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Abstract

This article shows how the linear programs needed to compute cost and revenue functions under constant
returns to scale and a single output or input, respectively, can be replaced with a more efficient enumeration
algorithm.
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1. Introduction

Nowadays, cost and revenue functions are often estimated using nonparametric, deterministic
estimators (see, e.g., Cooper et al., 2006; Hackman, 2008; Ray, 2004). This involves the computation
of one linear program (LP) per observation under evaluation in the sample. Obtaining statistical
inference from these extremum estimators using recent bootstrapping techniques requires again
solving an LP in each draw (see, e.g., De Borger et al., 2008 for an application). This can result in a
substantial computational burden.

It has gone unnoticed so far that the computation of the cost function can be simplified
in the single output case for constant economies of scale. Similarly, the solution of the rev-
enue function also simplifies in the single input case under identical economies of scale. To
the best of our knowledge, this is the first contribution showing that an enumeration algorithm
works for these specific convex data envelopment analysis (DEA) value based models. Soleimani-
damaneh (2009) is among the sole contributions we are aware of developing a similar enumeration
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strategy to determine efficiency position and returns-to-scale classification for the standard DEA
models.

Our contribution must be seen against the background of a small, burgeoning literature focusing
on a variety of strategies to speed up the LP computations underlying DEA production frontier
models. Ali (1993) is probably the first study initiating this research into the computational aspects
of DEA. Following a taxonomy introduced in some early overview article of Dulá (2002), one can
distinguish between preprocessors, enhanced procedures, and new algorithms. In contrast to this
rather substantial literature, to our knowledge very few articles have focused on simplifying the
computational burden for computing cost or revenue functions. Following up on an earlier contri-
bution by Camanho and Dyson (2005), Jahanshahloo et al. (2008) simplify the LP formulations for
the traditional convex cost functions by cutting down on the amount of constraints and decision
variables. Some similarly related articles are found in the literature. Our approach continues this
line of research by focusing on a specific returns-to-scale assumption on a convex technology and
by restricting the number of inputs or outputs.

The purpose of this note is to prove both results regarding the use of enumeration for cost and
revenue functions under constant returns to scale (CRS) and a single output or input, respectively.
Section 2 introduces basic definitions. Section 3 contains the main results. A concluding section
offers some further perspectives.

2. Technology, cost, and revenue functions

Deterministic, nonparametric technologies are based on activity analysis. A technology uses a vector
of inputs x ∈ R

N+ to produce a vector of outputs y ∈ R
M+ . This technology or production possibility

set is the set of all feasible input–output vectors: T = {(x,y): x can produce y}. Alternatively, the
input set L(y) denotes all input vectors x producing the output vector y: L(y) = {x: (x,y) ∈ T}.
Equally so, the output set P(x) is defined as the set of all output vectors y that can be obtained from
the input vector x: P(x) = {y: (x,y) ∈ T}.

The standard radial input efficiency measure is defined as

DFi(x, y) = min{λ | λ ≥ 0,(λx) ∈ L(y)}. (1)

Its main properties are (i) 0 < DFi(x,y) ≤ 1, with efficient production on the boundary (isoquant)
of L(y) represented by unity; and (ii) it has a cost interpretation (see, for instance, Hackman, 2008).

Assume that p is a vector of positive input prices (p ∈ R
N+\{0}). Then, the cost function corre-

sponding to a given technology is defined as follows1:

C(p, y) = inf{p · x : x ∈ L(y)}. (2)

We now briefly elucidate the basic efficiency decomposition distinguishing technical and allocative
efficiency. For a given observation, the radial input efficiency measure to the isoquant of the input set
L(y) represents its technical efficiency. For the same observation, the radial distance to the iso-cost
line tangent to this isoquant represents a measure of cost efficiency. Finally, since cost efficiency is

1The radial input efficiency measure, being the inverse of the input distance function, is related to the cost function via
duality relation (for details, see Hackman, 2008).
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always lower or equal to technical efficiency, in case of a difference this can be attributed to allocative
efficiency. The resulting basic efficiency decomposition states that cost efficiency is the product of
a technical efficiency component and an allocative efficiency component (see Cooper et al., 2006,
ch. 8, for further details).

Equally so, assume that r is a vector of positive output prices (r ∈ R
M+ ), then the revenue function

corresponding to a given technology is defined by

R(r, x) = max{r · y : y ∈ P(x)}. (3)

Apart from imposing traditional assumptions on technology (i.e., no free lunch and inaction,
closedness, free disposal of inputs and outputs, and convexity), the sole key assumption we invoke
in this contribution is CRS (i.e., when (x,y) ∈ T, then δ(x,y) ∈ T, ∀δ > 0). Several nonparametric
technologies have been derived from these axioms (Banker et al., 1984, are among the earlier
sources).

