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We analyse the role of new weak and strong commensurability conditions on efficiency measures and 

especially on productivity measurement. If strong commensurability fails, then a productivity index (in- 

dicator) may exhibit a homogeneity bias yielding inconsistent and contradictory results. In particular, we 

show that the Luenberger productivity indicator is sensitive to proportional changes in the input-output 

quantities, while the Malmquist productivity index is not affected by such changes. This is due to the 

homogeneity degree of the directional distance function under constant returns to scale. In particular, 

the directional distance function only satisfies the weak commensurability axiom in general. However, if 

the directional distance function is a diagonally homogeneous function of the technology, then the di- 

rectional distance function satisfies strong commensurability. This explains why the direction of an arith- 

metic mean of the observed data works well. Numerical examples and an empirical illustration are pro- 

posed. Under a translation homothetic technology, the Luenberger productivity indicator is not affected 

by any additive directional transformation of the observations. 
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. Introduction 

The purpose of this contribution is to point out some partic- 

lar properties of a recent generalization of Shephard (1970) dis- 

ance function, known as the directional distance function (DDF). 

istance functions are employed in consumption and produc- 

ion theory. Luenberger (1992a,b) introduces the benefit function 

s a directional representation of preferences, which generalizes 

hephard ’s (1970) input distance function defined in terms of the 

tility function. Luenberger (1995) introduces the shortage func- 

ion as a transposition of the benefit function in a production con- 

ext. Chambers, Chung and Färe (1996) relabel this same function 

s a DDF and since then it is commonly known by this name. 

he DDF generalizes existing Shephardian distance functions by ac- 

ounting for both input reductions and output expansions and it is 

ual to the profit function (see Chambers, Chung, & Färe, 1998 for 

etails). Furthermore, the DDF offers flexibility due to the vari- 
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ty of direction vectors it allows for (see, e.g., Chambers, Färe, & 

rosskopf, 1996 ). Chambers, Chung and Färe (1996) analyze the 

enefit function as well as the DDF in detail and extend the com- 

osition rules of McFadden (1978) to these new concepts. However, 

t should be noted that there are alternative distance functions that 

he DDF fails to generalise: examples include the hyperbolic graph 

easure, the Hölder distance function for any norm, etc. (see, e.g., 

ussell & Schworm, 2011 ). 

These Shephardian distance functions have been extensively 

sed in the economic literature to measure productivity. Based 

pon Shephardian distance functions as general representations 

f technology, discrete-time Malmquist input- and output-oriented 

roductivity indexes - introduced by Caves, Christensen, & Diewert 

1982) - have been made empirically tractable by Färe, Grosskopf, 

indgren, & Roos (1995) . Meanwhile, more general primal produc- 

ivity indicators have been proposed. Chambers & Pope (1996) de- 

ne a Luenberger productivity indicator (LPI) in terms of differ- 

nces between DDFs (see also Chambers, 2002 ). 1 

Russell (1988) introduces an important property that any tech- 

ical efficiency measure should satisfy: the commensurability con- 
1 Note that traditional “indexes” denote productivity measures based on ratios 

hile “indicators” use differences (see Diewert, 2005 for a detailed discussion). 
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E  
ition. This means that an efficiency measure should be invariant 

ith respect to any change in the units of measurement. This con- 

ition is very natural and fundamental and most of the existing 

echnical efficiency measures (or distance functions) satisfy it. This 

s the case for all the Shephardian measures, the Färe & Lovell 

1978) measure, perhaps the first non-radial measure in the lit- 

rature, as well as the Zieschang (1984) measure (see Russell & 

chworm, 2009 : footnote 8). Note that in the literature the com- 

ensurability property is also known under the name of unit(s) 

nvariance. 

Many of the new efficiency measures proposed in the literature 

nvolve some parameters in their definitions. This is the case of the 

easures proposed by Chambers, Chung and Färe (1996) , Chavas & 

ox (1999) , Mehdiloozad, Sahoo, & Roshdi (2014) , and Briec (1999) , 

mong others. Therefore, the notion of commensurability proposed 

y Russell (1988) must be modified to take into account these gen- 

ralized structures. A first purpose of this contribution is then to 

eneralise the commensurability notion to account for efficiency 

easures involving some parameters. 

The second purpose of this contribution is to indicate the prob- 

ems for measuring productivity when a measure fails to satisfy 

he commensurability property independently of the parameters it 

s depending on. For instance, the LPI that is related to the ax- 

omatic properties of the directional distance function may yield 

ome irrelevant and contradictory results depending on the direc- 

ion that is chosen. Briec, Dervaux and Leleu (2003) show that 

he DDF satisfies a special version of the commensurability con- 

ition when the direction g is “pre-assigned”. Hence, the Russell 

1988) commensurability condition cannot be applied to the DDF. 

o overcome this problem, we introduce a slight modification of 

he commensurability condition and we distinguish between two 

otions called weak and strong commensurability, respectively. 

trong commensurability extends the original Russell (1988) com- 

ensurability notion to the case where distance functions involve 

pecific parameters. It is shown that the directional distance func- 

ion satisfies the weak commensurability but fails to satisfy strong 

ommensurability. However, many of the existing efficiency mea- 

ures do satisfy the strong version of the commensurability condi- 

ion. 

We apply the formalism suggested by Russell (1988) that as- 

ociates an efficiency score to any pair of production vector and 

roduction technology. In general, a distance function (efficiency 

easure) is defined given a production technology. If the direction 

s a diagonally homogeneous function depending on the technol- 

gy, then a slightly modified formulation of the DDF satisfies the 

trong commensurability condition. This explains why it is useful 

o consider the direction of an arithmetic mean of the observed 

ata in empirical studies, as already suggested in Chambers, Färe 

nd Grosskopf (1996 : p. 185 and 190). 

More importantly, under a constant returns to scale (CRS) as- 

umption, an efficiency measure that does not satisfy the strong 

ommensurability axiom cannot be homogeneous of degree 0. In 

uch a case, one can show the existence of a productivity bias 

hen a firm is proportionally re-scaled. In particular, the DDF is 

omogeneous of degree 1 under CRS. This property has some im- 

ortant implications concerning the LPI when the direction g is 

re-assigned. In such a case, the LPI may yield some contradictory 

esults, while the Malmquist productivity index provides very in- 

uitive results in any case. Furthermore, it should be stressed that 

hese properties are independent of the returns to scale structure 

f the production technology. If the technology satisfies a graph 

ranslation homotheticity property, then the LPI does not exhibit 

ny bias when a firm is translated. Notice also that the fact that 

he DDF yields a radial expansion of a production vector is not 

roblematic to evaluate technical efficiency, since the size of a firm 

ay have some implication on its efficiency score. 
1482 
Our empirical study shows that when the direction is propor- 

ional under a CRS assumption, then the results are consistent with 

hose obtained in the Malmquist productivity index case. Some 

rrelevant and contradictory results appear when the direction is 

xed independently of the technology. Interestingly, when the di- 

ection is fixed as the arithmetic mean of all the observed data, 

hen the results are comparable to those obtained in the propor- 

ional case, with some minor differences. This confirms the interest 

f the latter specification as already proposed by Chambers, Färe 

nd Grosskopf (1996) . 

To develop these arguments, this contribution is structured as 

ollows. Section 2.1 develops the basic definitions of the technol- 

gy and the various distance functions and efficiency measures. 

t provides two definitions of the commensurability property re- 

ning the axiom proposed by Russell (1988) . Section 3 analyzes 

he implication of the commensurability condition on the consis- 

ency of productivity measurement. This we do by introducing a 

uitable notion of homogeneity bias. Section 4 provides a numer- 

cal example reporting some contradiction and irrelevant results. 

ection 5 proposes an empirical application comparing the result 

n the proportional and directional cases. We end with a conclud- 

ng Section 6 . 

