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Abstract. This contribution defines a new generalized input efficiency measure which
encompasses and thus links four well-known input efficiencymeasures: the Debreu-Farrell
measure, the Färe-Lovell measure, the asymmetric Färe measure, and the multiplicative
Färe-Lovell measure. The axiomatic properties of this new measure are studied. The
generalized input efficiency measure naturally leads to the definition of new measures as
special cases. It also provides a general framework for testing the choice of efficiency
measures. Examples of mathematical programming models in specific cases are estab-
lished to illustrate this new measure.
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1. Introduction
Debreu (1951) and Farrell (1957) described the first
concept of a radial input efficiency measure. Their
seminal work has since then been extended to several
other nonradial efficiency measures.

In particular, Färe and Lovell (1978) defined a new
Färe-Lovell input efficiency measure as an arithmetic
mean of its component measures (sometimes also
known as a Russell efficiency measure). This measure
was defined to reconcile efficiency measures with the
notion of Koopmans (1951) efficiency (see also Russell
1985, 1988). A generalization of the Färe-Lovell effi-
ciency measure allowing for a different weighting of
each dimension has been proposed in Thanassoulis
and Dyson (1992), Zhu (1996), and Ruggiero and
Bretschneider (1998).

Another asymmetric Färe input efficiency measure
looks for the minimum over its component measures
(see, e.g., Färe 1975, Färe et al. 1983). It is the basis for
further developments looking at, for instance, the
problem of finding the shortest path to the efficient
subset (e.g., González and Álvarez 2001). Note that
Kopp (1981a, b) is very critical about both the asym-
metric Färe and the Färe-Lovell efficiency measures.
An early survey of this literature is found in Färe
et al. (1983).

Finally, we include a multiplicative version of the
Färe-Lovell efficiency measure which belongs to this
same family of efficiency measures. It can also be
interpreted as an input-oriented special case of the
nonoriented geometric distance function proposed in
Portela and Thanassoulis (2005, 2007).
Most of this literature and especially the axiomatic

properties satisfied by these various input efficiency
measures on general technologies has been surveyed in
Russell and Schworm (2009). It should be noted that in
the operational research literature someaxioms related to
computational issues like unit and translation invariance
have been discussed (see, e.g., Lovell and Pastor 1995),
which are almost absent in the economic literature.
The basic economic motivation of this literature on

efficiency measures is linked to the observation that
the traditional radial efficiency measure projects on
the isoquant and that a substantial number of slacks
and surpluses may appear. This fact reveals that a
substantial number of observations are situated close
to the weak efficient subset and the isoquant rather
than close to the efficient subset of the technology.
However, recently Briec et al. (2018) reported a re-
markably high incidence of congestion (an extreme
form of technical inefficiency) in several studies
published in the literature. This fact seems to indicate
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that in some samples quite a few observations are sit-
uated close to the isoquant and boundary of the input
set of the technology. If the latter study is corroborated
and it turns out that substantial amounts of observa-
tions are situated away from the efficient subset, then
this may call for another focus on efficiency measure-
ment. Indeed, ideally one would like to have a frame-
work within which efficiency is measured relative to
the subset of the technology where the majority of
observations are situated. It is the main purpose of
this article to provide such a framework.

In this article, we define a new, generalization of these
input efficiency measures that clearly demonstrates the
links between the four previously cited measures.1

Furthermore, we explore the axiomatic properties of
this new input efficiency measure, as well as the ways
it can be computed using nonparametric specifications
of technology. Our new measure therefore offers an
encompassing framework for the main existing effi-
ciency measures in the economic literature that turn out
to be just special limiting cases of the new one.

Furthermore, in line with the economic literature,
this article mainly concentrates on input efficiency.
Obviously, these results can be transposed to other
measurement orientations (i.e., output and graph). In
fact, some of the above-mentioned efficiency mea-
sures have also been defined for other measurement
orientations (see, for instance, Thanassoulis and
Dyson 1992, Portela and Thanassoulis 2007).

2. Assumptions on Technology and
Definitions of Efficiency Measures

Technology describes all production possibilities to
transform input vectors x � (x1, . . . ,xn) ∈Rn+ into output
vectors y � (y1, . . .,ym) ∈Rm+ : T�{(x,y) :x canproduce y}.
Given our focus on input-oriented efficiency measure-
ment, this technologycanbe representedby its input sets:

L y
( ) � x ∈ Rn

+ : x can produce y
{ }

. (1)
Occasionally, we also need the output set associated
with technology T. It denotes all output vectors y ∈
Rm+ that can be produced from a given input vector
x ∈ Rn+: P(x) � {y : (x, y) ∈ T}.

The following standard conditions are imposed on
L(y) (see, e.g., Hackman 2008 for details):

Assumption 1. L(0) � Rn+ and y �� 0 ⇒ 0 /∈ L(y);
Assumption 2. let yk ∈Rn+, k≥0 such that limk→∞yk �
+∞; then

⋂
k→∞ L(yk) � ∅;

Assumption 3. L(y) is a closed set;

Assumption 4. x ∈ L(y) and x′ ≥ x ⇒ x′ ∈ L(y);
Assumption 5. y ∈ Rm+ and v ≥ y ⇒ L(v) ⊂ L(y).

Apart from the traditional regularity assumptions
(possibility of inaction, boundedness, and closed-
ness), Assumptions 4 and 5 represent the strong or
free disposability of inputs and outputs, respectively.
We remark that we do not impose any convexity
assumption on the input sets. These axioms are al-
most as weak as the ones proposed in the early lit-
erature on efficiency measures (see, e.g., Färe and
Lovell 1978, Russell 1985), except that these authors
weakened the disposability axioms.
When discussing input efficiency measures, it is

important to distinguish three subsets of the input set.
First, we can define the isoquant of an input set as

Isoq L y
( ) � x ∈ L y

( )
: λx /∈ L y

( )
,∀λ ∈ 0, 1[ [{ }

. (2)
Next, the weak efficient subset is defined by

WEff L y
( ) � x ∈ L y

( )
: u < x ⇒ u /∈ L y

( ){ }
. (3)

Finally, the strong efficient subset of an input set is
defined as

Eff L y
( ) � x ∈ L y

( )
: u ≤ x and u �� x ⇒ u /∈ L y

( ){ }
.

(4)
Obviously, these three subsets of the input set are related
to one another: EffL(y) ⊆WEffL(y) ⊆ IsoqL(y) ⊆ L(y).
Now we can recall the definition of the Debreu

(1951) and Farrell (1957) radial efficiency measure
DF : Rn+ × Rm+−→R+ ∪ {−∞,∞} as follows:

DF x, y
( ) � inf

δ∈R+
δ : δx ∈ L y

( ){ }
if x ∈ L y

( )
+∞ otherwise.

