
then LP solvability is an asset (see, e.g., Mansini et al., 2003).

However, discontent with MV has alternatively led to an enor-
mous stream of proposals to include, e.g., the skewness or (more
rarely) higher order moments into portfolio theory. Limiting our
discussion to mean–variance–skewness (MVS) portfolio optimiza-
tion models, a variety of articles have offered alternative ap-
proaches over the years. Examples of a primal approach are found
in Wang and Xia (2002) who determine MVS portfolios via a mul-
ti-objective programming approach, or in Athayde and Flôres
(2004) who determine analytical solutions characterizing the
MVS portfolio frontier by minimizing the variance for given mean
and skewness while assuming a risk-free asset and shorting. There
are plenty of other recent research lines. For example, Li et al.
(2010) develop a fuzzy MVS model as well as some variations. As
another instance, Konno et al. (1993) formulate a general portfolio
optimization problem maximizing skewness subject to fixed ex-
pected return and variance constraints, whereby both the quadratic
and cubic terms are linearly approximated to yield a mean-absolute
deviation-skewness model. Note that a lot of these contributions
tend to solve the MVS portfolio problem by privileging one or two
of the objectives at the cost of the other(s). Starting from specifica-
tions of the indirect MVS utility function, dual approaches search
for optimal portfolios via preference parameters reflecting attitudes
towards risk and skewness. Jondeau and Rockinger (2006) and Har-
vey et al. (2010) are recent examples of such utility-based studies.
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It is fair to say that no consensus has emerged so far about a
general approach to multi-moment portfolio models. While espe-
cially these primal approaches should ideally be somehow equiva-
lent, we are unaware of any comparative study in the literature. In
this context, this contribution is-to the best of our knowledge-the
first attempt to develop a comparison between two primal MVS
portfolio optimization approaches.

On the one hand, the seminal article by Lai (1991) develops a
MVS portfolio optimization model under the assumptions of short-
ing and the availability of a risk-free asset (see, e.g., Chunhachinda
et al., 1997 for an explicit list of assumptions). This article started a
burgeoning literature whereby portfolio optimization is conceived
as a multiple goal programming problem. In particular, in what is
nowadays commonly referred to as the polynomial goal program-
ming (PGP) approach, one attempts to find a compromise between
several goals by minimizing some appropriate polynomial penalty
function. As traditionally conceived, this results in simultaneously
maximizing return and skewness for a given unit portfolio risk.
This PGP methodology has become a rather popular vehicle for
empirical research looking at skewness persistence in a variety of
international markets (e.g., Chunhachinda et al., 1997 or Sun and
Yan, 2003), emerging markets (e.g., Canela and Collazo, 2007), or
other markets known to follow non-normal distributions (like
commodity trading advisors (CTAs), the Collateralized Fund Obli-
gation (CFO) Equity Tranche, hedge funds, or funds of hedge funds
(FOFs): see Aboul-Enein et al. (2012), Anson (2006), Anson et al.
(2007), Elkaim and Papageorgiou (2006), or Davies et al. (2009)).
Leung et al. (2001) develop a method to combine several forecasts
within such PGP portfolio model.

A variety of methodological refinements has been adopted to
the basic Lai (1991) model: trade-offs among lower partial mo-
ments (see Chen and Shia, 2007), trade-off between return and Va-
lue-at-Risk (see Chen, 2008), index tracking (see Wu et al., 2007),
among others. Furthermore, the sensitivity of results to intervalling
and the nature of anualization of returns is now better understood
(see Chang et al., 2008a,b). A slight generalization of the basic PGP
framework is found in Leung et al. (2001). It maintains a risk-free
asset but introduces a variance goal resulting in a three- (instead of
two-) dimensional goal programming problem whereby the PGP
objective function follows the computational form of the Minkow-
ski distance. Davies et al. (2009) explicitly add kurtosis as a fourth
objective and normalize the deviation variables.1 These are the
main empirical applications and extensions known to us. In terms
of the number of publications, in our count Lai (1991) is currently
the most widely applied primal MVS portfolio model around in the
literature.

Obviously, multiple criteria decision analysis (MCDA) and goal
programming (GP) are widely applied in the financial sector (see
the survey in, e.g., Spronk et al., 2005). Discrete evaluation meth-
ods are used to assist decision-making on diverse financial prob-
lems ranging from bankruptcy and credit risk assessment over
investment appraisal to portfolio selection and management,
among others. The popularity of the Lai (1991) article can then
be interpreted as but one exponent of the widespread development
of GP models for portfolio analysis in the operational research lit-
erature. While PGP models have close connections to MCDA in gen-
eral and to multiobjective optimization and GP in particular, their
properties have hardly ever been analyzed in this context. Indeed,
apart from Leung et al. (2001), this contribution is the first attempt
to link the basic Lai (1991) model to developments in GP to clarify
1 Aboul-Enein et al. (2012), Anson (2006), Elkaim and Papageorgiou (2006) al
develop a four moment PGP model as well. Hafner and Wallmeier (2008) also
normalize the deviation variables, but their portfolio model only has implicitly four
dimensions: they maximize skewness and minimize kurtosis, but maximize the
Sharpe ratio to combine the first two moments.

2 For an expected utility optimizer, the more basic equivalence between multi-
moment preferences and a polynomial utility function of corresponding degree is
proven in, e.g., Müller and Machina (1987).

3 We are unaware of other systematic contributions on higher order momen
reconstruction. Obviously, geometric reconstructions play a major role in practica
portfolio management. E.g., Anagnostopoulos and Mamanis (2010) extend the MV
space with one dimension representing the optimal number of assets.
l

some confusions in the literature.
On the other hand, the shortage function approach has been

developed by Briec et al. (2004) in MV and by Briec et al. (2007)
in MVS, inspired by the introduction of the same function in pro-
duction theory by Luenberger (1995). Basically, it provides a theo-
retical framework for a new approach initially proposed in the
investment literature by Cantaluppi and Hug (2000) to directly
measure portfolio performance by reference to its maximum po-
tential on the (ex-ante or ex-post) portfolio frontier. Furthermore,
the direct link between the shortage function and other efficiency
measures transposed from the so-called Data Envelopment Analy-
sis literature to portfolio and other financial applications is obvious
(see, e.g., Joro and Na, 2006 or Lozano and Guttiérez, 2008a for
portfolio applications, or Gregoriou et al. (2005) for a fund rating
context).