. Technology and efficiency measures: definitions 

.1. Technology: definition and assumptions 

A production technology describes how inputs x = 

x 1 , ..., x m 

) ∈ R 

m + are transformed into outputs y = (y 1 , ..., y n ) ∈
 

n + . The production possibility set T is the set of all feasible inputs 

nd outputs vectors and it is defined as follows: 

 = 

{
(x, y ) ∈ R 

m + n 
+ : x can produce y 

}
. (2.1) 

e suppose that the technology satisfies a series of usual assump- 

ions or axioms: 

(A.1) (0 , 0) ∈ T , (0 , y ) ∈ T ⇒ y = 0 (i.e., inaction, and no free

lunch); 

(A.2) For all x ∈ R 

m + the subset A (x ) = { (u, y ) ∈ T : u ≤ x } of dom- 

inating observations is bounded (i.e., infinite outputs cannot 

be obtained from a finite input vector); 

(A.3) T is closed (i.e., closedness); and 

(A.4) ∀ (x, y ) ∈ T , (u, v ) ∈ R 

m + n 
+ and (x, −y ) ≤ (u, −v ) ⇒ (u, v ) ∈ T 

(i.e., strong input and output disposability). 

(A.5) ∀ (x, y ) ∈ T , and all λ > 0 (λx, λy ) ∈ T (i.e., CRS assumption). 

The reader can consult Färe, Grosskopf, & Lovell (1994) for fur- 

her comments on these axioms. Note that not all of the above 

xioms are needed to derive our main results. 

.2. Radial and directional efficiency measures 

Distance functions fully characterise technology and for these 

eason have become standard tools for estimating efficiency and 

roductivity relative to production frontiers. Let T be the class of 

ll the production technologies satisfying the axioms (A. 1) − (A. 4) . 

The radial input efficiency measure E i is the inverse of the 

hephard input distance function. It is the map E in : R 

m + n 
+ × T −→ 

 + ∪ {∞} defined as 

 

in (x, y, T ) = inf 
λ

{ λ > 0 : (λx, y ) ∈ T } . (2.2)

he radial output efficiency measure E out : R 

m + n 
+ × T −→ R + ∪ {∞} 

earches for the maximum expansion of an output vector by a 

calar θ to the production frontier, i.e.: 

 

out (x, y, T ) = sup 

θ

{ θ > 0 : (x, θy ) ∈ T } . (2.3)
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2 The survey of Russell & Schworm (2009) mentions the commensurability con- 

dition, but provides limited analysis. 
The DDF is a map 

−→ 

D : R 

m + n 
+ × R 

m + n 
+ × T −→ R ∪ {∞ , ∞} de-

ned by: 

 

D ( x, y, h, k, T ) = sup 

δ∈ R 
{ δ : (x − δh, y + δk ) ∈ T } . (2.4)

t looks for a simultaneous input and output variation in the di- 

ection of a pre-assigned vector g = ( h, k ) ∈ R 

m + n 
+ compatible with 

he technology (see Chambers, Färe & Grosskopf, 1996 ). The DDF 

s a special case of the shortage function ( Luenberger, 1992b ). It 

s also closely related to the translation function as developed in 

lackorby & Donaldson (1980) . Both functions measure the dis- 

ance in a pre-assigned direction to the boundary of technology. 

Färe, Grosskopf, & Margaritis ( 2008 : p. 533-534) list a variety 

f choices for the direction vector. This question on the choice of 

irection vector has led to a rather substantial amount of literature 

roposing a variety of directions and also trying to determine some 

ptimal type of direction vector in an endogenous way (see, for in- 

tance, Atkinson & Tsionas, 2016, Daraio & Simar, 2016, Layer, John- 

on, Sickles, & Ferrier, 2020, Zofío, Pastor, & Aparicio, 2013 for rep- 

esentative examples). It is clear that the choice of direction vector 

ffects the value of the DDF as well as its relative ranking: see, e.g., 

erstens, Mounir, & de Woestyne (2012) for an empirical illustra- 

ion. Furthermore, Zofío et al. (2013) illustrate that when the di- 

ection vector is chosen to project inefficient firms towards profit 

aximizing benchmarks, then the traditional distinction between 

echnical and allocative efficiency collapses: profit inefficiency can 

e categorized as either technical (when firms are situated in the 

nterior of the technology) or allocative (when firms are situated 

n the frontier). 

Finally, the proportional distance function (PDF) is introduced 

y Briec (1997) . In the following we consider the Hadamard prod- 

ct defined for all γ , z ∈ R 

d by 

� z = (γ1 z 1 , · · · , γd z d ) . 

his Hadamard product notation is useful to simplify the formu- 

ation of the PDF proposed by Briec (1997) who uses diagonal 

atrices. The PDF is the map D 

∝ : R 

m + n 
+ × [0 , 1] m + n × T −→ R ∪

−∞ , ∞} defined by 

 

∝ (x, y, α, β, T ) = sup 

δ∈ R 
{ δ : (x − δα � x, y + δβ � y ) ∈ T } . (2.5)

A special case corresponds to the situation where inputs and 

utputs are equiproportionaly modified. This implies that α = 11 m 

nd β = 11 n . In such a case, we have: 

 

∝ 
T (x, y, T ) : = D 

∝ 
T (x, y, 11 m 

, 11 n ) 

= max 
{
δ : 

(
(1 − δ) x, (1 + δ) y 

)
∈ T 

}
. (2.6) 

It is generally stated in the literature that this PDF (2.5) is a 

pecial case of of the DDF (2.4) taking the direction g = (−α �

, β � y ) . Thus, we have: 

 

D (x, y, −α � x, β � y, T ) = D 

∝ (x, y, α, β, T ) . (2.7)

owever, note that in such a case g is not pre-assigned since it 

epends on x and y (see Russell & Schworm, 2011 : p. 146 for de-

ails). 

In the following we establish under a CRS assumption that the 

DF (2.4) is homogeneous of degree 1, while the PDF (2.5) is ho- 

ogeneous of degree 0. The equiproportionate case ( α = 11 m 

and 

= 11 n ) is established by Boussemart, Briec, Kerstens and Pou- 

ineau (2003) who show relationships between the radial and the 

roportional measures. This confirms that these distance functions 

re slightly different. 

Briec, Dervaux and Leleu (2003 : Prop. 1) establish that under a 

RS assumption, the DDF is homogeneous of degree 1. Thus, if the 

echnology satisfies a CRS assumption, then: 

 

D (λx, λy, g, T ) = λ
−→ 

D (x, y, g, T ) ∀ λ ≥ 0 . (2.8)
1483 
his result means that proportionally multiplying inputs and out- 

uts by a scalar implies an equivalent proportional multiplication 

f the DDF. It is shown further that this property has some impor- 

ant implications for the LPI. 

An overview of the axiomatic approach to input efficiency mea- 

ures is found in Russell & Schworm (2009) . A survey of efficiency 

easures in the graph of technology or in the full 〈 input, out- 

ut 〉 space, like the DDFs and PDFs, is found in Russell & Schworm 

2011) and in a more limited sense in Pastor & Aparicio (2010) . 

Note that in the remainder of this contribution, we use the sim- 

lified notations: z = (x, y ) , g = (h, k ) and γ = (α, β) . 

.3. Weak and Strong Commensurability of Efficiency Measures 

This subsection revisits the commensurability condition pro- 

osed by Russell ( 1988 : p. 21) in the input space only and by

ussell & Schworm (2011) in the input-output or graph space. 2 In 

articular, we propose a new distinction between two notions of 

trong and weak commensurability. This distinctions is necessary 

ince the introductions of efficiency measures depending on some 

arameters. This is obviously the case of both the DDFs and PDFs. 

We first consider a set of variables Z ⊂ R 

d an a set of parame-

ers � ⊂ R 

d ′ where d and d ′ are two natural numbers. In the fol- 

owing, the Hadamard product is used to extend the commensura- 

ility concept in a proper way. Given any subset Z of R 

d and any 

ector c ∈ R 

d ++ , we denote c � Z = { c � z : z ∈ Z} . This notation is

quivalent to the formulation proposed by Russell ( 1988 : p. 212) 

ho uses diagonal matrices. This formulation yields an equivalent 

ormulation of the usual definition of commensurability. 

efinition 2.1. Let Z be a subset of R 

d and S be a collection of 

ubsets of R 

d . Let f : Z × S −→ R ∪ {−∞ , + ∞} . We say that f sat-

sfies the commensurability condition on Z if for all c ∈ R 

d ++ , we 

ave: 

f (c � z, c � S) = f (z, S) . 