{
(5)

This radial efficiency measure indicates the maximal
equiproportionate reduction in all inputs which still
allows production of the given output vector on the
isoquant of the input set.
From a debate on axiomatic properties of radial

efficiency measures, the Färe and Lovell (1978) effi-
ciency measure emerged. This function FL : Rn+\{0} ×
Rm+−→R+ ∪ {∞} can be defined as follows:

FL x,y
( )

� inf
β∈Rn+

1
|I x( )|

∑
i∈I x( )

βi : β�x ∈ L y
( )

, βi ∈ 0,1[ ]
{ }

if x ∈ L y
( )

+∞ otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(6)

where � denotes the Hadamard product (element by
element) of two vectors, and for all x ∈ Rn+ the support
of x is defined as I(x) � {i : xi > 0}. This Färe and Lovell
(1978) efficiency measure indicates the minimum
average sum of dimension-wise reductions in each
input dimension which maintain production of given
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outputson theefficient subsetof the input set. In linewith,
for example, Ruggiero and Bretschneider (1998) and
Zhu (1996), one can also define a weighted Färe-Lovell
efficiency measure as follows. For all α ∈ Rn++, one
defines the function: FLα :Rn+\{0}×Rm+ −→R+ ∪{∞} as

FLα x, y
( )

�

inf
β∈Rn+

1
|I x( )|

∑
i∈I x( )

αiβi
( )

:

{

β � x ∈ L y
( )

, βi ∈ 0, 1[ ]
}

if x ∈ L y
( )

+∞ otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(7)

where β is the vector of RI(x) whose elements are βi for
i ∈ I(x), and α ∈ R

I(x)
++ is the vector whose elements are

αi for i ∈ I(x) and such that
∑

i∈I(x) αi � 1.
We also recall the asymmetric Färe (1975) input ef-

ficiencymeasure defined byAF :Rn+ ×Rm+ −→R+ ∪{∞},
AF x, y

( )
�

min
i∈I x( )

inf βi :
{
11 + βi − 1

( )
ei

( ) � x ∈ L y
( )}

if x ∈ L y
( )

+∞ otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(8)

This asymmetric Färe input efficiency measure takes
the minimum of the dimension-wise reductions in
each input dimension which allow production of
given outputs on the boundary of the input set.

Paralleling Färe and Lovell (1978) and in line with
Portela and Thanassoulis (2005), Ruggiero and
Bretschneider (1998), and Zhu (1996), one can define
a weighted multiplicative (rather than additive) Färe-
Lovell type of input efficiency measure. For all α ∈ Rn++,
let us define this function as follows: MFLα : Rn+\{0} ×
Rm+ −→R+ ∪ {∞} as
MFLα x, y

( )

�

inf
β∈Rn+

∏
i∈I x( )

βi
( )αi :

{

β � x ∈ L y
( )

, βi ∈ 0, 1[ ]
}

if x ∈ L y
( )

+∞ otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

where β and α are restricted like the weighted Färe-
Lovell efficiencymeasure (7). Since this function is the
weighted multiplicative equivalent of the Färe and
Lovell (1978) measure of input efficiency, it is termed
aweightedmultiplicative Färe-Lovell input efficiency
measure. It also projects an observed input-output
combination on the efficient subset of the input set.

This weighted multiplicative Färe-Lovell measure in-
cludes as a special case the multiplicative Färe-Lovell
measure proposed byPortela andThanassoulis (2005)
setting αi � 1

|I(x)| for all i ∈ I(x). In the remainder, this
multiplicative (unweighted) Färe-Lovell measure will
be denoted MFL: MFL (x, y) � MFLα(x, y) in the case
where αi � 1 for all i.
As shown in the next section, these four input ef-

ficiency measures and their two variations turn out to
belong to a single family.

3. A New Generalized Input Efficiency
Measure and Its Limiting Special Cases

3.1. Generalized Sum and Generalized Measures
For all p ∈]0,+∞[, let φp : R+ −→R be the map defined
by φp(λ) � λp. For all p �� 0, the reciprocal map is
φ−1
p :� φ1

p
. First, it is quite straightforward to state that

(i) φp is defined over R+; (ii) φp is continuous over R+;
and (iii) φp is bijective overR+. Second, let us focus on
the case p ∈] − ∞, 0[. The map x �→ xp is not defined at
point x � 0. Thus, it is not possible to construct a
bijective endomorphism on R+.
For all p ∈] − ∞, 0[ we consider the function φp

defined by

φp λ( ) � λp if λ > 0
+∞ if λ � 0.

{
(10)

The reciprocal is the map φ1
p
defined on R++ ∪ {∞} as

φ1
p
λ( ) � λ

1
p if λ > 0

0 if λ � ∞.

{
(11)

Let us investigate the φp-generalized sum analyzed
by Ben-Tal (1977). For all (β1, . . . , βn) ∈ Rn+ and for all
p > 0 the φp-generalized sum is given by

∑φp

i∈ n[ ]
βi :� φ−1

p

∑
i∈ n[ ]

φp βi
( )( )

� ∑
i∈ n[ ]

βi
( )p( )1

p

. (12)

If p < 0, using the symbolism 1
0 �+∞ we have, by

construction,∑φp

i∈ n[ ]
βi :� φ−1

p

∑
i∈ n[ ]

φp βi
( )( )

�
∑
i∈ n[ ]

βi
( )p( )1

p

if mini βi > 0

0 if mini βi � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (13)

In the next statement, it is shown that this generalized
sum is continuous for all p ∈ R\{0}. This is important
to provide a general formulation encompassing as a
special case both the situations where p > 0 and p < 0.

Lemma 1. For all p ∈ R\{0}, the map β �→ ∑φp

i∈[n]βi is
continuous over Rn+.
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The proofs of all lemmas and propositions are in the
e-companion.

The Debreu (1951) and Farrell (1957), Färe and
Lovell (1978), asymmetric Färe, and multiplicative
Färe-Lovell measures are all input efficiency mea-
sures that can be interpreted as special cases of a new
type of extended Färe-Lovell input efficiency mea-
sure. This new generalized Färe-Lovell input effi-
ciency measure can be defined as follows.