Recently, the general case of a shortage function covering an
arbitrary number of moments has been realized in Briec and Ker-
stens (2010). As theoretical advantage, a firm link is established be-
tween the shortage function on the one hand and mixed risk
aversion utility functions (representing preferences for odd mo-
ments and dislikes for even moments) on the other hand (see Briec
and Kerstens, 2010 for a general duality result).2 One of the main
practical advantages of the shortage function approach is its capabil-
ity of providing geometrical representations of portfolio frontiers un-
der a wide variety of restrictions on portfolio weights. This has been
studied from a methodological angle for MVS portfolio frontiers in
Kerstens et al. (2011).3 Other empirical portfolio work based on this
approach includes Jurczenko et al. (2006), Jurczenko and Yanou
(2010), Lozano and Guttiérez (2008b), among others. Compared to
PGP, it is an approach that makes some claim to generality in that
it bridges the gap between primal and dual (i.e., utility-based) ap-
proaches (see Briec and Kerstens, 2010).

An immediate question is how these two primal approaches can
be related to one another. In particular, this contribution basically
attempts to answer the following pertinent questions: (i) Are both
PGP and shortage function optimal points situated on the same
MVS frontier? (ii) What are the mathematical relations between
the PGP and shortage function approaches? (iii) Can PGP be used
for reconstructing portfolio frontiers, and if so, how can one pro-
ceed? (iv) Can the PGP approach be extended beyond its initial
portfolio setting, as Lai (1991) claims? In answering these four
questions, we use appropriate graphical illustrations based on
the shortage function and we develop new, two-dimensional geo-
metrical portfolio representations in MVS based upon both short-
age function and PGP approaches. In particular, the answers to
these questions lead to two new results. Furthermore, these an-
swers can inspire further extensions for both these two primal ap-
proaches, but also provide a basis for further investigations relating
and integrating various other MVS (multi-moment) portfolio
approaches.

The remainder of the paper is organized as follows. Section 2
presents the basic portfolio setting and presents the PGP technique
introduced by Lai (1991) as well as the shortage function approach
based on the work initiated by Briec et al. (2004), Briec et al. (2007).
Section 3 develops all geometrical representations and their inter-
pretations in a series of subsections. Based mainly on the GP litera-
ture in OR, it also clarifies some ambiguities one can find in current
portfolio applications of the PGP approach. First, PGP results are
t
l
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interpreted within the context of a MVS reconstruction based on
the shortage function following Kerstens et al. (2011). Then, it is re-
minded that PGP results are MVS efficient. Next, we explore the
ways of developing geometrical representations using the PGP ap-
proach. Finally, we discuss some geometrical representations of
portfolio models PGP currently fails to generate while the shortage
function approach manages to deliver. To remedy these problems,
we propose a new, revised PGP formulation allowing for two-
dimensional reconstructions in more general portfolio settings.
The resulting reconstructions are similar to the new, two-dimen-
sional reconstruction formulations based on the shortage function
introduced earlier. Section 4 presents two new results to the litera-
ture. First, we establish a formal relation between the shortage
function and the PGP approach. Second, following the geometrical
representations based on the PGP and shortage function ap-
proaches, we offer a substantial result showing that a single
mean-skewness (MS) section is sufficient to reconstruct the MVS
frontier under a risk-free asset with shorting. This is a generalized
one fund separation result. Section 5 concludes the paper.
2. Basic portfolio framework and methodologies

We start by introducing the basic portfolio setting and the two
methodologies for determining optimal MVS portfolios: the PGP
approach, and the shortage function method.

2.1. Basic portfolio framework

Consider the problem of selecting a portfolio from n financial
products (addressed as assets hereafter, though other risky prod-
ucts could be considered) and a risk-free asset.

A portfolio ðw;wRf Þ ¼ ðw1; . . . ;wn;wRf Þ 2 Rnþ1 is a vector of pro-
portions in each of these n financial assets and the risk-free asset
with

Pn
i¼1wi þwRf ¼ 1. If a risk-free asset is absent or cannot be se-

lected, then wRf = 0. If shorting is not allowed, then all proportions
wi, for i 2 {1, . . ., n}, and wRf must be positive. The set of admissible
portfolios is denoted by I.

The assets from which the investor makes a choice are charac-
terized by their returns Ri, for i 2 {1, . . ., n}. From these, the ex-
pected return vector E[R] can be derived, as also the covariance
matrix X, and the coskewness tensor of rank three K. Obviously,
the risk-free asset has expected return RRf and zero covariances
and coskewnesses with itself and the other assets.

The return of portfolio (w, wRf) is defined by
Rðw;wRf Þ ¼

Pn
i¼1wiRi þwRf RRf . The expected return of portfolio

(w, wRf), its variance and skewness are computed as follows:

E½Rðw;wRf Þ� ¼
Xn

i¼1

wiE½Ri� þwRf RRf ; ð1Þ

Var½Rðw;wRf Þ� ¼ E½ðRðw;wRf Þ � E½Rðw;wRf Þ�Þ2� ¼
Xn

i;j¼1

wiwjXij; ð2Þ

Sk½Rðw;wRf Þ� ¼ E½ðRðw;wRf Þ � E½Rðw;wRf Þ�Þ3� ¼
Xn

i;j;k¼1

wiwjwkKijk: ð3Þ

Note that skewness refers to the third central moment in the
remainder of this text.

Let U : I! R3 be the function defined by

Uðw;wRf Þ ¼ ðUMðw;wRf Þ;UV ðw;wRf Þ;USðw;wRf ÞÞ
¼ ðE½Rðw;wRf Þ�;Var½Rðw;wRf Þ�; Sk½Rðw;wRf Þ�Þ:

It provides the expected return, variance and skewness of a given
portfolio (w, wRf). The functions UM, UV and US represent the coor-
dinate functions of U.
In the remainder, an arbitrary element a = (aM, aV, aS) of R3 is
called a MVS point. Thus, a MVS point can be the image by U of
a portfolio, or any arbitrary point in this three-dimensional space.
The MVS image of I is obtained by UðIÞ ¼
fUðw;wRf Þ; ðw;wRf Þ 2 Ig. This set can be extended by defining a
MVS disposal representation set DR ¼ UðIÞ þ ðR� � Rþ � R�Þ.