This definition is refined and extended as follows for a large 

lass of maps involving some parameters. 

efinition 2.2. Let Z be a subset of R 

d and let S be a collection 

f subsets of R 

d . Let � be a subset of R 

d ′ . Let f : Z × � × S −→
 ∪ {−∞ , + ∞} . We say that f satisfies: 

(a ) A strong commensurability condition on Z and S if for all 

 ∈ R 

d ++ , we have: 

f (c � z, θ, c � S) = f (z, θ, S) . 

(b) A weak commensurability condition on Z and S if there ex- 

sts a map ξ : R 

d ++ �→ R 

d ′ ++ such that for all c ∈ R 

d ++ : 

f 
(
c � z, ξ (c) � θ, c � S 

)
= f (z, θ, S) . 

The map ξ is called a re-scaling function. It captures the fact 

hat the parameters may be involved with the function f under 

ny arbitrary algebraic form. Notice that strong commensurability 

mplies weak commensurability when taking ξ (c) = 11 d , for all c. 

owever, in the remainder we focus on some cases where ξ is the 

dentity map (such that ξ (c) = c with d = d ′ ). This implies that the

e-scaling of the parameter θ is parallel to the one of the vari- 

ble x . In many situations we consider the case where Z = R 

m + n 
+ 

n which the distance functions are defined. 

In the first case, one can see that the map f is invariant with 

espect to any change in the units of measurement and indepen- 

ent of the parameter θ . This definition extends the commensu- 

ability condition of Russell (1988) to the broad class of efficiency 
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easures involving additional parameters. This is not true in the 

econd case, where solely the units of measurement of the param- 

ter change. 

Notice that this whole formalism can equivalently be formu- 

ated using definite positive diagonal matrices as it has been done 

n Russell (1988) . However, the Hadamard product yields some 

implifications in many statements. The next result shows that, 

iven a map that satisfies a weak commensurability assumption, 

ne can construct a commensurable map replacing the parameter 

ith the point the function is evaluated at. This idea is implicitly 

sed in Briec (1999) to construct a commensurable Hölder distance 

unction. 

Perhaps more importantly, defining a suitable diagonally homo- 

eneous map, one can show that the strong commensurability of 

he PDF can be derived from the weak commensurability of the 

DF. 

Let E be a subset of R 

d . In the following we say that a map

: E −→ E is multiplicative if for all w, z ∈ E, we have η(w � z) =
(w ) � η(z) . A map κ : E −→ E is diagonally homogeneous if for 

ll w, z ∈ E, κ(w � z) = w � κ(z) . This property plays an important

ole in the analysis of commensurability. Note that we assume that 

he dimension of the vector space that contains the set of param- 

ters is d ′ = d and Z = R 

d + . 

roposition 2.3. Let S be a collection of subsets of R 

d and let � be a

ubset of R 

d . Let f : R 

d + × � × S −→ R ∪ {−∞ , + ∞} . Suppose that f

atisfies a weak commensurability condition on S and that ξ : R 

d ++ �→ 

 

d ++ is the associated rescaling function that is multiplicative. Let κ : 

 

d + −→ R 

d + be a diagonally homogenous map. 

(a ) Then, the map g : R 

d ++ × S −→ R defined as: 

(z, S) = f 
(
z, ξ ◦ κ(z) , S 

)
atisfies the strong commensurability condition for all z ∈ R 

d ++ . 
(b) Suppose that there exists a multiplicative extension ˜ ξ : R 

d + −→ 

 

d + of ξ . Then, the map ˜ g : R 

d + × S −→ R defined as: 

˜ 
 (z, S) = f 

(
z, ˜ ξ ◦ κ(z) , S 

)
atisfies the strong commensurability condition for all z ∈ R 

d + . 

he proof of this Proposition 2.3 as well as all other statements is 

ound in Appendix A. 

In the following, we show that the DDF satisfies the weak ax- 

om of commensurability, but fails to satisfy the strong axiom. Both 

he radial efficiency measure and the PDF do satisfy the strong 

ommensurability axiom. It is also shown that the PDF is homoge- 

eous of degree 0. Recall that the DDF is homogeneous of degree 

. 

In the next statement, we prove that the strong commensura- 

ility axiom implies homogeneity of degree 0 under a CRS assump- 

ion on technology. 

roposition 2.4. Let C be the collection of all the conical subsets of 

 

d . If f : R 

d × � × C −→ R satisfies the strong commensurability con- 

ition, then it is homogeneous of degree 0 in its first argument. 

roposition 2.5. The PDF (2.5) satisfies the strong commensurability 

xiom. The DDF (2.4) satisfies the weak commensurability axiom. 

Proposition 2.4 implies that a map that is not homogeneous of 

egree 0 under a CRS technology does not satisfy the strong com- 

ensurability condition. The second result of Proposition 2.5 is al- 

eady found in Theorems 2 and 3 of Russell & Schworm (2011) , in

riec, Dervaux and Leleu (2003) , and in Pastor & Aparicio (2010) .

t is important to stress that the strong commensurability of the 

DF can be derived from the weak commensurability of the DDF. 

or example, the map κ : γ � z is diagonally homogeneous. Taking 

as the identity map, that by definition is defined over R 

n + , one 

an apply Proposition 2.3 to deduce the strong commensurability 
1484 
f the PDF using Eq. (2.7) that is obtained by replacing g with 

� z. 

Notice that the Hölder distance function based upon a standard 

 p norm proposed in Briec ( 1999 : p. 124) also fails to satisfy the

trong commensurability axiom. Let us consider the norm: 

u, v ) �→ ‖ (u, v ) ‖ p,γ = 

( ∑ 

i ∈ [ m ] 

αi | u i | p + 

∑ 

j∈ [ n ] 
β j | v j | p 

) 

1 
p . (2.9) 

n the case where p = ∞ , we have ‖ (u, v ) ‖ ∞ ,γ =
ax { max i ∈ [ m ] αi | u i | , max j∈ [ n ] β j | v j | } . Briec (1999) defines the 

o-called Hölder distance function D ‖·‖ p : R 

m + n 
+ × R 

m + n 
+ × T −→ R 

efined for all z ∈ T as 

 ‖·‖ p (z, γ , T ) = inf 
{‖ z − w ‖ p,γ : w ∈ ∂ W 

(T ) 
}
, (2.10)

here ∂ W 

(T ) = { (x, y ) ∈ T : (u, −v ) < (x, −y ) → (u, v ) / ∈ T } is the

eakly efficient subset of the technology. Since for all c = (a, b) ∈ 

 

m + n 
++ we have ∂ W 

(c � T ) = c � ∂ W 

(T ) , it is easy to show that this

ölder distance function satisfies the weak commensurability us- 

ng the re-scaling function 

(a, b) = 

(
a −p 

1 
, ..., a −p 

m 

, b −p 
1 

, ..., b −p 
n 

)
, (2.11) 

here c = (a, b) . In the case where (x, y ) ∈ R 

m + n 
++ , Briec

1999) shows that the commensurability can be obtained by 

etting αi = x i 
−p and β j = y j 

−p respectively for all i, j. This means 

hat we have replaced (α, β) with ξ (x, y ) and κ is the identity 

ap. Therefore, such a property can be immediately derived from 

roposition 2.3 . In such a case, the map ξ cannot be extended to 

 

m + n 
+ . 

However, this result can be extended to the whole Euclidean 

ector space using a suitable restriction of the weak efficient sub- 

et. Notice that in the case of polyhedral norms ( p = 1 , ∞ ), the

ölder distance function is closely related to the DDFs and PDFs. 

roposition 2.6. If the production technology satisfies a CRS assump- 

ion (A. 5) , then the PDF (2.5) is homogeneous of degree 0. 