Definition 1. For all p ∈ R\{0}, the generalized Färe-Lovell
input efficiency measure GFLp : R

n+\{0} × Rm+ −→ [0, 1] ∪
{∞} is defined by
GFLp x, y

( )

�
inf 1

|I x( )|1p
∑φp

i∈I x( )
βi : β � x ∈ L y

( )
;

{

βi ∈ 0, 1[ ]
}

if x ∈ L y
( )

+∞ otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

where |I(x)| stands for the cardinality of I(x).
Clearly, if p > 0, then we have

GFLp x,y
( )

�

inf
∑
i∈I x( )

1
|I x( )|βi

p

( )1
p

: β�x∈
⎧⎪⎪⎨⎪⎪⎩ L y

( )
;

βi ∈ 0,1[ ]
⎫⎪⎪⎬⎪⎪⎭ if x ∈ L y

( )
+∞ otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

Notice that, in Definition 1, we consider the cases
where p takes either positive or negative values. In the
remainder, the case p � 2 is termed the quadratic
generalized Färe-Lovell measure, by analogywith the
definition of a canonical quadratic form. To parallel
this terminology, the case p � −1 is termed the har-
monic generalized Färe-Lovell measure, by analogy
with the definition of the harmonic mean. Clearly, if
p > 1, then the new measure can be viewed as the �p
Hölder distance from the origin to the subset defined
as {β ∈ Rn+ : β � x ∈ L(y)}, where x ∈ L(y). Obviously, a
weighted generalized Färe-Lovell efficiency measure
can be similarly defined as
GFLp,α x, y

( )

�
inf 1

|I x( )|1p
∑φp

i∈I x( )
αiβi : β �

{
x ∈ L y

( )
;

βi ∈ 0, 1[ ]
}

if x ∈ L y
( )

+∞ otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

where αi > 0 for all i. However, it must already be
mentioned that its link to the multiplicative Färe-
Lovell measure is not as clear as it is in the non-
weighted case.
In the following it is shown that the generalized

Färe-Lovell measure involves an optimal value of β,
which allows one to consider a reference input vector.
These elementary properties are important for the
results established hereafter in the article.

Lemma 2. Suppose that (x, y) ∈ T and x �� 0. For all
p ∈ R\{0}, we have the following properties:
a. The set B � {β ∈ [0, 1]n : β � x ∈ L(y)} is a compact

subset of Rn+.
b. GFLp(x, y) � inf{ 1

|I(x)|1p
∑φp

i∈I(x)βi : β ∈ B}.
c. There exists β� ∈ [0, 1]n such that

GFLp x, y
( ) � 1

|I x( )|1p
∑φp

i∈I x( )
β�i

and such that β� � x ∈ Eff L(y).
It seems straightforward to define some similar

generalized nonorientedmeasures.However, as is the
case for the output-oriented measure, some problems
arise when characterizing the efficient subset. This
fact was pointed out in Briec (2000). This is why we
remain focused on the input-oriented measures in
this contribution.
However, for the sake of argument, let us still

provide the definition of a graph generalized mea-
sure: given two real numbers p, q ∈ R\{0}, a graph
generalized measure GFLG,p,q : R

n+\{0} × Rm+\{0} −→[0, 1] ∪ {∞} can be defined as

GFLG,p,q x, y
( )

�

inf
β∈ 0,1[ ]

γ∈ 1,+∞[ [

|J y( )|1p
|I x( )|1p

∑φp

i∈I x( )
βi

( ){ ∑φq

j∈J y( )
γi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠−1:

β � x, γ � y
( ) ∈ T

}
if x, y

( ) ∈ T

+∞ otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

where |J(y)| stands for the cardinality of J(y) � {j : yj > 0}.
This ratio formulation is inspired by the enhanced
Russell graph efficiencymeasure of Pastor et al. (1999)
rather than the original additive formulation of the
original Russell graph efficiencymeasure of Färe et al.
(1985). By remembering that, given a real parameter
r > 0, theChavas and Cox (1999) measure is a map EC :
Rn+×Rm+ −→[0,1]∪{∞} defined by EC(x,y) � infλ{(λ1−rx,
λry) ∈T} and choosing p � 1 − r and q � −r, it follows
easily that the Chavas and Cox (1999) measure is a
special limiting case of this graph generalized efficiency
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measure. Other nonoriented versions of these effi-
ciency measures are left for future work.

3.2. Axiomatic Properties
Since this input-oriented generalized Färe-Lovell mea-
sure is new, it is important to characterize its axi-
omatic properties in the following proposition.

Proposition 1. Under Assumptions 1–4, for all p ∈ R\{0},
we have the following:

a. If x �� 0, then GFLp(x, y) � 1 if and only if x ∈ Eff L(y)
(characterization or indication of the efficient subset).

b. For all y �� 0 and x, u ∈ L(y), u ≥ x, and x �� 0 imply
that GFLp(u, y) ≥ GFLp(x, y) (weak monotonicity in the
inputs).

c. For all x �� 0 and y, v ∈ P(x), v ≥ y implies that
GFLp(x,v) ≥GFLp(x,y) (weak monotonicity in the outputs).

d. If (x,y) ∈T and x ��0, then for all λ≥1, GFLp(λx, y) ≤
λGFLp(x, y) (subhomogeneity).

In brief, this generalized Färe-Lovell measure has the
same properties as the original Färe-Lovell efficiency
measure.

The properties of all other efficiency measures,
except the multiplicative Färe-Lovell efficiency mea-
sure, are well-known in the literature and do not
need any further comments (see the survey in Russell
and Schworm 2009). In addition, the multiplicative
Färe-Lovell efficiency measure satisfies the following
properties.

Proposition 2. Under Assumptions 1–4, we have the
following:

a. If x �� 0, thenMFLα(x, y) � 1 if and only if x ∈Eff L(y)
(characterization or indication of the efficient subset).

b. For all y �� 0 and x,u ∈ L(y), u ≥ x and x �� 0 imply
that MFLα(u, y) ≥ MFLα(x, y) (weak monotonicity in the
inputs).

c.For all x �� 0 and y, v ∈ P(x), v ≥ y implies that
MFLα(x, v) ≥ MFLα(x, y) (weak monotonicity in the
outputs).

d. If (x,y) ∈T and x ��0, then for all λ≥1, MFLα(λx,y)�
λ
∑

i∈I(x)αiMFLα(x,y) (homogeneity).

We remark that Portela and Thanassoulis (2007) men-
tion some of these properties, but for a nonoriented ef-
ficiency measure. Thus, the multiplicative Färe-Lovell
efficiency measure has the same properties as the
generalized Färe-Lovell and the original Färe-Lovell
measures, apart from the fact that it satisfies homo-
geneity rather than subhomogeneity.

The property of continuity has been introduced in
the literature by Russell (1990). In recent work Russell
and Schworm (2018) distinguish between two large
families of efficiencymeasures: slack-based and path-
based. These authors show that all slack-based effi-
ciency measures satisfy the indication property but
violate continuity, whereas all path-based efficiency

measures satisfy continuity but violate the indication
property. Since the generalized Färe-Lovell input
measure clearly belongs to the class of slack-based
efficiency measures, given a suitable homeomorphic
transformation, it fails continuity.