Instead of working with expected return, variance and skew-
ness, it is sometimes convenient to switch to the normalized mo-
ments determined by expected return, normalized variance (i.e.,
square root of variance or standard deviation) and normalized
skewness (i.e., cubic root of skewness). Using the letter ‘n’ in the
notation when referring to normalized moments (e.g., nVar refers
to normalized variance), we also introduce the normalized func-
tion nU : I! R3 mapping an arbitrary portfolio into normalized
MVS space:

nUðw;wRf Þ ¼ ðE½Rðw;wRf Þ�;nVar½Rðw;wRf Þ�;nSk½Rðw;wRf Þ�Þ

¼ ðE½Rðw;wRf Þ�;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Rðw;wRf Þ�

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sk½Rðw;wRf Þ�3

q
Þ:
2.2. PGP model

In this section, we introduce notation related to the multi-
objective approach for selecting MVS optimal portfolios in Lai
(1991). His main idea in developing a feasible MVS model assum-
ing shorting and a risk-free asset is to search for a portfolio maxi-
mizing both expected excess return Z1 and skewness Z3 for a given
level of variance Z2. Obviously, Z1 = E[R(w, wRf)] � RRf. Under the
assumption of shorting, the expected excess return Z1 can become
arbitrary large making the maximization of Z1 unbounded. There-
fore, some restriction is needed: Lai (1991) focuses on unit vari-
ance portfolios solely. Under the current assumptions, this makes
sense since a non-unit variance portfolio can always be rescaled.
This guarantees that the problem of maximizing both expected ex-
cess return Z1 and skewness Z3 is feasible.

Ideally, one searches for a unit variance portfolio maximizing
both Z1 and Z3. However, since it is unlikely (if not impossible) to
achieve both goals simultaneously, the PGP program of Lai
(1991) and adopted in the ensuing literature finds a compromise:

Definition 2.1. For given parameter values a; b 2 Rþ, the PGP
model is defined by
PGPða;bÞ ¼ min
ðw;wRf Þ2I

da
1 þ db

3; d1 ¼ Z�1 � Z1;d3 ¼ Z�3 � Z3; Z2 ¼ 1
n o

;

with

Z�1 ¼ max
ðw;wRf Þ2I

fZ1; Z2 ¼ 1g ð4Þ

and

Z�3 ¼ max
ðw;wRf Þ2I

fZ3; Z2 ¼ 1g: ð5Þ

Thus, the target expected excess return Z�1 and the target port-
folio skewness Z�3 are first determined in two separate portfolio
optimization programs: (i) The program determined by (4) maxi-
mizes expected excess return subject to a unit portfolio variance
constraint; (ii) The program determined by (5) maximizes portfolio
skewness subject to the same unit portfolio variance constraint.
The PGP(a, b) program simultaneously minimizes the deviations
between expected excess return and its target, and between port-
folio skewness and its target, subject to the unit portfolio variance
constraint. The powers a and b in Definition 2.1 related to the devi-
ation variables d1 and d3 are determined according to the investor’s
preferences towards expected excess return and skewness. A larger
value of a reflects a higher importance of maximizing expected ex-
cess return, while a larger value of b corresponds with a higher
interest in maximizing portfolio skewness.
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In the remainder, we focus on the initial Lai (1991) formulation
and ignore any variations on this basic framework. For instance,
Davies et al. (2009) normalize the deviation variables and have a
slightly different objective function.4

2.3. Shortage function model

Following Kerstens et al. (2011), we now adapt the shortage
function to the basic assumptions of having a risk-free asset and
short selling. Moreover, we include additional adapted versions
suitable for generating a geometrical representation of the MS
frontier, among others. We start with the shortage function in
MVS space introduced in the following definition:

Definition 2.2. Let g ¼ ðgM ; gV ; gSÞ 2 Rþ � R� � Rþ and g – 0. The
shortage function Sg in the direction of vector g is the real valued
function defined by SgðyÞ ¼ supd2Rfd; yþ dg 2 DRg.

Starting from a given MVS point, the shortage function seeks to
simultaneously improve expected return and skewness and reduce
variance in the direction of vector g. The choice of this direction
vector depends on investor’s preferences. Note that the shortage
function is an efficiency gauge whereby a zero value indicates
efficiency.

The computation of the shortage function value specified in
Definition 2.2 for a MVS point y = (yM, yV, yS) in the direction of
the vector g = (gM, gV, gS) is obtained by solving the following cubic
non-linear programming model:

SgðyÞ ¼ max
ðw;wRf Þ2I

fd; E½Rðw;wRf Þ�P yM þ dgM;Var½Rðw;wRf Þ�

6 yV þ dgV ; Sk½Rðw;wRf Þ�P yS þ dgSg: ð6Þ

When solving model (6), the efficiency value SgðyÞ as well as the
left-hand and right-hand sides of the constraints in the optimal va-
lue provide useful information. Denoting the optimal value by d⁄

and the optimal portfolio by w�;w�Rf

� �
, then the MVS point derived

from the left-hand sided of the constraints

E R w�;w�Rf

� �h i
;Var R w�;w�Rf

� �h i
; Sk R w�;w�Rf

� �h i� �
is always posi-

tioned on the strongly efficient frontier (see Kerstens et al.,
2011). The MVS point deducted from the right-hand sides of the
constraints (yM + d⁄gM, yV + d⁄gV, yS + d⁄gS) is always situated on
the weakly efficient frontier. Thus, SgðyÞ ¼ 0 if and only if the
MVS point y is positioned on the weakly efficient frontier.

One can force possible slacks between left-and right-hand sides
of the constraints in (6) to be zero by replacing the inequalities
with equalities:

S¼g ðyÞ ¼ max
ðw;wRf Þ2I

fd; E½Rðw;wRf Þ� ¼ yM þ dgM;Var½Rðw;wRf Þ�

¼ yV þ dgV ; Sk½Rðw;wRf Þ� ¼ yS þ dgSg: ð7Þ

If an optimal solution is found, then the corresponding MVS point
obtained from the left-hand sides of the equality constraints is posi-
tioned on the boundary of UðIÞ.

One of the variables can even be dropped to obtain two-dimen-
sional shortage functions relative to a more basic two-dimensional
portfolio model. For instance, if the skewness is omitted in (6), then
the MV shortage function is obtained:

S�S
g ðyÞ ¼ max

ðw;wRf Þ2I
fd; E½Rðw;wRf Þ�P yM þ dgM ;Var½Rðw;wRf Þ�

6 yV þ dgVg: ð8Þ
4 See also Canela and Collazo (2007), among others.
3. Revisiting the Lai (1991) contribution in view of the OR
literature

To illustrate the PGP framework set out in Section 2.2, we use
the example from Lai (1991) for which all statistics are publicly
available. In particular, the risk-free return, expected returns,
covariance matrix and coskewness tensor are published in Lai
(1991). Indeed, we simply take the risk-free asset of 0.0058 and
the expected returns from Table 1 on page 298 in Lai (1991). The
covariance matrix and coskewness tensor are available from the ta-
ble in the appendix on page 302 in the same article.