The next Proposition 2.7 establishes a result which implies in 

roposition 2.8 that the the DDF never satisfies the strong com- 

ensurability condition for technologies having a nonempty inte- 

ior. Note that this assumption is often implicit for any production 

echnology. In the following, for each subset E of R 

d , we denote by 

nt (E) its interior. 

roposition 2.7. Let us consider c ∈ R 

m + n 
++ whose components are all 

dentical and equal to λ > 0 . 

(a ) If λ > 1 , then for all z ∈ T : 

 

D (c � z, g, c � T ) ≥ λ
−→ 

D (z, g, T ) . 

f z ∈ int (T ) , then 
−→ 

D (c � z, g, c � T ) > 

−→ 

D (z, g, T ) . 

(b) If λ ∈ ]0 , 1[ , then for all z ∈ T : 

 

D (c � z, g, c � T ) ≤ λ
−→ 

D (z, g, T ) . 

f z ∈ int (T ) , then 
−→ 

D (c � z, g, c � T ) < 

−→ 

D (z, g, T ) . 

(c) If T satisfies a CRS assumption (A. 5) , then: 

 

D (c � z, g, c � T ) = λ
−→ 

D (z, g, T ) . 

oreover, for all z ∈ int (T ) , if λ � = 1 , then 
−→ 

D (c � z, g, c � T ) � =
 

D (z, g, T ) . 

In particular, Proposition 2.7 means that any homogeneous ex- 

ansion (contraction) of the units of measurement implies an ex- 

ansion (contraction) of the DDF. Consequently, the DDF does not 

atisfy the strong commensurability axiom, since one can always 

nd a technology in T which violates the strong commensurability 

ondition, although the DDF satisfies weak commensurability (as 

hown in Proposition 2.5 ). 
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roposition 2.8. The DDF (2.4) does not satisfy the strong commen- 

urability axiom. 

This result is perfectly general and it challenges the widespread 

se of the DDF as an efficiency measure. We illustrate this lack of 

ommensurability in a LPI context. 

In the following, we suggest a slight change in the traditional 

efinition of the DDF. Let g : T −→ R 

m + n 
+ be a vector valued map

efined as: g : T �→ 

(
h (T ) , k (T ) 

)
. Let F be the set of all the maps

efined from T to R 

m + n 
+ . The map 

−→ 

D 

� : R 

m + n 
+ × F × T defined as:

 

D 

� (x, y, g, T ) = sup 

{
δ : 

(
x − δh (T ) , y + δk (T ) 

)
∈ T 

}
(2.12)

s called the adjusted directional distance function (ADDF). Equiva- 

ently, we have: 

 

D 

� (x, y, g, T ) = 

−→ 

D (x, y, g(T ) , T ) . (2.13)

Notice that this definition does not involve any fixed param- 

ter: g is just assumed to be a functional defined over T . We say 

hat g : R 

m + n 
+ −→ R 

m + n 
+ is diagonally homogeneous over T , if for all

 ∈ R 

d ++ , we have g(c � T ) = c � g(T ) . In the following, it is shown

hat one can provide a sufficient condition for the strong commen- 

urability of 
−→ 

D 

� (x, y, g, T ) . 

roposition 2.9. If g is diagonally homogeneous, then the ADDF 

2.12) is strongly commensurable. 

It is not clear that the diagonal homogeneity of g is a neces- 

ary condition for strong commensurability. For example, the PDF 

s strongly commensurable though the direction is not fixed. This 

ondition, however, provides a technical argument to one of the 

pecifications proposed by Chambers, Färe and Grosskopf (1996) in 

 nonparametric context. 

Let us denote P = 〈 R 

m + n 
+ 〉 the set of all the finite parts of

 

m + n 
+ . Let � be the set of all the diagonally homogeneous set- 

alued maps ˜ T : P ⇒ T . Let ˜ T (P) = { ̃  T (A ) : A ∈ P} and let T � =˜ T (P) : ̃  T ∈ �
}

be the set of all the production technologies in- 

exed in � and P . T � encompasses as a special case a large 

lass of non-parametric production models. Suppose that A = 

 (x 1 , y 1 ) , (x 2 , y 2 ) , ..., (x � , y � ) } is a set of � observed production vec-

ors. For all A ∈ P , let C c(A ) and C o(A ) respectively denote the

onical hull and the convex hull of A and let K = R 

m + × R 

n − be

he free disposal cone. If ˜ T C is the set-valued map defined by 
 

 C (A ) = ( Cc(A ) + K ) ∩ R 

m + n 
+ , then 

˜ T C (A ) corresponds to a CRS spec-

fication (see, e.g., Briec & Lemaire, 1999 ). If ˜ T V is the map de- 

ned by ˜ T V (A ) = (R 

m + × { 0 } ) ∪ ( Co(A ) + K ) ∩ R 

m + n 
+ , then 

˜ T V (A ) cor-

esponds to a variable returns to scale model, completed with the 

naction point (0,0) (to satisfy A.1). This procedure is not limited 

o convex nonparametric models: for instance, a basic Free Dis- 

osal Hull model is obtained from the application 

˜ T F defined as 
 

 F (A ) = { (0 , 0) } ∪ 

(
A + K 

)
∩ R 

m + n 
+ . 

Taking the direction 

 = 

( 

1 

� 

∑ 

k ∈ [ � ] 
x k , 

1 

� 

∑ 

k ∈ [ � ] 
y k 

) 

, (2.14) 

he DDF is independent of any change in the units of measure- 

ents. This property can be related to Proposition 2.9 . Actually, 

ote that two distinct data sets may yield the same technology. 

o overcome such a problem, let us introduce the equivalence re- 

ation A ∼ A 

′ ⇐⇒ 

˜ T (A ) = ̃

 T (A 

′ ) and let ˜ P = P\ ∼ the set of the

orresponding equivalence classes, that is the quotient set. Let � : 
 

 (P) −→ 

˜ P which associates to any T ∈ ̃

 T (P) some ˜ A ∈ P such that 
 

 (A ) = T for all A ∈ ̃

 A . By construction, for all c ∈ R 

m + n 
++ , we have

 

 (c � A ) = c � ˜ T (A ) and this implies that �
(
c � ˜ T (A ) 

)
= �

(˜ T (c �

 ) 
)

= c � ˜ A = c � �
(˜ T (A ) 

)
. It follows that �(c � T ) = c � �(T ) .

ow, let us consider the map m 

� : ˜ P −→ R 

m + n 
+ that associates to 
1485 
ny equivalence class the arithmetic mean of some arbitrary ele- 

ent of this equivalence class. Namely, m 

� ( ̃  A ) = 

1 
| A � | 

∑ 

a ∈ A � a where 

or any ˜ A , A 

� is an arbitrary element of ˜ A . We retrieve the ap-

roach proposed by Chambers, Färe and Grosskopf (1996) and 

äre, Grosskopf and Margaritis (2008) by defining the function 

 : ̃  T (P) −→ R 

n + as: 

(T ) = m 

� 
(
�(T ) 

)
. (2.15) 

ince �(c � T ) = c � �(T ) and m 

� (c � �(T )) = c � m 

� (�(T )) , we

educe that g(c � T ) = c � g(T ) . Notice that in such a case the di-

ection depends on the sample of units. Therefore, the DDF is not 

ranslation invariant, as already mentioned in Aparicio, Pastor, & 

idal (2016) . Suppose that A is a subset of R 

m + n 
++ , one could assume

hat the direction is a generalized mean of the observed produc- 

ion vectors with for all (i, j) ∈ [ m ] × [ n ] 

 i = 

( ∑ 

k ∈ [ � ] 
x k,i 

αi 

) 

1 
αi and k j = 

( ∑ 

k ∈ [ � ] 
y k, j 

β j 

) 

1 
β j , (2.16) 

nd αi , β j � = 0 for all i, j. For example, if αi , β j −→ ∞ and

i , β j −→ −∞ , then we have the limit case: 

 = 

( ∨ 

k ∈ [ � ] 
x k , 

∨ 

k ∈ [ � ] 
y k 

) 

and g = 

( ∧ 

k ∈ [ � ] 
x k , 

∧ 

k ∈ [ � ] 
y k 

) 

, (2.17) 

here ∨ and ∧ are the sup and inf lattice operator, respec- 

ively. Note that these results do no contradict Proposition 2.8 . 

n Propositions 2.8 and 2.4 , the parameters (direction) are as- 

umed to be independent of T . Layer, Johnson, Sickles and Ferrier 

2020) study how the shape of the nonparametric frontier estima- 

ion may impact the optimal direction. Along this line, they pro- 

ose an analysis showing that setting the median of the variables 

s a direction tends to outperform the choice of other directions. 

n such a case, we have: 

 i = med { x k,i : k ∈ [ � ] } and k j = med { y k, j : k ∈ [ � ] } , (2.18)

here med stands for the median. Obviously, the median direction 

lso respects the commensurability condition of the ADDF. 