3.3. Farrell Measure as a Special Limiting Case of
the Generalized Färe-Lovell Measure

In fact, especially in the case where p ≥ 1, the map
β �→ (1n

∑n
i�1(βi)p)1/p benefits from the properties of

an �p-norm. This formulation in Definition 1 as well as
the optimization developed in Section 4 below presents
some analogies to the well-known class of goal pro-
gramming problemswhich consist in finding an optimal
feasible point close to a series of targets (see, for instance,
Jones and Tamiz 2010 for a recent overview).

Proposition 3. Assume that B is a compact subset of Rn+,
and assume that p0 ∈ [0,+∞]. We have

lim
p−→p0

inf
β∈B

1
n

∑n
i�1

βi
( )p( )1/p

� inf
β∈B lim

p−→p0

1
n

∑n
i�1

βi
( )p( )1/p

. (18)

In particular, we have the following:

a. lim
p−→0+

inf
β∈B

1
n

∑n
i�1

βi
( )p( )1/p

� inf
β∈B

∏n
i�1

βi
( )1/n, (19)

b. lim
p−→+∞ inf

β∈B
1
n

∑n
i�1

βi
( )p( )1/p

� inf
β∈B max

i�1,...,n βi. (20)

The next statement relates the Farrell measure to
the map β �→ maxi∈I(x) βi. It is a useful result in the
remainder.

Proposition 4. Under Conditions 1–4, for all x ∈ L(y), we
have

DF x, y
( ) � inf

β
max
i∈I x( )

βi : β � x ∈ L y
( )

, βi ∈ 0, 1[ ]
{ }

. (21)

To understand the key idea, note that, setting γ �
β � x, we have

inf
β

max
i∈I x( )

βi : β � x ∈ L y
( )

, βi ∈ 0, 1[ ]
{ }
� inf

γ
max
i∈I x( )

γi/xi : γ ∈ L y
( )

, γ ≤ x
{ }

. (22)

Figure 1 illustrates how one can retrieve the Farrell
measure from this maximum function. For all real
numbers δ > 0, the subset Ax(δ) � {γ : maxi

γi
xi
� δ} has

a supremum element δx. Hence, if δ ≥ DF(x, y), then
Ax(δ) ∩ L(y) �� ∅. Set γ� � DF(x, y). This figure depicts
the fact that there exists some β� with x�� β� � x (which

Briec, Cavaignac, and Kerstens: Input Efficiency Measures: A Generalization
1840 Operations Research, 2020, vol. 68, no. 6, pp. 1836–1849, © 2020 INFORMS



implies that β�i � x�i
xi

for all i ∈ I(x)) and maxi∈I(x) β�i �
maxi∈I(x) x�i /xi � maxi∈I(x) γ�

i /xi � DF(x, y).
We now come to one of the central results of this

contribution showing that both the Farrell and the
multiplicative Färe-Lovell measures can be viewed as
limiting cases of the generalized Färe-Lovell measure.

Proposition 5. Under Assumptions 1–4, for all (x, y) ∈ T
and x �� 0 we have the following:

a. GFL1(x, y) � FL(x, y).
b. limp−→0+ GFLp(x, y) � MFL (x, y).
c. limp−→+∞ GFLp(x, y) � DF(x, y).
Notice that there is no evidence that the limit of

the weighted generalized Färe-Lovell measure is the
weighted multiplicative measure when p tends to-
ward 0.

Proposition 1 established that the generalized Färe-
Lovell measure satisfies the axiomatic properties
inherited from the standard case p � 1. However, it is
well known that the Debreu-Farrell measure (which
corresponds to the case p � ∞) does not allow one to
characterize the strong efficient subset. This is due to
the fact that the map β �→ maxi∈I(x) βi involves an
idempotent algebraic structure. (This is not the case
of the generalized sum.) Therefore, its minimization
does not impose a transfer between the inputs re-
quired to reach the strong efficient subset.

Lemma 3. Under Assumptions 1–4, for all (x, y) ∈ T, if
x �� 0, we have the following properties:

a. There is some β0 ∈ [0, 1]n such that

MFL x, y
( ) � ∏

i∈I x( )
β0i
( ) 1

|I x( )| (23)

and such that β0 � x ∈ Eff L(y).
b. There is some β∞ ∈ [0, 1]n such that

DF x, y
( ) � max

i∈I x( )
β∞i (24)

and such that β∞ � x ∈ Eff L(y).

3.4. Generalized Färe-Lovell Measure and
Asymmetric Färe Measure

In this subsection we establish a relation between the
asymmetric Färe measure and the generalized Färe-
Lovell measure. To do this, we focus on the case p < 0.

Lemma 4. Assume that B is a compact subset of Rn+. For all
p0 < 0, we have

lim
p−→p0

inf
β∈B

1

n
1
p

∑φp

i∈ n[ ]
βi

( )
� inf

β∈B lim
p−→p0

1

n
1
p

∑φp

i∈ n[ ]
βi

( )
. (25)

In particular, we have

lim
p−→−∞ inf

β∈B
1

n
1
p

∑φp

i∈ n[ ]
βi

( )
� inf

β∈B min
i�1,...,n βi. (26)

The above statement extends Proposition 3 to the
case where p < 0. Proposition 6 is then an immediate
consequence.

Proposition 6. Under Assumptions 1–4, for all (x, y) ∈ T if
x �� 0, we have

lim
p−→−∞GFLp x, y

( ) � inf
β

min
i∈I x( )

βi : β � x ∈ L y
( )

, βi ∈ 0, 1[ ]
{ }

.

(27)
The next statement parallels Proposition 4 in the

context of the asymmetric Färe measure.

Proposition 7. Under Assumptions 1–4, for all (x, y) ∈ T,
we have

A x, y
( ) � min

i∈I x( )
inf
β

βi : β � x ∈ L y
( )

, βi ∈ 0, 1[ ]{ }
. (28)

Figure 2 illustrates the key intuition of this result.
The asymmetric Färe measure is defined as an opti-
mization over the intersection of the reverse free-
disposal cone and the input set. Notice that this is
not true if the free disposal assumption does not hold.

The next statement completes Proposition 5 in the
casewhere p< 0, establishing a relation to the asymmetric-
Färe measure.

Proposition 8. Under Assumptions 1–4, for all (x, y) ∈ T
we have

lim
p−→−∞GFLp x, y

( ) � AF x, y
( )

. (29)

Proposition 9. Under Assumptions 1–4, for all (x, y) ∈ T
there is some β−∞ ∈ [0, 1]n such that

AF x, y
( ) � min

i∈I x( )
β−∞i (30)

and such that β−∞ � x ∈ Eff L(y).

Figure 1. New Formulation of the Debreu-Farrell Measure
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Thus, the four efficiency measures discussed in Section 2
are clearly limiting cases of the new generalized Färe-
Lovell measure in Definition 1.