This section mainly focuses on a geometric interpretation of the
Lai (1991) contribution and the clarification of some results known
in the GP literature in OR (see mainly Miettinen, 1999, Steuer,
1986). Seemingly, these results are not necessarily known in the
literature applying the Lai (1991) model in finance. Thus, the aim
is to clarify some ambiguities in this PGP portfolio literature initi-
ated by Lai (1991).5

3.1. PGP results within the context of a MVS reconstruction based on
the shortage function

Since one can obtain points on the weakly and strongly efficient
frontier and on the boundary of UðIÞ by applying the shortage
functions Sg and S¼g (see (6) and (7)), one can come up with tech-
niques for generating portfolio frontiers. Summarizing Kerstens
et al. (2011), it turns out that projecting some planar grid in fixed
directions parallel to the coordinate axes obtains the best results.

This technique of projecting planar grids in fixed directions par-
allel to the coordinate axes generates Fig. 1.6 More precisely, the
shortage functions (6) and (7) are used with direction vector g = (0,
0, 1) starting from a single planar grid situated in the MV plane.
Fig. 1a represents the frontier in MVS space, while Fig. 1b shows
the frontier in the space of mean return, normalized variance (i.e.,
standard deviation) and normalized skewness (i.e., cubic root of
skewness). Part of the MVS frontier is visualized in Fig. 1 as a point
cloud. This MVS frontier consists of the upper part of the boundary of
UðIÞ when looking in the skewness direction (i.e., the vertical direc-
tion in the figure). The horizontal plane is the MV plane.

The MV frontier visible in Fig. 1 is computed by means of the
MV shortage function (8). Note that the skewness of all these MV
optimal portfolios is used for visualizing this MV frontier, embed-
ding the observed MV frontier into MVS space. Clearly, it is the
lower boundary of the MVS frontier. Projecting this embedded
MV frontier into the MV plane yields a classical two-dimensional
MV curve.

Furthermore, observe in Fig. 1 the vertical unit variance plane
intersecting the MVS frontier along a planar curve. This curve is re-
ferred to as MS frontier. A two dimensional visualization is pre-
sented in Figure B.2 in Appendix B.

This MS section can also be generated by the shortage function
(7) with the value of the portfolio variance fixed at unity (V0 = 1).
This leads to the introduction of the notion of a variance fixed short-
age function.

Definition 3.1. Let g ¼ ðgM; gV ; gSÞ 2 Rþ � R� � Rþ and g – 0. The
variance fixed shortage function SV¼V0

g in the direction of vector g
and fixed at variance level V = V0 is the function
SV¼V0

g : R3 ! R [ f�1;þ1g, with

SV¼V0
g ðyÞ ¼ max

ðw;wRf Þ2I
fd; E½Rðw;wRf Þ�P yM þ dgM ;Var½Rðw;wRf Þ�

¼ V0; Sk½Rðw;wRf Þ�P yS þ dgSg: ð9Þ
5 Note that Gan (2001) aims to point out some other pitfalls in the same literature.
6 All figures in this contribution are generated using Maple version 14.



Fig. 1. Geometrical representation of the (a) MVS frontier and (b) normalized MVS
frontier, the intersection with the unit variance plane and the position of some PGP
optimal portfolios.

8 This is due to several reasons. First, we do not have the original raw returns from
hich the statistical data has been computed. The unavoidable rounding of these

erived statistics in an article leads to rather drastic changes in optimal solutions. In
ct, Lai (1991) reports the expected returns at 3 decimals, the variance–covariance at
decimals, and the skewness–coskewness tensor at 5 decimals. Second, the

ptimization is non-linear in nature. Therefore, optimization algorithms may end
p in local rather than global optima. Neither the numerical optimization routine
sed in Lai (1991) (see his footnotes 9, 16, 17 and 19), nor the one applied here
uarantee that global optima are obtained. However, we apply a pseudo-global
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This new, special formulation is crucial to establish a link with
the PGP approach. Note that the portfolio variance is now fixed (V0)
instead of being linked to some portfolio under evaluation (as in
(6) and (7)). Also note that the variance component gV of the direc-
tion vector g is put to zero: it has no influence on the variance fixed
shortage function value. Thus, the direction vector becomes (gM, 0,
gS). In particular, this variance fixed shortage function allows
reconstructing the MS frontier from a line grid along the fixed var-
iance dimension and covering the range of the return dimension by
projection into the remaining skewness dimension (i.e., g = (0, 0,
1)).7

The PGP points computed with the powers indicated in the
headings of Tables 2 and 3 on pages 299–300 in Lai (1991) are
shown by the labeled points in Fig. 1 and Figure B.2 in Appendix
B. Data on these same six PGP points in Fig. 1 is found in Table 1.
7 Alternatively, one can obtain the MS frontier from a grid along the range of the
skewness dimension by projection along the return dimension for a given fixed
variance using the direction vector (1, 0, 0).
In addition to the first two parts containing the labels in all figures
and the powers for a and b from Lai (1991), Table 1 contains six
parts separated by horizontal lines. The first part contains the opti-
mal values of the PGP objective function. Then, we have the opti-
mal values d�1 and d�3 of the deviation variables d1 and d3

respectively. The third part reports the optimal portfolio weights

w�;w�Rf

� �
. Part four shows the MVS coordinates of the optimal

PGP point (obviously, its variance equals one). Finally, the last
two parts list the values obtained from applying the MVS ðSgÞ
and MV S�S

g

� �
shortage functions on the optimal PGP points in part

four.
Currently, we have three main comments on Table 1. First, the

optimal value of the PGP objective function has no straightforward
interpretation in terms of investor preferences (see also Gan (2001)
for more details and an illustration (i.e., his Table 1)). For a = 0 and
b = 1, for instance, the optimal deviation values d�1 ¼ 0:027 and
d�3 ¼ 0 indicate a positive deviation from the target expected excess
return and no deviation from the target portfolio skewness, respec-
tively. This exclusive preference for skewness yields an objective
function value of unity. Exactly the opposite preferences (i.e.,
a = 1 and b = 0) yield also an objective function value of unity, even
though now there is no deviation from the target expected excess
return and a larger positive deviation from the target portfolio
skewness (i.e., d�1 ¼ 0 and d�3 ¼ 0:309). Thus, different deviation
variables and opposite powers yield an identical objective function
value of unity. Second, observe that the variance of all optimal
solutions equals unity. Third, we are unable to duplicate the origi-
nal results in Lai (1991) (compare to his Tables 2 and 3 on pages
299–300).8