Our research has focused here only on the Hölder distance 

unction, the PDF and DDF, and the ADDF. It may be worthwhile 

xploring in future work to which extent other graph-oriented ef- 

ciency measures analysed in Russell & Schworm (2011) and in 

astor & Aparicio (2010) comply with this generalised commen- 

urability definition. Having established that the Hölder distance 

unction and the DDF only satisfy weak commensurability, it is 

ime to explore the empirical consequences for productivity mea- 

urement. Since the DDF is far more popular in empirical research 

han the Hölder distance function, the next section focuses on how 

eak commensurability may affect the empirical results of the 

ery popular LPI. 

. Productivity indices and indicators: implications of 

ommensurability 

Recently, quite a bit of attention has been devoted to so-called 

heoretical productivity indices (see Russell, 2018 ). A theoretical 

roductivity index is defined on the assumption that the technol- 

gy is known and non-stochastic, but unspecified and thus most 

ften approximated by a nonparametric specification of technology 

sing some form of efficiency measure. The foundational concepts 

re on the one hand the Malmquist productivity index ( Caves, 

hristensen and Diewert, 1982 ) and on the other hand the Hicks- 

oorsteen productivity index ( Bjurek, 1996 ). While the Malmquist 

roductivity index is fundamentally a measure of the shift of the 

roduction frontier, the Hicks-Moorsteen productivity index is a ra- 

io of an aggregate output index over an aggregate input index. 
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3 We provide some qualitative evidence for this claim. A Google Scholar search on 

22 January 2022 yields about 979 results for the search term “Luenberger produc- 

tivity indicator”. This same search term in conjunction with the search term “con- 

stant returns to scale” obtains 422 hits, while this same search term in conjunction 

with the search term “variable returns to scale” leads to 383 results. 
hus, the Malmquist productivity index measures local technical 

hange (i.e., the local shifts in the production frontier), while the 

icks-Moorsteen productivity index has a Total factor Productiv- 

ty (TFP) interpretation. Kerstens & de Woestyne (2014) empirically 

llustrate that the Malmquist productivity index offers a poor ap- 

roximation to the Hicks-Moorsteen TFP index in terms of the re- 

ulting distributions and that these problems persist under CRS as 

ell as under variable returns to scale (VRS). 

Chambers, Färe and Grosskopf (1996) introduce the LPI as a 

ifference-based indicator of DDFs (see Chambers, 2002 ). This gen- 

ralizes the Malmquist productivity index that is most often ei- 

her input- or output-oriented. Briec & Kerstens (2004) define a 

uenberger-Hicks-Moorsteen TFP indicator using input- or output- 

riented DDFs. LPIs and Luenberger-Hicks-Moorsteen productivity 

ndicators are also empirically quite different under CRS as well 

s under VRS (see Kerstens, Shen, & de Woestyne, 2018 ). We now 

ormally define the output-oriented Malmquist productivity index 

nd the LPI that we need in our empirical analysis. 

.1. Productivity indices and indicators: definitions 

At each time period let us denote T t the production technol- 

gy at the time period t and suppose that T t satisfies axioms 

A. 1) − (A. 4) . Productivity indices and indicators aim to evaluate 

roductivity changes between discrete time periods and can be de- 

omposed to analyse the origins in the productivity changes. 

The Malmquist productivity index can be based on the radial 

utput measure (2.3) . In particular, Caves, Christensen and Diew- 

rt (1982) suggest using a geometric mean between a period t

almquist productivity index M 

out 
t (z t , z t+1 , T t ) : 

 

out 
t (z t , z t+1 , T t ) = 

E out (z t , T t ) 

E out (z t+1 , T t ) 
, (3.1) 

nd a period t + 1 Malmquist productivity index 

 

out 
t+1 

(z t , z t+1 , T t+1 ) : 

 

out 
t+1 (z t , z t+1 , T t+1 ) = 

E out (z t , T t+1 ) 

E out (z t+1 , T t+1 ) 
. (3.2) 

imilarly, Färe, Grosskopf, Lindgren and Roos (1995) define the 

utput-oriented Malmquist productivity index as the geometric 

ean of (3.1) and (3.2) as follows: 

 

out (z t , z t+1 , T t , T t+1 ) = 

[
E out (z t+1 , T t ) 

E out (z t , T t ) 

E out (z t+1 , T t+1 ) 

E out (z t , T t+1 ) 

]1 / 2 

. (3.3) 

his productivity index allows to analyze productivity changes be- 

ween different periods and it can be multiplicatively decomposed 

nto efficiency changes (EC) and technological changes (T C) : 

C = 

E out (x t , y t , T t ) 

E out (x t+1 , y t+1 , T t+1 ) 
and T C 

= 

(
E out (z t+1 , T t+1 ) 

E out (z t+1 , T t ) 

E out (z t , T t+1 ) 

E out (z t , T t ) 

)
1 
2 , (3.4) 

here EC represents the variation in efficiency between two pe- 

iods and concerns the relative efficiency in the management of 

nput and output quantities over time, while T C captures techno- 

ogical changes (i.e., productivity growth not explained by changes 

n input and output quantities). 

The LPI based on the DDF (2.4) is defined as follows: 

 (z t , z t+1 , g, T t , T t+1 ) = 

1 

2 

[ −→ 

D (z t , g, T t+1 ) −
−→ 

D (z t+1 , g, T t+1 ) 

+ 

−→ 

D (z t , g, T t ) −
−→ 

D (z t+1 , g, T t ) 
] 
. (3.5) 

his LPI can be additively decomposed into efficiency changes (EC) 

nd technological changes (T C) : 

C t = 

−→ 

D (z t , g, T t ) −
−→ 

D (z t+1 , g, T t+1 ) (3.6) 
1486 
nd 

 C t = 

1 

2 

[ −→ 

D (z t+1 , g, T t+1 ) −
−→ 

D (z t+1 , g, T t ) 

+ 

−→ 

D (z t , g, T t+1 ) −
−→ 

D (z t , g, T t ) 
] 
, (3.7) 

here the interpretation follows the one provided for the 

almquist productivity index (3.3) . 

Paralleling this definition, Boussemart, Briec, Kerstens and Pou- 

ineau (2003) define a proportional Luenberger indicator based on 

he PDF (2.5) as: 

 

∝ (z t , z t+1 , γ ) = 

1 

2 

[ 
D 

∝ (z t , γ , T t+1 ) −D 

∝ (z t+1 , γ , T t+1 ) 

+ D (z t , γ , T t ) −D 

∝ (z t+1 , γ , T t ) 
] 
. (3.8) 

he decomposition defined in (3.6) and (3.7) is applicable to this 

roportional case as well. Note that recently Pastor, Lovell, & Apari- 

io (2020) manage to transgress the distinction between technol- 

gy and TFP indices outlined above. These authors define a new 

raph oriented inefficiency measure based on the PDF under CRS 

nd use it to define a new Malmquist productivity index that has 

 TFP interpretation. 