A convex technology based on K observations (xk, yk), k = 1, . . . , K, satisfying the above axioms
and CRS, has been defined in Charnes et al. (1978) as follows:

TCRS =
{

(x, y) | x ∈ R
N
+ y ∈ R

M
+

K∑
k=1

zkyk ≥ y,
K∑

k=1

zkxk ≤ x, zk ≥ 0, k = 1, . . . , K

}
. (4)

Introduction of this technology in this article is considered to mark the start of the DEA literature.
Computing a cost (1) or revenue (2) function with respect to this CRS technology is a standard
model in the DEA literature (e.g., Cooper et al., 2006) and normally requires solving one LP per
observation (eventually a simplified version as elaborated by Jahanshahloo et al., 2008).

3. Main results

Minimal assumptions on observed inputs and outputs are usually formulated as follows. Summing
over all observations, there is a strictly positive aggregate production of every output and a strictly
positive aggregate consumption of every input. Every unit produces a positive amount of at least
one output and employs a positive amount of at least one input (see, e.g., Färe et al., 1994,
pp. 44–45). When considering a single output case, this implies that all observations have a strictly
positive single output. Likewise, for the single input case, this implies that all observations use a
strictly positive single input.

Proposition 1. In the case of CRS and a single, strictly positive output (M = 1), the cost function
CCRS(p, y) is computed as follows:

CCRS(p, y) = y min
k=1...K

{
1
yk

· p · xk

}
.

Proof. Assume there is a single, strictly positive output (M = 1). Consider the technology
TCRS enveloping the sample S = {(x1, y1), . . . , (xK , yK )}. For k = 1, . . . , K, denote δk = y

yk
. Now,

define the transformed sample S′ = {(δ1x1, δ1y1), . . . , (δKxK , δKyK )} = {(δ1x1, y), . . . , (δKxK , y)}
C© 2014 The Authors.
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realizing the same technology TCRS. The conical hull (Cc) of a finite set is the conical hull of its
convex hull (Co). Consequently,

TCRS = (Cc(S) + �) ∩ R
N+1
+ = (Cc(S′) + �) ∩ R

N+1
+ = (Cc(Co(S′)) + �) ∩ R

N+1
+ ,

with � = R
N+ × (−R+). It follows that

LCRS(y) = {
x : (x, y) ∈ (Cc(Co(S′)) + �) ∩ R

N+1
+

}
= {

x : (x, y) ∈ (
Co

({
δ1x1, . . . , δKxK

}) + R
N
+
) × {y}}

= Co
({

δ1x1, . . . , δKxK

}) + R
N
+ .

SinceCo({δ1x1, . . . , δKxK}) is a convex polyhedron by definition, the minimum of any nondecreasing
linear function (e.g., the cost function) is achieved at some vertex point (see Eremin, 2002). Thus,

CCRS(p, y) = inf
{

p · x : x ∈ LCRS(y)
} = min

k

{
p · δk · xk

} = min
k

{
y
yk

· p · xk

}
. �

Proposition 2. In the case of CRS and a single, strictly positive input (N = 1), the revenue function
RCRS(r, x) is computed as follows:

RCRS(r, x) = x max
k=1...K

{
1
xk

· r · yk

}
.

Proof. Assume there is a single, strictly positive input (N = 1). Consider a technology TCRS en-
veloping the sample S = {(x1, y1), . . . , (xK , yK )}. For k = 1, . . . , K, denote μk = x

xk
. Now, define

the transformed sample S′ = {(μ1x1, μ1y1), . . . , (μKxK , μKyK )} = {(x, μ1y1), . . . , (x, μKyK )} real-
izing the same technology TCRS. Using similar arguments as in Proposition 1, we obtain PCRS(x) =
(Co({μ1y1, . . . , μKyK}) + (−R

M+ )) ∩ R
M+ = {y ∈ R

M : 0 ≤ y ≤ ∑K
k=1 zkμkyk,

∑K
k=1 zk = 1, zk ≥ 0}.

Since the price vector r ∈ R
M++ is nonnegative, we have

RCRS(r, x) = max
{
r · y : y ∈ PCRS(x)

}
= max

{
r · y : y ∈ (

Co
({

μ1y1, . . . , μKyK

}) + (−R
M
+ )

) ∩ R
M
+

}
= max

{
r · y : y ∈ (

Co
({

μ1y1, . . . , μKyK

}) + (−R
M
+ )

)}
= max

{
r · y : y ∈ Co

({
μ1y1, . . . , μKyK

})}
.