3.2. PGP results are MVS efficient: a remark

This section establishes the efficiency status of the PGP optimal
points by reference to the existing goal programming literature.
Sometimes doubts on the efficiency status of the PGP approach
are expressed. For instance, Jurczenko et al. (2006) conjecture in
a MVS kurtosis context that ‘‘minimizing deviations from the first
four moments simultaneously only guarantees a solution close to
the mean–variance–skewness–kurtosis efficient frontier.’’ (page
52). By contrast, Chunhachinda et al. (1997) claim that the ‘‘exis-
tence of an optimal solution’’ is a key feature of the PGP approach
(page 146). The MVS efficiency of PGP is now formally established
in a remark contradicting the above conjecture.

Proposition 3.1. For any lp norm, all PGP optimal portfolios are MVS
efficient.

The proof for this efficiency follows from the GP literature: e.g.,
Miettinen (1999, Theorem 2.1.1, pp. 67–70). Note that in the case
of the shortage function the MVS efficiency is also well established.
In general, Briec and Kerstens (2010) prove that the shortage
ptimizer by repeating the local optimization process multiple times from different
itial positions, thereby increasing the probability of reaching a global optimum.

hird, numerical optimization routines as well as hardware have substantially
proved over these two decades leading to more accurate results. To be consistent,

e continue to reason with the solutions obtained rather than copying the original
sults in Lai (1991).
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Table 1
The results from optimizing with PGP for distinct combinations of a and b and the projection of these optimal portfolios using the MVS and MV shortage functions.

Label r s t u v w

Combination of a and b a = 0, b = 1 a = 1, b = 0 a = 1, b = 1 a = 1, b = 2 a = 2, b = 1 a = 2, b = 2

Optimal PGP value 1.000000 1.000000 0.025992 0.014725 0.000747 0.000499

d�1 0.027419 0.000000 0.024624 0.011338 0.027259 0.020848
d�3 0.000000 0.309610 0.001368 0.058193 0.000004 0.008050

w�1 �0.482121 1.005840 �0.381492 0.155816 �0.476493 �0.240156
w�2 �0.016725 �0.566768 �0.097031 �0.454698 �0.021583 �0.202516
w�3 1.839502 1.450752 1.844821 1.821488 1.839928 1.847499
w�4 �1.288837 0.897412 �1.162049 �0.428958 �1.281658 �0.978824
w�5 4.485886 2.067465 4.429692 3.909411 4.483054 4.329763
w�Rf �3.537705 �3.854701 �3.633940 �4.003059 �3.543249 �3.755766

E R w�;w�Rf

� �h i
0.064803 0.092222 0.067598 0.080883 0.064962 0.071374

Var R w�;w�Rf

� �h i
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

Sk R w�;w�Rf

� �h i
0.428260 0.118650 0.426893 0.370067 0.428256 0.420210

Optimal value Sg U w�;w�Rf

� �� �
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Optimal value S�S
g U w�;w�Rf

� �� �
0.246856 0.000000 0.217051 0.090619 0.245126 0.178633
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function guarantees a global optimal solution for a large class of
convex problems. Furthermore, it yields a set of weakly efficient
portfolio solutions that contains at least one strongly efficient solu-
tion.9 In particular, Briec et al. (2007) establish sufficient conditions
to guarantee MVS efficiency. These results clearly make the shortage
function and PGP approaches stand out compared to some of the
other primal approaches listed in the introduction where efficiency
claims seem only rarely established.

Observe in Fig. 1 that all MVS points are at the intersection of
the MVS frontier with the unit variance vertical plane. In Table 1,
the PGP optimal unit variance portfolios are computed for distinct
values of parameters a and b. Computing both the MVS (8) and the
MV (6) shortage functions using the position dependent direction
vector for all these points, optimal values are reported in the last
two rows of Table 1. Since all shortage function values equal zero,
this illustrates that all PGP optimal portfolios are MVS efficient.
Focusing on the last row of Table 1 computed using the MV short-
age function (8), this function equals zero (i.e., MV efficient) only
for the PGP point obtained with a = 1 and b = 0 (these parameter
values attach no importance to skewness). All other combinations
of a and b lead to MV inefficient points.
3.3. Geometrical interpretation of PGP and its representation

As observed in Sections 3.1 and 3.2, varying the values of the
parameters a and b in Definition 2.1 leads to different MVS efficient
points on the MS frontier. Therefore, these points are also part of
the MVS frontier. By altering the values of the parameters a and
b, different regions on the MS frontier can be reached.

Gan (2001), Zghal et al. (2011) remark that the PGP problem
involves a relation between an exterior ideal point constituted
by the optimal solutions to the target expected excess return Z�1
and the target portfolio skewness Z�3 on the one hand, and the
PGP optimal points on the MVS frontier on the other hand. An
illustration of this ideal point can be found in Figure B.2 in
Appendix B. This observation leads to the following questions:
(i) What is the exact geometrical relation between this exterior
ideal point and the PGP optimal points? This calls for a geometric
interpretation of the PGP optimization framework. (ii) Can one
use the PGP model for the geometric reconstruction of portfolio
frontiers? Remark that while the geometry of GP models is
9 Hence, if a unique solution exists, then it is strongly efficient.