Early discussions by Ray & Desli (1997) and Lovell (2003) , 

mong others, have led to refinements to the basic decomposi- 

ion of the output-oriented Malmquist productivity index (3.4) to 

ccount for the role of returns to scale. This has led to lively 

iscussions about the correct (tautological) decomposition of the 

almquist productivity index. Early and somewhat dated surveys 

n this multiplicative decomposition of the Malmquist productiv- 

ty index are found in Lovell (2003) and Zofío (2007) . These dis- 

ussions somewhat straightforwardly transpose to the LPI that has 

n additive structure. 

However, Proposition 2.8 is perfectly general and, in particular, 

t is independent of any returns to scale assumption. Therefore, all 

ecompositions of the LPI are potentially affected by the lack of 

trong commensurability of the DDF. 

Notice that while the LPI does not require a CRS specification of 

he technologies, the large majority of empirical applications still 

mposes such a restrictive assumption. 3 Therefore, given space lim- 

tations this contributions limits itself to documenting the impact 

f the lack of strong commensurability of the LPI to the CRS case 

n both the numerical examples in Section 4 and the empirical il- 

ustration in Section 5 . 

.2. Productivity indices and indicators: homogeneity bias 

This subsection analyzes the impact of the commensurability 

ondition on productivity measurement. We define a suitable no- 

ion of homogeneity bias for productivity indices and indicators. 

e also establish a relation between such a notion and the com- 

ensurability of the efficiency measure upon which a productivity 

ndex or indicator is based. 

efinition 3.1. Let � be a subset of R 

d . Let φ : R 

d × R 

d × � ×
 × T −→ R ∪ {−∞ , ∞} . Let T t , T t+1 ∈ T . For all, (z t , z t+1 , θ ) ∈ T t ×
 t+1 × � and all λ > 0 : 

 t (z t , z t+1 , φ, θ, λ) = φ(z t , z t+1 , θ, T t , T t+1 ) 

−φ(λz t , z t+1 , θ, T t , T t+1 ) 

s called the homogeneity bias of φ in period t; 



W. Briec, A. Dumas, K. Kerstens et al. European Journal of Operational Research 303 (2022) 1481–1492 

B

i

d

p

r

t

t

t

b

B

a  

a

B  . 

h

B  

a

B

d

h

B

a

B

f

d

P

T  

i

d

B

B  

d

t

b

(  

t

C

i  

T

B

B  

B

t

p

i  

C

t

3

w

t

r

t

l

i

t

t

f

t

a  

I

o

D  

T

m

D

T
T

T

i

T

i

i

T

a

t

T

h

T  

T

 t+1 (z t , z t+1 , φ, θ, λ) = φ(z t , z t+1 , θ, T t , T t+1 ) 

−φ(z t , λz t+1 , θ, T t , T t+1 ) 

s called the homogeneity bias of φ in period t + 1 . 

The homogeneity bias measures the change of a productivity in- 

ex or indicator when a firm is proportionally re-scaled at the time 

eriods t and t + 1 . Since productivity is essentially based upon the 

atio between the outputs and the inputs involved in the produc- 

ion process, one could expect that a productivity index or indica- 

or should be invariant with respect to such a re-scaling when the 

echnology satisfies a CRS assumption. 

In the case of the LPI based on the DDF (2.4) the homogeneity 

ias in t is then defined as: 

 t (z t , z t+1 , L, g, λ) = L (z t , z t+1 , g, T t , T t+1 ) − L (λz t , z t+1 , g, T t , T t+1 ) , 

(3.9) 

nd the same homogeneity bias at the time period t + 1 is defined

s: 

 t+1 (z t , z t+1 , L, g, λ) = L (z t , z t+1 , g, T t , T t+1 ) − L (z t , λz t+1 , g, T t , T t+1 )

(3.10) 

In the case of the proportional LPI based on the PDF (2.5) we 

ave the homogeneity bias in t: 

 t (z t , z t+1 , L 
∝ , γ ) = L ∝ (z t , z t+1 , γ , T t , T t+1 ) −L ∝ (λz t , z t+1 , γ , T t , T t+1 ) ,

(3.11) 

nd the homogeneity bias in t + 1 : 

 t+1 (z t , z t+1 , L 
∝ , γ ) = L ∝ (z t , z t+1 , γ , T t , T t+1 ) 

−L ∝ (z t , λz t+1 , γ , T t , T t+1 ) . (3.12) 

Finally, the output-oriented Malmquist productivity index is in- 

ependent of any parameter. Hence, for all θ ∈ R 

d , we have the 

omogeneity bias in t: 

 t (z t , z t+1 , M 

out , θ, λ) = M 

out (z t , z t+1 , T t , T t+1 ) 

−M 

out (λz t , z t+1 T t , T t+1 ) , (3.13) 

nd the homogeneity bias in t + 1 : 

 t+1 (z t , z t+1 , M 

out , θ, λ) = M 

out (z t , z t+1 , T t , T t+1 ) 

−M 

out (z t , λz t+1 T t , T t+1 ) . (3.14) 

The next result shows that given any efficiency measure satis- 

ying the strong commensurability axiom, the corresponding pro- 

uctivity index or indicator has a null homogeneity bias. 

roposition 3.2. Let � be a subset of R 

d . Let φ : R 

d × R 

d × � × T ×
 −→ R ∪ {−∞ , ∞} . Let T t , T t+1 ∈ T and assume that T t and T t+1 sat-

sfy a CRS assumption. If φ satisfies the strong commensurability con- 

ition, then for all (z t , z t+1 , θ ) ∈ T t × T t+1 × � and all λ > 0 , 

 t (z t , z t+1 , φ, θ, λ) = B t+1 (z t , z t+1 , φ, θ, λ) = 0 . 

In the following, let: 

 t ,t +1 (z t , z t+1 , φ) = B t (z t , z t+1 , φ) + B t+1 (z t , z t+1 , φ) , (3.15)

enote the sum of the homogeneity bias in time period t and in 

ime period t + 1 . The next result shows that the homogeneity 

ias of the proportional LPI (3.8) and Malmquist productivity index 

3.3) are null, though this is not the case for the LPI (3.5) based on

he DDF for which an explicit form of the bias can be provided. 

orollary 3.3. Suppose that at each time period T t and T t+1 sat- 

sfy (A. 1) − (A. 4) and a CRS assumption (A. 5) . For all (z t , z t+1 ) ∈
 t × T t+1 we have: 

(a ) B t (z t , z +1 , M 

out , θ, λ) = B t+1 (z t , z +1 , M 

out , θ, λ) = 0 ; 

(b) B t (z t , z +1 , L 
∝ , γ , λ) = B t+1 (z t , z +1 , L 

∝ , α, β, λ) = 0 ; 
1487 
(c) We have the identities: 

 t (z t , z t+1 , g, λ) = 

1 − λ

2 

[−→ 

D (z t , g, T t+1 ) + 

−→ 

D (z t , g, T t ) 
]
;

 t+1 (z t , z t+1 , g, λ) = 

λ − 1 

2 

[−→ 

D (z t+1 , g, T t+1 ) + 

−→ 

D (z t+1 , g, T t ) 
]
; and

 t ,t +1 (z t , z t+1 , g, λ) = 

1 − λ

2 

L (z t , z t+1 , g, T t , T t+1 ) . 

Under a CRS assumption on technology, the Malmquist produc- 

ivity index and the proportional LPI are not affected by a pro- 

ortional modification of one of the observations. However, this 

s not true in the case of the LPI based on the DDF. Remark that

hambers, Färe and Grosskopf (1996) : p. 184) in their seminal ar- 

icle do impose a CRS assumption on technology. 

.3. Translation homothetic bias 

In this subsection, it is shown that the things are very different 

hen one assumes a graph translation homothetic property of the 

echnology. First, notice that it is difficult to define the commensu- 

ability axiom from an additive viewpoint. This is due to the fact 

hat the key axioms (A. 1) − (A. 4) are not preserved via a trans- 

ation of the technology. However, it is interesting to analyze the 

mpact of the graph translation homotheticity on the structure of 

he LPI (3.5) . 