Finally, it is rather trivial to a priori order most of
these efficiency measures. Indeed, although it is ob-
vious thatDF(x,y) ≥ FL(x,y) ≥MFL(x,y) ≥AF(x,y), the
new generalized Färe-Lovell input efficiency can also
be related to these existing efficiency measures.

Proposition 10. The generalized Färe-Lovell input effi-
ciency can be ordered as follows for all (x, y) ∈ T with x �� 0.
If q ≥ p > 0, then

DF x, y
( ) ≥ GFLq x, y

( ) ≥ GFLp x, y
( ) ≥ FL x, y

( )
≥ MFL x, y

( )
. (31)

Suppose that 0 > p′ > q′. Then

MFL x, y
( ) ≥ GFLp′ x, y

( ) ≥ GFLq′ x, y
( ) ≥ AF x, y

( )
. (32)

In Figure 3, the projection points depend on p. In the
case p � +∞, the projection is radial. If p � −∞, then
we retrieve the maximal possible contraction of each
input that is measured by the asymmetric Färe mea-
sure. The case p � 1 yields the efficient reference
point derived from the Färe-Lovell measure. The
intermediate case p � 0 corresponds to the multipli-
cative case.

Clearly, the Debreu-Farrell and asymmetric Färe
measures do not yield an efficient reference point.
However, one can associate to each one a refer-
ence point for p sufficiently large (p → ∞) or small
(p → −∞). Along this line, we say that x̄(p) is a Debreu-
Farrell-(ε, p) efficient reference point of x if there exists

some β̄(p) ∈ [0,1]n such that x̄(p) � β̄(p) �x with ( 1
|I(x)|∑n

i�1(β̄(p)i )p)1/p � GFLp(x, y) and

1
n

∑n
i�1

β̄
p( )
i

( )p( )1/p
−DFp x, y

( )⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒
⃒⃒ < ε. (33)

The basic idea behind this definition is to match each
input vector with an efficient reference point that is
consistent with the Debreu-Farrell measure for some
degree of approximation. Paralleling this definition,
we say that x̄(p) is an asymmetric Färe-(ε, p) efficient
reference point of x if there exists some β̄(p) ∈ [0, 1]n
such that x̄(p)� β̄(p)�x with 1

|I(x)|1p
∑φp

i∈I(x)β
(p)
i � GFLp(x, y)

and

1

|I x( )|1p
∑φp

i∈I x( )
β

p( )
i − AFp x, y

( )⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒
⃒⃒ < ε. (34)

Similarly, this definition allows one to match each
input vector with an efficient reference point that is
consistent with the asymmetric-Färe measure when
p → −∞.

3.5. Prices and Duality
In the following, it is shown that one can provide a
dual interpretation of the generalized Färe-Lovell
measure in terms of prices. This we do by showing
that, in the case where p ≥ 1, the generalized Färe-
Lovell measure can be interpreted as the projection of
the origin onto a suitable restriction of the input set.
By applying theNirenberg theorem, a duality result is
obtained. Along this line a dual formulation of the
Färe-Lovell measure is proposed, and it is shown that

Figure 3. Variation of the Projection Point with Respect to p

Figure 2. New Formulation of the Asymmetric Färe
Measure
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the dual properties of the Debreu-Farrell measure
appear as a limiting case.

Notice that one can equivalently write

GFLp x, y
( )

�
inf 1

|I x( )|1p
∑φp

i∈I x( )
ui
xi
: u ∈ L y

( )
,

{

u ≤ x

}
if x ∈ L y

( )
+∞ otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(35)

In the case where p ≥ 1, it is interesting to see that one
can provide a dual interpretation based upon the
Nirenberg theorem.2 Let us denote Lx(y) � {u ∈ L(y) :
u ≤ x}, which is the set of all the input vectors that
are dominated by x and can produce y. Let us define
as Cx : R

n+ × Rm+−→R+ the function which yields the
minimum cost for all the input vectors of Lx(y).
Namely, Cx(w, y) � inf{w.u : u ∈ Lx(y)}. For example,
if x ∈ Rn++, then the map ‖·‖x−1,p :u �→ 1

n
1
p
(∑i∈[n] |uixi |p)

1
p de-

fines a weighted norm on Rn. If p � ∞, then ‖u‖x−1,∞ �
maxi∈[n] |ui |xi

� limp−→∞‖u‖x−1,p. It follows that GFLp(x,y) �
dx−1,p(0,Lx(y)) � inf{‖u‖x−1,p :u ∈ Lx(y)}, where dx−1,p is the
distance induced by this norm. The dual norm is then
definedby ‖v‖x,q � n

1
p(∑i∈[n] |xivi|q)1q with 1

p + 1
q � 1,where

by definition ‖v‖x,q � sup{|v.u| : ‖u‖x−1,p � 1}. The fol-
lowing result is established in the general case where
the input vector may have some null components.
(The proof is given in the e-companion.)

Theorem 1. Under Assumptions 1–4, for all (x, y) ∈ T, if
p ≥ 1 and x �� 0, we have the following properties:

a.GFLp(x,y)�supw{Cx(w,y):|I(x)|
q−1
q (∑i∈[n] |xiwi|q)1q�1},

with 1
p + 1

q � 1.
b. FL(x,y)�supw≥0{Cx(w,y) : |I(x)|maxi∈[n]{xiwi}�1}.
c. DF(x, y) � supw≥0{Cx(w, y) : ∑i∈[n] wixi � 1}.

The interpretation of the duality results established in
Theorem 1, (a) and (b) is similar to that arising in the
Debreu-Farell case. Consider for any input vector a
suitable cost function restricted to the dominated
input vectors. The generalized Färe-Lovell measure
can then be expressed as the maximum ratio between
this cost function and the normalized cost of the in-
put vector whose efficiency is measured. The key
difference between all these measures is the nor-
malization constraint implied. If p ∈ [1,∞[, then the
problem of computing the generalized Färe-Lovell
measure boils down to minimizing a smooth �p-
norm that selects an efficient point on the frontier. In
the Färe-Lovell case, the normalization condition of
the shadow prices is less restrictive and allows one to
modify each input price in coordinate directions to
reach an efficient point. This is not the case for the

Debreu-Farrell measure for which the additive nature
of the normalization constraint imposes a radial pro-
jection of any input vector. Notice finally that, in the
Debreu-Farrell case, the shadow prices w� that are so-
lutions to the dual problem achieve the minimum of
the cost function at point x� � DF(x, y)x. It follows that
Cx(w�, y) � C(w�, y), and we retrieve the standard
duality result as a special case.3

We now turn to the more practical issue of how this
new generalized Färe-Lovell input efficiencymeasure
can be empirically implemented.