10 Note that Gan (2001) develops part of our analysis in a somewhat more general
portfolio setting.
well-known in general terms for lp norms (see, e.g., Miettinen,
1999, p. 69), it has to our knowledge been barely developed more
generally and within the PGP portfolio context following Lai
(1991).10

Starting with the first question, we must more clearly under-
stand how PGP optimization determined by Definition 2.1 geomet-
rically selects points on the MS frontier. Put differently, we need to
grasp the relation between the choice of the parameters a and b
and the resulting position on the MS frontier. From Definition
2.1, it follows that

PGPða;bÞ ¼ min
ðw;wRf Þ2I

Z1 � Z�1
�� ��a þ Z3 � Z�3

�� ��b; Z2 ¼ 1
n o

:

Denote the expected return of the optimal portfolio obtained from
problem (4) by PM and the skewness of the portfolio solving prob-
lem (5) by PS. Then, Z1 � Z�1 ¼ UMðw;wRf Þ � PM and
Z3 � Z�3 ¼ USðw;wRf Þ � PS. Consequently,

PGPða;bÞ ¼ min
ðw;wRf Þ2I

f�r; �r ¼ jUMðw;wRf Þ � PMja

þ jUSðw;wRf Þ � PSjb and UV ðw;wRf Þ ¼ 1g: ð10Þ

Thus, when solving (10), one needs to look for unit variance
portfolios (w, wRf) minimizing

�r ¼ jUMðw;wRf Þ � PMja þ jUSðw;wRf Þ � PSjb:

Since the point (UM(w, wRf), US(w, wRf)) is contained in the unit var-
iance MS plane, it is natural to consider the geometrical object in
this MS plane described by the implicit equation

jM � PMja þ jS� PSjb ¼ �r; ð11Þ

for some fixed �r 2 Rþ.
Consider the example of parameter values a = 2 and b = 2. Then,

(11) simplifies to ðM � PMÞ2 þ ðS� PSÞ2 ¼ �r, which represents a cir-
cle with radius

ffiffiffi
�r
p

and center (PM, PS).
Since we prefer not to have the square root in the previous spe-

cial case, we propose the transformation �r ¼ r
1
2ðaþbÞ for the general

case. Consequently, (10) is rewritten as



12
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PGPða;bÞ ¼ min
ðw;wRf Þ2I

r; r
1
2ðaþbÞ ¼ jUMðw;wRf Þ � PMja

n�

þjUSðw;wRf Þ � PSjb and UV ðw;wRf Þ ¼ 1
o�1

2ðaþbÞ
; ð12Þ

and (11) becomes

jM � PMja þ jS� PSjb ¼ r
1
2ðaþbÞ: ð13Þ

It is easily verified that the geometrical object described by (13)
is the circle in the unit variance MS plane with radius r and center
(PM, PS) in the case a = 2 and b = 2. Therefore, we propose the fol-
lowing definition:

Definition 3.2. The PGP circle in the unit variance MS plane with
radius r and center (PM, PS) for parameter values a and b is the
geometrical object described by the implicit equation

jM � PMja þ jS� PSjb ¼ r
1
2ðaþbÞ:

Clearly, the notion of a ‘circle’ should be relaxed. Only for the
special case of a = 2 and b = 2, we obtain regular Euclidean circles.
We refer to Section B.2 in Appendix B for more information and
illustrations.

In the general case, a smaller r results in a smaller PGP circle.
Consequently, (12) determines in the unit variance MS plane the
minimal possible radius r of a PGP circle around (PM, PS) that re-
mains in contact with UðIÞ. Clearly, the PGP circle is tangent to
the boundary of UðIÞ at the minimum.

Proposition 3.2. The PGP circle in the unit variance MS plane with
radius PGPða; bÞ

2
aþb and center (PM, PS) for parameter values a and b,

and the unit variance MS section of the MVS frontier are locally
tangent to each other at the MVS image of the PGP optimal portfolio.11

This proposition is illustrated in Fig. 2 for the same parameter
settings as in Figure B.3 of Appendix B. Additional figures are again
available this same appendix. Note that the proportions of the PGP
circles in Fig. 2 differ from those in Figure B.3 because of a different
scaling of the axes.

Note that the point (PM, PS) derived from the two-dimensional
problems (4) and (5) offers an ultimate, but unreachable goal since
it is situated outside the MS section of the portfolio frontier. We la-
bel this point ‘Ideal portfolio with maximal return and maximal
skewness’. Around this point, the radius minimizing PGP circle is
drawn: a PGP circle is tangent to the boundary of UðIÞ in a point
visualized by a small square (h) in the figure. This tangency point
is the MS point of the portfolio minimizing the radius.

Turning to the second question, we now highlight four potential
difficulties. First, understanding the geometry behind PGP, we now
return to the idea of varying the values of a and b to compute a suf-
ficient number of points on the MS frontier for it to become visible.
We know that this variation leads to differently shaped PGP circles,
each tangent to the boundary of UðIÞ. Compared to the shortage
function approach where an initial point is projected according
to a direction vector, the link between the parameter values for a
and b and the PGP circle on the one hand and the resulting bound-
ary point on the other hand is more involved. This directly leads to
a first difficulty of controlling the position of this optimal PGP
point.

A second difficulty is related to the presence of two degrees of
freedom for generating the MS frontier which is a curve (i.e., a
one-dimensional object). In general, increasing the value of a in-
creases the importance of maximizing expected return, shifting
the optimal PGP point down along the MS frontier. Similarly,
11 Note that all proofs of propositions are in Appendix A.
increasing the value of b increases the weight of maximizing skew-
ness, resulting in an upward shift along the MS frontier. However,
by increasing both a and b, effects from the first parameter par-
tially outweight those from the second parameter. Thus, identical
or neighboring PGP optimal points can be found with quite differ-
ent parameter settings.

Third, the parameters a and b can vary over an infinitely large
interval, i.e., the set Rþ. Therefore, some extreme regions are prob-
ably hard to reach. This implies that one should make a correct
selection in the combination of parameter values. This problem
can be remedied by a transformation mapping the infinitely large
parameter domain to a finite interval, picking appropriate values
in this finite domain and then mapping these back into the original
set. Quite a few transformations performing these operations are
available. One example is the function f ðxÞ ¼ x

1þx with inverse
f�1ðyÞ ¼ y

1�y: f maps the infinitely large interval [0, +1) into the fi-
nite length interval [0, 1).

Despite these reservations, it turns out that the PGP model
determined by Definition 2.1 manages to rather decently recon-
struct the efficient subset of the unit variance MS section. As antic-
ipated, the distribution of points can be more or less even
depending on the choice of the two parameters a and b.12 Since
it is rather well-known that GP models based on lp norms with
p <1 do not guarantee that all strongly efficient solutions are found,
while GP formulations based on the l1 norm (which is similar to the
shortage function-see Proposition 4.1 below) do manage to find all
strongly efficient solutions (see, e.g., Šipošová, 2008), the issue of
the quality of PGP based reconstructions remains to be further
explored.13

3.4. Extending PGP to alternative portfolio models

In this section, we turn to the question whether PGP can handle
other portfolio models in its current formulation. Lai (1991) claims
that the assumption of short selling is non-essential (see footnote 6
on page 303). PGP results without shorting are reported in Chang
et al. (2008a) and in Prakash et al. (2003), among others. Thus, it
seems the PGP approach can also impose non-negativity on all
portfolio weights, excluding short selling.