We point to the fact that if the technology is graph transla- 

ion homothetic, then the LPI with a fixed direction does not suffer 

rom the shortcomings due to its additive structure. A production 

echnology T is translation homothetic in the direction of g if for 

ll z ∈ T and all δ ∈ R such that z + δg ∈ R 

m + n 
+ , we have z + δg ∈ T .

t was shown by Briec & Kerstens (2004) that under an assumption 

f graph translation homotheticity: 

 (z + δg, g, T ) = D (z, g, T ) . (3.16)

his means that the DDF is translation invariant. 

Paralleling our earlier definition we define the translation ho- 

othetic bias as follows. 

efinition 3.4. Let � be a subset of R 

d . Let φ : R 

d × R 

d × � ×
 × T −→ R ∪ {−∞ , ∞} . Let T t , T t+1 ∈ T . For all, (z t , z t+1 , θ ) ∈ T t ×
 t+1 × � and all λ > 0 : 

 B t (z t , z t+1 , φ, θ, δ) = φ(z t , z t+1 , θ, T t , T t+1 ) 

−φ(z t + δg, z t+1 , θ, T t , T t+1 ) 

s called the translation homothetic bias of φ in period t; 

 B t+1 (z t , z t+1 , φ, θ, δ) = φ(z t , z t+1 , θ, T t , T t+1 ) 

−φ(z t , z t+1 + δg, θ, T t , T t+1 ) 

s called the translation homothetic bias of φ in period t + 1 . 

In the case of the LPI (3.5) the translation homothetic bias in t

s then defined as: 

 B t (z t , z t+1 , L, g, δ) = L (z t , z t+1 , g, T t , T t+1 ) 

−L (z t + δg, z t+1 , g, T t , T t+1 ) ; (3.17) 

nd the translation homothetic bias at the time period t + 1 is 

hen: 

 B t+1 (z t , z t+1 , L, g, δ) = L (z t , z t+1 , g, T t , T t+1 ) 

−L (z t , z t+1 + δg, g, T t , T t+1 ) . (3.18) 

It follows that if the production technology is graph translation 

omothetic at both the time periods t and t + 1 , then: 

 B t (z t , z t+1 , L, g, δ) = T B t+1 (z t , z t+1 , L, g, δ) = 0 . (3.19)

his means that the translation homotheticity bias is zero. 
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. Numerical examples 

In the following we compare the output-oriented Malmquist 

roductivity index and the LPI. To do so we introduce a numerical 

xample and we show that the LPI can yield inconsistent results 

ecause of the structure of the DDF under a CRS assumption. 

.1. Output-oriented measures 

We suppose that the technology is two-dimensional and that 

 0 = { (x, y ) : y ≤ x } and T 1 = { (x, y ) : y ≤ 2 x } , which implies a CRS

ssumption at each time period. Moreover, we assume that: z 0 = 

x 0 , y 0 ) = (1 , 4 5 ) and z 1 = (x 1 , y 1 ) = (1 , 5 4 ) . 

Let us compute the radial output-oriented efficiency measure at 

ach time period: 

(i) E out (z 1 , T 0 ) = sup { θ : (1 , θ 5 
4 ) ∈ T 0 } = sup { θ : θ 5 

4 ≤ 1 } . 
Clearly, we have 5 

4 θ
� = 1 and E out (z 1 , T 1 ) = θ� = 

4 
5 ; 

(ii) E out (z 0 , T 0 ) = sup { θ : θ 4 
5 ≤ 1 } , hence E out (z 0 , T 0 ) = θ� = 

5 
4 ; 

(iii) E out (z 1 , T 1 ) = sup { θ : θ 5 
4 ≤ 2 } . Clearly, we have 5 

4 θ
� = 2 and

E out (z 1 , T 1 ) = θ� = 

8 
5 ; 

(iv) E out (z 0 , T 1 ) = sup { θ : θ 4 
5 ≤ 2 } , hence E out (z 1 , T 1 ) = θ� = 

5 
2 . 

Inserting these results leads to the following output-oriented 

almquist productivity index (3.3) : 

 

out (z 0 , z 1 , T 0 , T 1 ) = 

(
5 

4 

. 
5 

4 

. 
5 

8 

. 
2 

5 

)
1 
2 = 1 . 56 . (4.1)

his result indicates a productivity gain between t = 0 and t = 1 ,

ince indeed the Malmquist productivity index is > 1 . 

Now we suppose that λ = 10 . It follows that we consider the 

roduction vector at t = 1 defined as: 

 

′ 
1 = 10(x 1 , y 1 ) = 

(
10 , 

25 

2 

)
. 

Although in the first and the second case the observation do not 

se the same level of inputs and outputs, these observations have 

he same efficiency scores. Thus, the productivity index should 

ield the same result. This is indeed the case for the Malmquist 

roductivity index, since it is invariant with respect to a propor- 

ional change of the second observation. 

(z ′ 1 , T 0 ) = 

4 

5 

, E(z 0 , T 0 ) = 

5 

4 

, E(z ′ 1 , T 1 ) = 

8 

5 

, E(z 0 , T 1 ) = 

5 

2 

. 

ence, inserting these results we also obtain: 

 

out (z 0 , 10 z 1 , T 0 , T 1 ) = 

(
5 

4 

. 
5 

4 

. 
5 

2 

. 
5 

8 

)
1 
2 = 1 . 56 . 

Thus, a proportional multiplication of z 1 by 10 does not affect 

he output-oriented Malmquist productivity index. This is normal 

ecause the productivity does not change. 

But, for the LPI (3.5) such proportional change in input and 

utput quantities does affect the indicator, thereby introducing 

 bias. Recall that as in the Malmquist productivity index case, 

he production vectors are z 0 = (1 , 4 5 ) and z 1 = (1 , 5 4 ) . Let us

ow consider the LPI with the direction of g = (0 , 1) . This is an

utput-oriented LPI which allows to be compared with the output- 

riented Malmquist productivity index: 

(i) 
−→ 

D (x 0 , y t , 0 , 1 , T 1 ) = sup { δ : (1 , 4 5 + δ) ∈ T 1 } which implies

that 4 
5 + δ� = 2 and 

−→ 

D (x 0 , y 0 , 0 , 1 , T 1 ) = δ� = 

6 
5 ; 

(ii) 
−→ 

D (x 1 , y 1 , 0 , 1 , T 1 ) = sup { δ : (1 , 5 4 + δ) ∈ T 1 } . Hence,
−→ 

D (x 1 , y 1 , 0 , 1 , T 1 ) = 

3 
4 ; 

(iii) 
−→ 

D (x 0 , y 0 , 0 , 1 , T 0 ) = sup { δ : (1 , 4 5 + δ) ∈ T t } . Hence, 4 
5 + δ = 1

and 

−→ 

D (x 0 , y 0 , 0 , 1 , T 0 ) = 

1 ; 
5 

1488 
(iv) 
−→ 

D (x 1 , y 1 , 0 , 1 , T 0 ) = sup { δ : (1 , 5 4 + δ) ∈ T 0 } . Hence,
−→ 

D (x 1 , y 1 , 0 , 1 , T 0 ) = − 1 
4 . 

Inserting these results leads to the following output-oriented 

PI: 

 

out (z 0 , z 1 , 0 , 1 , T 0 , T 1 ) = 

1 

2 

[ 
6 

5 

− 3 

4 

+ 

1 

5 

+ 

1 

4 

] 
= 

1 

2 

. 
9 

10 

= 0 . 45 . 

(4.2) 

ince this LPI is larger than zero, this suggests a productivity gain 

etween periods t = 0 and t = 1 . 

Now in the second case, the observation is again character- 

zed by the following conditions: z 0 = (x 0 , y 0 ) = (1 , 4 5 ) and z ′ 1 =
0(x 1 , y 1 ) = (10 , 25 

2 ) . 