4. Generalized Färe-Lovell Efficiency
Measure: Mathematical
Programming Models

4.1. General Case
We first notice that the map Mp : R

n+−→R+ defined by
Mp(β) � (1n

∑n
i�1(βi)p)1/p is convex for all p ≥ 1 and con-

cave for all p ∈]0, 1[.
In the following, we limit ourselves to deterministic

nonparametric technology specifications. In partic-
ular, we consider a variable returns-to-scale tech-
nology with strong disposal of inputs and outputs
(see, e.g., Banker et al. 1984). Obviously, any other
standard nonparametric reference technology could
have been selected (see, e.g., Hackman 2008).
Let ) be a finite subset of N\{0}, and suppose that

we consider a set A� {(xj,yj) : j∈)} of |)| firms. Then,
the new generalized Färe-Lovell measure from Defi-
nition 1 can be computed for each observation j ∈ )
as follows:

GFLp x, y
( ) � min

βi,zi

1
n

∑n
i�1

βi
( )p( )1/p

βixi ≥
∑
j∈)

zjxi,j, i � 1 . . . ,n,

y ≤ ∑
j∈)

zjyj,∑
j∈)

zj � 1, βi ≤ 1, βi, zj ≥ 0,

(36)

where βi denotes the input efficiency measure com-
ponent and zj represents the activity vector.
Depending on the value of p, one can distinguish

between several cases with alternative solution strate-
gies for this mathematical programming model. First,
in the limiting case p � −∞, GFL−∞(x, y) is the asym-
metric Färe measure: computing a finite number of N
linear programs and taking the minimum over each
of these one-dimensional efficiency measures yields
the solution. Second, if p � +∞, then GFL∞(x, y) co-
incides with the standard radial efficiency measure
(see Banker et al. 1984) and can be computed by
standard linear programming methods. Third, in the
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case p ≥ 1, standard convex programming algorithm
methods can be used, because the problemboils down
to minimizing a convex function over a polyhedral
convex set. Notice that we can also compute the ef-
ficiency scores by enumeration methods when replac-
ing in the above program the condition zj ≥ 0 with zj ∈
{0, 1}: in such a case, we obtain the FDH technology.

If p ∈ [0, 1[, then the problem is much more difficult
and consists in finding the global minimum of a
concave function over a closed, convex set in Rn. The
intrinsic difficulty of this problem is due to the fact
that a local minimum of the objective function may
fail to be a global one. This makes conventional
methods of local optimization almost useless (see,
e.g., Hoffman 1981, Tuy et al. 1985).

Finally, if p < 0, then the difficulties are equivalent
because the problem consists in finding the global
maximum of a convex function over a closed, convex
set in Rn.

In empirical applications, one ideally would like to
have some guidelines to determine the optimal choice
of the optimal efficiency measure (i.e., the choice of
parameter p in the generalized Färe-Lovell efficiency
measure). We explore some possibilities.

A first option could consist in a priori choosing one
of the subsets of the input set depending on the
strength of the efficiency notion onewishes to impose.
For instance, if the strong efficient subset is privi-
leged, then the choice is limited between the Färe-
Lovell, the multiplicative Färe-Lovell, and the gen-
eralized Färe-Lovell efficiency measures.

Another possibility is to look for convenience and
insist on a solution bymeans of linear programs (LPs),
a concern that also implicitly or explicitly permeates
part of the nonparametric literature. In this case, in
addition to the possibilities listed above, we can offer
two more specific results where the generalized Färe-
Lovell efficiencymeasure and themultiplicative Färe-
Lovell efficiency measure can be solved via LPs
for some particular specifications of technology. We
discuss each of these special cases below in Sections 4.2
and 4.3, respectively.

A final option is to look at the choice of technology
specification and transpose strategies from this con-
text to the choice of the efficiency measure. It is well
known that technical efficiency measures are very
sensitive to the choice of functional specification in
parametric frontier methods: a more flexible specifi-
cation detects lower amounts of inefficiency (see
Kopp and Smith 1980, Giannakas et al. 2003). Also for
nonparametric technology specifications (e.g., the choice
between constant and variable returns to scale), it is
common to choose the one having the best goodness-of-
fit at the sample level for a given efficiency measure.
But, since the efficiency measures are partially ordered
(see above and Proposition 10), this goodness-of-fit

approach may not be straightforward to implement
when using it to select efficiency measures themselves.

4.2. Constant Elasticity of Substitution-Constant
Elasticity of Transformation Model:
LP Formulations

This subsection focuses on providing LPs to compute
the generalized Färe-Lovell measure. This we do by
considering the constant elasticity of substitution
(CES)–constant elasticity of transformation (CET)
model introduced by Färe et al. (1988) and extended
in Boussemart et al. (2009). It consists in two parts: the
output part is characterized by a CET formula, and
the input part is characterized by a CES formula.
This CES-CET model can be seen as a generaliza-

tion of the traditional linear models proposed by
Charnes et al. (1978) and Banker et al. (1984). More-
over, it admits as a limiting case the multiplicative
model proposed byCharnes et al. (1982), which is also
discussed in Section 4.3.
These production models are useful in our context

since they yield some tractable LPs. In particular, we
first prove that the new generalized Färe-Lovell ef-
ficiency measure can be calculated by LPs under a
suitable assumption regarding this model involving
α-returns to scale.
For all positive real numbers r, we consider themap

Φr : R
d+ → Rd+ defined as

Φr z( ) � zr1, . . . , z
r
d

( )
. (37)

For all r > 0, this function is an isomorphism from Rd+
to itself, and its reciprocal is defined on Rd+ as

Φ−1
r z( ) � z1/r1 , . . . , z1/rd

( )
. (38)

If r < 0, thenΦr : R
d+ → (R+ ∪ {∞})d is themap defined

as

Φr z( ) � φr z1( ), . . . ,φr zd( )( )
. (39)

where φr is the isomorphism defined in Equation (10).
For all r < 0, this function is an isomorphism from Rd+
to (R+ ∪ {∞})d, and its reciprocal is defined on (R+ ∪
{∞})d as

Φ−1
r z( ) � φ−1 z1( ), . . . ,φ−1 zd( )( )

. (40)
For the sake of simplicity suppose that A � {(xj, yj) :

j ∈ )} ⊂ Rn+m++ . In such a case, this function is an iso-
morphism from Rm++ to itself, and its reciprocal is de-
fined on Rm+ . Now, let us consider the following
technology:

Tp,q � x, y
( )

: x ≥ Φ−1
p

∑
j∈)

θjΦp xj
( )( )

,

{

y ≤ Φ−1
q

∑
j∈)

θjΦq yj
( )( )

, θ ≥ 0

}
, (41)
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where p, q ∈ R and p �� 0, q �� 0. This productionmodel
slightly differs from the one proposed by Färe et al.
(1988) because of the suppression of the variable
returns-to-scale constraint

∑
j∈) θj � 1. Notice that the

topological limit of this technology is analyzed in
Andriamasy et al. (2017). It is shown that one can
retrieve as a special case the B-convex production
models proposed by Briec and Horvath (2009) and
Briec and Liang (2011). The DEA technology corre-
sponds to the case where p � q � 1.