However, this claim is incorrect. In Appendix B, this is illus-
trated with two figures: Figure B.10 without shorting and without
risk-free asset, and Figure B.11 with a risk-free asset but without
shorting. It is now possible to observe that the maximal value for
the optimal portfolio variances along the variance axis or the stan-
dard deviation axis is way below the unit level, making the PGP
model based on a unit variance constraint infeasible. Thus, the
claim of Lai (1991) is unfounded in general.

But, in these cases it may suffice to use other values for the var-
iance constraint to guarantee feasibility of the optimization pro-
cess proposed in Lai (1991). This implies generalizing the
definition of the PGP model described by Definition 2.1 to this
new one:

Definition 3.3. For given parameter values a; b 2 Rþ and for some
variance level V0, the generalized PGP model is defined by

PGPV0 ða;bÞ ¼ min
ðw;wRf Þ2I

da
1 þ db

3; d1 ¼ Z�1ðV0Þ � Z1; d3 ¼ Z�3ðV0Þ
n

� Z3; Z2 ¼ V0g;

with
See Figure B.10 in Section B.4 in Appendix B.
13 Šipošová (2008) even proves that under certain conditions the lp norms (with

p <1) as well as the l1 norm can determine strongly efficient solutions.



Fig. 2. Visualization of the PGP optimization process for different values of a and b.
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Z�1ðV0Þ ¼ max
ðw;wRf Þ2I

fZ1; Z2 ¼ V0g ð14Þ

and

Z�3ðV0Þ ¼ max
ðw;wRf Þ2I

fZ3; Z2 ¼ V0g: ð15Þ

While it may be a priori difficult to know which constraining
values should be imposed to make the PGP model feasible in such
contexts, it is straightforward to come up with a workable empir-
ical strategy. One simple solution is to fix a variance level within
the range of variance levels observed in the underlying return data.
This guarantees that the PGP approach is feasible.
Proposition 3.3. The generalized PGP model is feasible if V0 is
situated between the minimal and maximal possible variance levels
observed in the underlying return data.
Consider some target excess return Zt
1, variance Zt

2 and skew-
ness Zt

3. Furthermore, denote the absolute differences
di ¼ Zi � Zt

i

�� ��with i 2 {1, 2, 3}. Then, the following generalized three
dimensional PGP model can be considered:

Definition 3.4. For given parameter values a; b; c 2 Rþ and a
subset A � I, the generalized three dimensional PGP model is
defined by
PGPA a;b; c; Zt
1; Z

t
2; Z

t
3

� �
¼ min
ðw;wRf Þ2A

da
1 þ dc

2 þ db
3

n o
:

Obviously, when Zt
1 ¼ Z�1ðV0Þ; Zt

3 ¼ Z�3ðV0Þ; Zt
2 ¼ V0 and

A ¼ fðw;wRf Þ 2 I; Z2 ¼ V0g, then PGPA a; b;1; Zt
1; Z

t
2; Z

t
3

� �
¼

PGPV0 ða; bÞ. This generalized three dimensional PGP model in Def-
inition 3.4 has a structure similar to Leung et al. (2001, formulation
(26)) and remedies the pitfalls described in Gan (2001) common to
a variety of models based on Lai (1991).
4. Comparing PGP and shortage function: new results

Our systematic comparison of PGP and shortage function ap-
proaches leads to two theoretical results that are new to the liter-
ature. The second finding is again illustrated by geometric
representations in MVS space based on Lai (1991) data.

4.1. PGP and shortage function: a relation

From Definition 3.3, we have

PGPV0ða;aÞ ¼ min
ðw;wRf Þ2I

Z1 � Z�1ðV0Þ
�� ��a þ Z3 � Z�3ðV0Þ

�� ��a; Z2 ¼ V0

n o
:

For all a > 0, it follows that

½PGPða;aÞ�
1
a ¼ min

ðw;wRf Þ2I
Z1 � Z�1ðV0Þ
�� ��a þ Z3 � Z�3ðV0Þ

�� ��a� �1
a
; Z2 ¼ V0

	 

:

ð16Þ

Note that this PGP formulation (16) has a similar structure to the
formulation in Leung et al. (2001).

In addition, we denote

PGPV0
1 ¼ min

ðw;wRf Þ2I
max Z1 � Z�1ðV0Þ

�� ��; Z3 � Z�3ðV0Þ
�� ��� �

; Z2 ¼ V0
� �

:

Proposition 4.1. Consider the vectors 12 ¼ ð1;1Þ and
Z� ¼ Z�1ðV0Þ;V0; Z

�
3ðV0Þ

� �
. Assume there exists some d 2 R� and some

ðw;wRf Þ 2 I such that Z1 P Z�1ðV0Þ þ d; Z2 ¼ V0 and
Z3 P Z�3ðV0Þ þ d. Then, SV¼V0

12
ðZ�Þ ¼ �PGPV0

1 .
Proposition 4.1 establishes a first link between the shortage
function and PGP approaches. In particular, it demonstrates that
the variance fixed shortage function value (see Definition 3.1) com-
puted for the ideal point Z⁄ with a fixed direction vector with unit
coordinates g ¼ 12 is equal to minus the particular PGP formulation
�PGPV0

1 defined above.
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4.2. A MS section suffices to reconstruct the MVS frontier under
shorting and a risk-free asset

It is well-known in the MV portfolio model that the combined
assumptions of the availability of a risk-free asset and shorting
lead to a linear relation between return and normalized variance,
because return and normalized risk can be rescaled at will (see,
e.g., Balbás et al., 2010, Remark 7). Based on casual inspection of
Fig. 1b, one could conjecture that also a linear relationship prevails
in the normalized MVS world. Indeed, for the given unit normal-
ized variance, any combination of return and normalized skewness
along the normalized MS section spans a line with the risk-free
point containing frontier points. The rationale behind this phe-
nomenon is similar to the one mentioned above. While some intu-
itions underlying this result must be around in the literature (e.g.,
Hafner and Wallmeier, 2008 on page 161), we are unaware of any
precise statement in the multi-moment portfolio literature similar
to ours. We formalize this intuition in the following proposition.