Since Co{(μ1y1, . . . , μKyK )} is a convex polyhedron by definition, the maximum of any non-
decreasing linear function (e.g., the revenue function) is achieved at some extreme point.
Thus,
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RCRS(r, x) = max
{
r · y : y ∈ PCRS(x)

} = max
{
r · y : y ∈ Co

({
μ1y1, . . . , μKyK

})}
= max

k

{
r · μk · yk

} = max
k

{
x
xk

· r · yk

}
. �

Remark. We are grateful to a referee for explicitly outlining alternative ways of proving Propositions
1 and 2. For Proposition 1, we start from the LP formulation of the cost function CCRS(p, y) in
Camanho and Dyson (2005) (their formula (3)):

min
N∑

i=1
pix

0
i

s.t.
K∑

k=1
xikzk = x0

i , i = 1, . . . , N,

K∑
k=1

ykzk ≥ y,

zk ≥ 0, k = 1, . . . , K, x0
i ≥ 0, i = 1, . . . , N.

Obviously, for satisfying the constraints, all variables x0
i must be strictly positive. Consequently,

for having a basic feasible solution, only one variable zk′ (k′ ∈ {1, . . . , K}) is nonzero while all
others are zero. The constraints now simplify to xik′zk′ = x0

i , i = 1, . . . , N and yk′zk′ ≥ y. Solving
the equality constraints for zk′ and substituting in the inequality constraint shows that x0

i ≥ y
yk′

xik′

for all i = 1, . . . , N. Thus,
∑N

i=1 pix
0
i ≥ y

∑N
i=1

1
yk′

pixik′ from which the desired result follows. A
proof using similar arguments can be obtained for Proposition 2 and is left as an exercise to the
reader.

We include an algorithm for computing CCRS for all observations:

Algorithm 1.

For i = 1, . . . , K do:

(1) Select the ith observation (xi, yi) = (xi1, . . . , xiN, yi1) and its input price vector pi =
(pi1, . . . , piN ).

(2) Put C = ∞.
(3) For k = 1, . . . , K do:

(a) C1 = yi1
yk1

· ∑N
j=1 pi jxk j

(b) If C1 < C then C = C1.
(4) The variable C holds the value of CCRS(pi, yi) for the ith observation.

A similar algorithm could be formulated for RCRS.
Having proven the two main results, we spell out the computational consequences in the next

corollary.
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Corollary 1. In the case of CRS and a single output, the cost function can be computed by enumeration
in a smaller number of operations compared to LP. The same applies to the revenue function in the
case of CRS and a single input.

Proof. In the case of a single output, enumeration requires O(LK(1+N)2) arithmetic operations,
where L is a measure of data storage for a given precision. Ignoring the worst-case exponential
complexity of the simplex method in LP, the Kamarkar interior point (IP) method needs O(L(n)3.5)
operations (with n being the number of decision variables) while the most successful IP method
known so far (i.e., primal-dual Newton step IP method) has a complexity of O(L(n)3) (for details,
see Chong and Zak, 2001; Eiselt and Sandblom, 2007). Transposed to our models, one thus needs at
best O(L(K+N)3) operations for LP. Since in general K > N ≥ 1, it follows that K + N > 1 + N and
consequently (K + N)2 > (1 + N)2. Also K + N > K, which combined with the previous inequality
leads to (K + N)3 > K(1 + N)2. Hence, enumeration of the cost function under CRS and a single
output is always quicker compared to LP. The same argument applies to Proposition 2. �

4. Conclusions

This article is the first to prove that an enumeration algorithm can be employed to solve certain
specific convex DEA type value-based models. Hitherto, enumeration has solely been applied to the
specific structure of a nonconvex production model (see, e.g., Ray, 2004).

Obviously, we do not claim that enumeration is a viable solution strategy for convex DEA type of
production- and value-based models in general (see Soleimani-damaneh, 2009). However, it cannot
be excluded that enumeration could be applied to some other specific convex DEA models. For
instance, to the extent that one is willing to select an efficiency measure that always projects onto a
vertex point, the same procedure could probably be applied to production models under CRS and
a single output or input with the measurement orientation along this single dimension (see, e.g.,
Russell and Schworm, 2011, for some of the more recent choices). This could be a promising avenue
for future research.
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