Proposition 11. Let A � {(xj, yj)}j∈) be a set of |)| observed
production vectors. Then, the production technology Tp,q

defined in (41) satisfies Assumptions 1–4.

Now, we suppose that p > 0. We also assume that
q > 0, though this condition might be reversed. It is
easy to see that the new generalized Färe-Lovell input
efficiency measure can be computed on Tp,q using an
LP. For the sake of simplicity, suppose that x > 0. We
have the program

Gp x,y
( )[ ]p�min

1
n

∑n
i�1

βi
p

s.t. βixi ≥
∑
j∈)

θjxj,ip
( )1

p

, i� 1, . . . ,n,

ykq ≤
∑
j∈)

θjyj,kq, k� 1, . . . ,m,

βi ≤ 1, βi,θ≥ 0. (42)

Since the map p �→ ap is increasing for all p > 0, we
obtain

Gp x,y
( )[ ]p�min

1
n

∑n
i�1

βi
p

s.t. βipxip ≥
∑
j∈)

θjxj,ip i� 1, . . . ,n,

ykq ≤
∑
j∈)

θjyj,kq, k� 1, . . . ,m,

βi ≤ 1, βi,θ≥ 0. (43)

Setting (βi)p � ui for all i yields an LP:

Gp x, y
( )[ ]p� min

1
n

∑n
i�1

ui

s.t. uixip ≥
∑
j∈)

θjxj,ip i � 1, . . . ,n,

ykq ≤
∑
j∈)

θjyj,kq, k � 1, . . . ,m,

ui ≤ 1,ui, θ ≥ 0. (44)

We focus now on the case where p < 0. We also as-
sume that q < 0, though such a condition can also be
reversed. This is what we call the harmonic model.
The term “harmonic” means the generalized sum is
closely related to the harmonic mean. For the sake of
simplicity, suppose that x > 0. We have the program

Gp x, y
( )[ ]p� min

1
n

∑n
i�1

βi
p

s.t. βixi ≥
∑
j∈)

θjxj,ip
( )1

p

, i � 1, . . . , n,

ykq ≤
∑
j∈)

θjyj,kq, k � 1, . . . ,m,

βi ≤ 1, βi, θ ≥ 0. (45)

Since the map p �→ ap is decreasing for all p < 0, we
obtain

Gp x,y
( )[ ]p�max

1
n

∑n
i�1

βi
p

s.t. βipxip ≤
∑
j∈)

θjxj,ip i� 1, . . . ,n,

ykq ≥
∑
j∈)

θjyj,kq, k� 1, . . . ,m,

βi ≤ 1, βi,θ≥ 0. (46)

Setting (βi)p � vi for all i yields an LP:

Gp x, y
( )[ ]p� max

1
n

∑n
i�1

vi

s.t. vixip ≤
∑
j∈)

θjxj,ip i � 1, . . . ,n,

ykq ≥
∑
j∈)

θjyj,kq, k � 1, . . . ,m,

vi ≥ 1, θ ≥ 0. (47)

Notice that, in line with Chavas and Cox (1999), one
could combine both a CES structure on the input side

Table 1. Numerical Example

Firms Input 1 Input 2 Output

1 1 2 2
2 2 2 2
3 2 1 2
4 1 3 2
5 1 4 2
6 3 5/4 2
7 4 5/4 2
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and a harmonic structure on the output side by setting
p � 1 − r and q � −r, where r is a positive parameter.

4.3. Multiplicative Färe-Lovell Efficiency on
Cobb-Douglass Model: LP Formulations

Based on Charnes et al. (1982) and Banker and
Maindiratta (1986), we now consider the piecewise
Cobb-Douglass (CD) model defined by

TCD � x, y
( ) ∈ Rn+m : x ≥ ∏

j∈)
xλj

j ; y ≤ ∏
j�1∈)

yλj

j ;

{
∑
j∈)

λj � 1;λ ≥ 0

}
. (48)

In Andriamasy et al. (2017) it was shown that this
production possibility set is the limit technology of
Tp,p when p−→ 0. For this model it is easy to show that
the problem of computing the multiplicative Färe-
Lovell measure can be converted to solving a simple
LP. The program we need to solve for the multipli-
cative Färe-Lovell efficiency measure is

MFLα x, y
( ) � min

∏
i�1,...,n

βαi
i ,

β � x ≥ ∏
j∈)

xλj

j ,

y ≤ ∏
j∈)

yλj

j ,∑
j∈)

λj � 1, λj ≥ 0.

(49)

Applying a log-linear transformation to this program
yields

MFLα x,y
( )�min

∑
i�1,...,n

αi lnβi,

ln xi+ lnβi≥
∑
j∈)

λj lnxj,i,

i�1, . . . ,n,

ln yk ≤
∑
j∈)

λj lnyj,k, k�1, . . . ,n,∑
j∈)

λj�1,λj≥0.

(50)

Setting ln βi � γi for all i, one obtains an LP.

4.4. Numerical Example
The following numerical example in Table 1 is found
in Färe et al. (1985, p. 76). Two inputs jointly produce a
constant output level.
The values of the efficiency measures GFLp under a

production technology Tp,q are listed in Table 2 and
Table 3 for different values of p.
In Table 2, we consider positive values of p. The

results are also compared with the Färe-Lovell effi-
ciency scores (p � 1) computed using the traditional
DEAmodel. In Table 2, the GFLp is computed for each
parameter pwith respect to the technology Tp,p, where
q � p. Since, in this example, the outputs are identical
for each production vector, the value of q has no im-
plication for the structure of the input set. In general,
this is not the case. However, since the measure is
input-oriented, one can derive an LP to compute
the generalized Färe-Lovell efficiency scores. One can

Table 2. Variation of the Efficiency Measures for Positive Values of p

Firms p � q � 1
4

p � q � 1
Färe-Lovell DEA

p � q � 2
Quadratic p � q � 9 p � q � 13

Debreu-Farrell
FDH

1 1 1 1 1 1 1
2 0.71779 0.75 0.790569 0.926075 0.948086 1
3 1 1 1 1 1 1
4 0.71779 0.833333 0.849837 0.92852 0.948451 1
5 0.71779 0.75 0.790569 0.926075 0.948086 1
6 0.5 0.733333 0.736357 0.755423 0.763693 0.8
7 0.318417 0.65 0.667083 0.74189 0.758591 0.8