Proposition 4.2. Assume the presence of a risk-free asset and the
possibility of short selling this same risk-free asset. Then, the following
statements hold true:
4 Just to provide some idea: while it takes more than 5000 seconds to reconstruct
g. 1 with Maple version 14, one needs less than 100 seconds for Figure B.1 available
Appendix B. Both figures are created on a Dell Latitude D610 with 4 Gb RAM.
(a) An arbitrary risky portfolio (i.e., with non-zero variance) can be
transformed to a unit variance portfolio such that excess return,
normalized variance and normalized skewness are proportional
for both portfolios;

(b) Conversely, a unit variance portfolio can be transformed to a
portfolio with arbitrary strictly positive variance such that
excess return, normalized variance and normalized skewness
are proportional for both portfolios;

(c) The normalized MVS frontier takes the shape of a cone with ver-
tex the risk-free asset;

(d) To generate the normalized MVS frontier, it suffices to generate
a planar section of this frontier not going through the risk-free
point and to construct the cone over this intersecting curve with
vertex the risk-free asset.

We add three comments to this proposition which generalizes
the well-known one fund separation result. First, the presence of
a risk-free asset in Proposition 4.2 is essential. Without a risk-free
asset, the vertex point of the cone is not identified. Second, note
that short selling of all assets is not necessary (as some authors
in the PGP literature claim: see, e.g., Chunhachinda et al. (1997)
on page 147). Third, the short selling assumption on the risk-free
asset is only required to guarantee the existence of the new port-
folio ð�w; �wRf Þmentioned in the proof of Proposition 4.2 in Appendix
A since �wRf might be negative depending on the given data. How-
ever, if �wRf is positive in a particular case where short selling is ex-
cluded, then part (a) of Proposition 4.2 still holds true. In terms of
visualization, we can then observe that the normalized MVS fron-
tier contains a partial cone. In Figure B.11b in Appendix B, this phe-
nomenon is clearly noticeable near the risk-free asset.

The key advantage of Proposition 4.2 (part (d)) is that it pro-
vides a new method for geometrically reconstructing the normal-
ized MVS frontier from a two-dimensional normalized MS
section obtained at unit variance level. Moreover, because of the
straightforward relations between normalized and non-normal-
ized coordinates, a normalized MVS frontier can be easily trans-
formed into a non-normalized MVS frontier (and reverse). This
new reconstruction technique is illustrated in Appendix B in Fig-
ure B.1 visualizing the same frontier as the one in Fig. 1, except that
it is reconstructed from the two-dimensional MS section in Fig-
ure B.2. Apart from the generalization of the traditional one fund
separation results (see, e.g., Luenberger, 1998, Chapter 6) to the
MVS portfolio model, it is clear that the possibility of generating
a complete MVS frontier from a simple MS section saves computer
time.14
5. Conclusions

In this contribution, a first attempt is made to bridge the gap be-
tween two seemingly different approaches for determining MVS
optimal portfolios. We are now in a position to summarize the
main contributions.

First, we clarified some results known in the GP literature in OR
but seemingly leading to ambiguities in the PGP applications of the
Lai (1991) model in finance (similar to Gan (2001) who points out
other pitfalls in this PGP literature). This leads to a focus on a geo-
metric interpretation of the Lai (1991) contribution. First, PGP
points are located on an unit variance MS section that is part of a
MVS portfolio set reconstructed via a shortage function (following
Kerstens et al., 2011). This MS section can also be reconstructed
using a new, variance fixed shortage function. Second, these PGP
points on the unit variance MS section of the MVS frontier are
MVS efficient. Third, the PGP approach reconstructs the MS section
starting from an ‘ideal’ portfolio with maximal return and maximal
skewness situated outside the portfolio frontier. In particular, the
MVS image of a PGP optimal portfolio is locally a tangency point
of a PGP circle and the unit variance MS section of the MVS frontier.
Subject to some remarks, the PGP approach is normally capable of
reconstructing the same MS section of the portfolio frontier. Fourth
and finally, the claim in Lai (1991) that PGP also works with a risk-
free asset and no shorting is incorrect. However, generalizations of
this PGP approach allowing for more flexible portfolio weights are
possible by restricting the variance constraint within the empirical
range.

Second, we develop two new theoretical results. First, the vari-
ance fixed shortage function with a fixed direction vector with unit
coordinates is equal to a limiting case of the PGP model of Lai
(1991). This first result relating hitherto different portfolio litera-
tures is but a first step to investigating any eventual additional
relations among the multitude of different MVS portfolio ap-
proaches. Second, we demonstrate that a single MS section (in-
ferred from PGP points, or from the variance fixed shortage
function) is sufficient to reconstruct the MVS frontier in the pres-
ence of a risk-free asset and its shorting. This generalized one fund
separation result offers a reconstruction strategy that definitely
saves computer time. Furthermore, it also offers a strong ex-post
justification for the basic Lai (1991) model in this particular port-
folio setting.

We see two direct challenges following this investigation. First,
it would be good if some PGP models could deliver a procedure for
three-dimensional MVS frontier reconstruction in general portfolio
settings (which is readily available for the shortage function).
Apart from a portfolio setting with shorting and a risk-free asset,
two-dimensional sections from an otherwise unknown three-
dimensional MVS frontier model are of limited value for portfolio
management. Three-dimensional MVS frontiers deliver much more
information. This calls for a generalization of the current PGP ap-
proach capable of making three-dimensional MVS frontier recon-
structions (where perhaps the Leung et al. (2001) or Gan (2001)
frameworks offer some perspectives). Second, while the duality be-
tween shortage function and MVS utility function has been firmly
established (Briec et al., 2007), the link between the powers a and b
in the current PGP formulations and investor preferences remains
1
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somewhat underdeveloped. Indeed, Gan (2001) explicitly illus-
trates that the current PGP formulations imply quite rudimentary
equivalent multiple-objective utility functions. This calls for fur-
ther refinements linking the Lai (1991) model and its variations
to developments in the MCDA and GP literatures (see, e.g., Mietti-
nen, 1999 or Spronk et al., 2005, among others).

Wrapping up, this first attempt to bridge the gap between two
seemingly unrelated approaches to MVS portfolio modeling finds
quite some common ground. Obviously, there is still a large variety
of alternative approaches around for which family resemblances
remain to be identified. However, this is a fruitful avenue for future
research. From a more practical point of view, we think the main
contribution lies in the new way of reconstructing MVS portfolio
sets from two-dimensional sections. This new way leads to sub-
stantial gains in computer time in a portfolio setting with a risk-
free asset and shorting. But, on top of this it is obvious to extend
both the new, variance fixed shortage function and the new, gener-
alized PGP model to define any two-dimensional section of the
MVS portfolio frontier.
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