Table 3. Variation of the Efficiency Measures for Negative Values of p

Firms
p � q � −11

Asymmetric Färe p � q � −11 p � q � −9
p� q � −1
Harmonic p � q � − 1

4

p � q � 0
Cobb-Douglas

1 1 1 1 1 1 1
2 0.5 0.603938 0.539913 0.666667 0.696583 0.707107
3 1 1 1 1 1 1
4 0.5 0.603938 0.717988 0.8 0.696583 0.707107
5 0.5 0.603938 0.539913 0.666667 0.696583 0.707107
6 0.25 0.342588 0.365738 0.645161 0.470996 0.5
7 0.2 0.285411 0.274305 0.526316 0.308056 0.316228
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check that, when p → ∞, then the Debreu-Farrell
efficiency scores are close to the GFLp score with
p � 13. This is due to the fact that when p → ∞ the
technology topologically converges (in the Kur-
atowski-Painlevé sense) to the B-convex model as
shown by Andriamasy et al. (2017). In addition, since
the data are constructed with a single identical out-
put, the input set of the B-convexmodel is identical to
the FDH input set. This is also clearly the case when
we compare the values for p � 0 (Cobb-Douglas case)
and the model for p � 1

4. These numerical results illus-
trate the limit properties established in Proposition 5.

Table 3 considers negative values of the parame-
ter p. The procedure is similar, and one can see that,
when p → −∞, the efficiency scores computed for
each decision-making unit are close to those derived
from the asymmetric Färe measure. This illustrates
Proposition 8. Notice however, that in such a case we
just consider a fixed value p � −11. Indeed, the limit
technology obtained when p → −∞ is the inverse
B-convex model (see Andriamasy et al. 2017) for
which there may not exist any efficient decision
making in the input-oriented case.

Notice that the comparison rules provided in Prop-
osition 10 (see Equation (32)) are in fact not broken
when we reach negative values. For the needs of
computation a specific technology Tp,p is considered
for any p. However, the comparison rules are estab-
lished given a specific (fixed) production technol-
ogy, independent of p. This is the reason why we
observe an oscillating behavior when p is negative,
since Tp,p varies.

5. Concluding Comments
We have introduced a new generalized Färe-Lovell
input efficiency measure. Thereafter, we have estab-
lished that one can obtain theDebreu (1951) and Farrell
(1957) input efficiency measure when p tends to in-
finity, the Färe and Lovell (1978) measure for p � 1,
the asymmetric Färe measure when p tends to minus
infinity, and finally the multiplicative Färe-Lovell
measure when p � 0.

By way of summary, Table 4 lists how to obtain the
main input efficiency measures as limiting cases for
different values of the parameter p in the generalized
input efficiency measure.

This paper has also outlined ways of implementa-
tion in the context of deterministic nonparametric tech-
nology specifications. Apart from a strong disposable
flexible returns-to-scale technology, we have also de-
veloped two specifications that allow for LPs when
solving for the generalized input Färe-Lovell measure
and the multiplicative Färe-Lovell measures.
In brief, this generalized Färe-Lovell input effi-

ciency measure offers a broad framework for em-
pirical applications, and its encompassing nature
provides a natural framework for testing the choice
of efficiency measure. Obviously, the extension to
alternative deterministic parametric specifications
of technology (see Aigner and Chu 1968) is rather
straightforward. Generalizations to alternative stochas-
tic technology specifications (see, e.g., Kuosmanen and
Johnson 2010) remain to be developed. Finally, note
that in parametric stochastic specifications, nonradial
efficiencymeasures are rarely if ever used. (Exceptions
employing a unidimensional asymmetric Färe effi-
ciency measure are Kumbhakar (1989) and Guarda
et al. (2013).)
While in linewith the economic literature this paper

has concentrated on input efficiency measurement,
these results can be easily transposed to output- or
graph-oriented measurement orientations.4 One could
equally develop these results in a directional distance
framework starting from Briec et al. (2011), who al-
ready defined the main input directional efficiency
measures. As alluded to in the introduction, ideally
one would like to have a way to derive the parameter
p in the generalized Färe-Lovell measure in some
endogenous way such that efficiency is measured rela-
tive to the subset of the technologywhere themajority of
observations are situated. Finally, in addition to tech-
nical efficiency measurement, one can also focus on
scale efficiency and the determination of global and
local returns to scale. All of these developments are left
for future work.
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Endnotes
1 See also Briec et al. (2011) for such links in the context of input
directional efficiency measures.
2The Nirenberg projection theorem is based on lecture notes from
Nirenberg delivered in 1961 as found in, for example, Luenberger
(1969, chapter 5).
3An alternative dual approach has been proposed in Kerstens and
Vanden Eeckaut (1995): it was limited to a nonparametric technol-
ogy context and focused on the Färe-Lovell, asymmetric Färe, and
Zieschang (1984) measures. We ignore the latter efficiency measure,
because it proceeds in two steps and it essentially combines the
radial and the Färe-Lovell efficiency measures. However, paralleling

Table 4. Summary of Main Results

Value of p Efficiency measure

−∞ Asymmetric Färe
−1 Harmonic Färe-Lovell
0 Multiplicative Färe-Lovell
1 Färe-Lovell
2 Quadratic Färe-Lovell
+∞ Debreu-Farrell
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Zieschang (1984), one can easily construct a generalized Zieschang
measure by combining together the generalized Färe-Lovell and the
Debreu-Farrell measures.
4 See, for example, the survey by Russell and Schworm (2011) on
graph-oriented measures.
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Briec W (2000) An extended Färe-Lovell technical efficiency measure.
Internat. J. Production Econom. 65(2):191–199.

Briec W, Horvath C (2009) A B-convex production model for
evaluating performance of firms. J. Math. Anal. Appl. 355(1):
131–144.

Briec W, Liang Q (2011) On some semilattice structures for pro-
duction technologies. Eur. J. Oper. Res. 215(3):740–749.

Briec W, Cavaignac L, Kerstens K (2011) Directional measurement
of technical efficiency of production: An axiomatic approach.
Econom. Model. 28(3):775–781.

Briec W, Kerstens K, Van de Woestyne I (2018) Hypercongestion in
production correspondences: An empirical exploration. Appl.
Econom. 50(27):2938–2956.

Charnes A, Cooper W, Rhodes E (1978) Measuring the efficiency of
decision making units. Eur. J. Oper. Res. 2(6):429–444.

Charnes A, Cooper W, Seiford L, Stutz J (1982) A multiplicative
model for efficiency analysis. Socio-Econom. Planning Sci. 16(5):
223–224.

Chavas JP, Cox T (1999) A generalized distance function and the
analysis of production efficiency. Southern Econom. J. 66(2):
294–318.

Debreu G (1951) The coefficient of resource utilization. Econometrica
19(3):273–292.
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