Again, we compute the output-oriented DDF at each time pe- 

iod: 

(i) 
−→ 

D (x 0 , y 0 , 0 , 1 , T 1 ) = sup { δ : (1 , 4 5 + δ) ∈ T 1 } which implies

that 4 
5 + δ = 2 and δ = 

6 
5 ; 

(ii) 
−→ 

D (x 1 , y 1 , 0 , 1 , T 1 ) = sup { δ : (10 , 25 
2 + δ) ∈ T t+1 } which im-

plies that 25 
2 + δ = 20 so δ = 

15 
2 ; 

(iii) 
−→ 

D (x 0 , y 0 , 0 , 1 , T 0 ) = sup { δ : (1 , 4 5 + δ) ∈ T t } which implies

that 4 
5 + δ = 1 and therefore δ = 

1 
5 ; 

(iv) 
−→ 

D (x 1 , y 1 , 0 , 1 , T 0 ) = sup { δ : (10 , 25 
2 + δ) ∈ T t } Thus, 25 

2 + δ =
10 so δ = 

−5 
2 . 

Collecting again these results leads now to the following 

utput-oriented LPI result: 

 (z 0 , 10 z 1 , g, T 0 , T 1 ) = 

1 

2 

[ 
6 

5 

− 15 

2 

+ 

1 

5 

+ 

5 

2 

] 
= 

1 

2 

. 

(−18 

5 

)
= −1 . 8 . 

(4.3) 

emark that the output-oriented LPI is now negative ( −1 . 8 ) while 

t was initially positive (0.45). Thus, the LPI initially suggests a pro- 

uctivity gain, while it now indicates a productivity loss. However, 

his is a contradiction: in both cases the observation should have 

he same productivity. Therefore, the LPI is very sensitive to pro- 

ortional changes in quantities and it does not allow to estimate 

hanges in efficiency. 

.2. Graph-oriented measures 

Fig. 1 illustrates the idea behind the homogeneity bias. When 

 production vector is proportionally expanded, then the DDF is 

ncreasing. Hence, the LPI may be significantly modified. 

Consider the production vectors z 0 = (1 , 3 4 ) and z 1 = (1 , 5 4 ) . 

Let us compute the LPI based on the PDF (3.8) as introduced by 

oussemart, Briec, Kerstens and Poutineau (2003) . We consider the 

ase where α = 11 m 

and β = 11 n . At each time periods t, s we have

 

∝ (x t , y t , T s ) = max 
δ

{ δ : ((1 − δ) x t , (1 + δ) y t ) ∈ T s } . (4.4)

nder a CRS assumption, we have the relation: 

 

∝ (x t , y t , T s ) = 

E out (x t , y t , T s ) − 1 

E out (x t , y t , T s ) + 1 

. (4.5) 

oussemart, Briec, Kerstens and Poutineau (2003) define the LPI 

ased on the PDF as follows: 

L ∝ (x t , y t , x t+1 , y t+1 , T t , T t + 1) 

= 

1 

2 

[ 
D 

∝ (x t , y t , T t ) − D 

∝ (x t+1 , y t+1 , T t ) 

+ D 

∝ (x t , y t , T t+1 ) − D 

∝ (x t+1 , y t+1 , T t+1 ) 
] 
. (4.6) 
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Fig. 1. Homogeneity Bias. 
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Since the PDF is homogenous of degree 0, we obviously have 

or all λ > 0 : 

 

∝ (x t , y t , x t+1 , y t+1 , T t , T t+1 ) = L ∝ (x t , y t , λx t+1 , λy t+1 , T t , T t+1 ) . 

(4.7) 

oreover, from Boussemart, Briec, Kerstens and Poutineau (2003) , 

e also have under a CRS assumption, the second order approxi- 

ation: 

L ∝ (x t , y t , x t+1 , y t+1 , T t , T t+1 ) 

≈ 1 

2 

ln 

(
M 

out (x t , y t , x t+1 , y t+1 , T t , T t+1 ) 
)
. (4.8) 

Assuming that z 0 = (1 , 4 5 ) , z 1 = (1 , 5 4 ) , one can compute the

DFs at each time period as follows: 

(i) D 

∝ (x 0 , y 0 , T 1 ) = max { δ : (1 − δ, 4 5 + 

4 
5 δ) ∈ T 1 } . Hence, we

should have 4 
5 + 

4 
5 δ = 2(1 − δ) and δ = 

3 
7 ; 

(ii) D 

∝ (x 1 , y 1 , T 1 ) = max { δ : (1 − δ, 5 4 + 

5 
4 δ) ∈ T 1 } so 5 

4 + 

5 
4 δ =

2(1 − δ) and δ = 

3 
13 ; 

(iii) D 

∝ (x 0 , y 0 , T 0 ) = max { δ : (1 − δ, 4 5 + 

4 
5 δ) ∈ T 0 } . Thus, 4 

5 + 

4 
5 δ

= 1 − δ and δ = 

1 
7 ; 

(iv) D 

∝ (x 1 , y 1 , T 0 ) = max { δ : (1 − δ, 5 4 + δ) ∈ T 0 } . Hence, we de-

duce δ = − 1 
9 

Inserting these results yields the following proportional LPI: 

 

∝ (z 0 , z 1 , T 0 , T 1 ) = 

1 

2 

[ 
5 

11 

− 3 

13 

+ 

1 

7 

+ 

1 

9 

] 
= 0 . 238 . (4.9)

Suppose now that z 1 = (10 , 25 
2 ) , since the PDF is homogeneous

f degree 0, we have: 

 

∝ (z 0 , z 1 , T 0 , T 1 ) = L ∝ (z 0 , 10 z 1 ) = 0 . 238 . (4.10)
1489 
herefore, the productivity change is the same. The results are par- 

llel to those obtained using the output-oriented Malmquist pro- 

uctivity index. 

Let us now compute the LPI based on the DDF (3.5) as follows: 

(i) 
−→ 

D (x 0 , y 0 , 1 , 1 , T 1 ) = sup { δ : (1 − δ, 3 4 + δ) ∈ T 1 } . Thus so 3 
4 +

δ = 2(1 − δ) and δ = 

5 
12 ; 

(ii) 
−→ 

D (x 1 , y 1 , 1 , 1 , T 1 ) = sup { δ : (1 − δ, 5 4 + δ) ∈ T 1 } thus δ = 

3 
12 ; 

(iii) 
−→ 

D (x 0 , y 0 , 1 , 1 , T 0 ) = sup { δ : (1 − δ, 3 4 + δ) ∈ T 0 } so 3 
4 + δ =

1 − δ and δ = 

1 
8 ; 

(iv) 
−→ 

D (x 1 , y 1 , 1 , 1 , T 0 ) = sup { δ : (1 − δ, 5 4 + δ) ∈ T 0 } , thus δ = − 1 
8 .

Inserting these results into the LPI yields: 

 (z 0 , z 1 , g, T 0 , T 1 ) = 

1 

2 

[ 
5 

12 

− 3 

12 

+ 

1 

8 

+ 

1 

8 

] 
= 

1 

2 

(
5 

12 

)
= 0 . 21 . 

(4.11) 

hus, this LPI being larger than > 0 suggests a productivity gain 

etween periods t = 0 and t = 1 . 

Now in the second case the production vectors become z 0 = 

x 0 , y 0 ) = (1 , 3 4 ) and z ′ 
1 

= 10(x 1 , y 1 ) = (10 , 25 
2 ) . 

The DDFs in each time period are now: 

(i) 
−→ 

D (x 0 , y 0 , h, k, T 1 ) = 

5 
12 ; 

(ii) 
−→ 

D (x 1 , y 1 , h, k, T 1 ) = sup { δ : (10 − δ, 25 
2 + δ) ∈ T 1 } so

25 
2 + δ = 2(10 − δ) and δ = 

15 
6 ; 

(iii) 
−→ 

D (x 0 , y 0 , h, k, T 0 ) = 

1 
8 ; 

(iv) 
−→ 

D (x 1 , y 1 , h, k, T 0 ) = sup { δ : (10 − δ, 25 
2 + δ) ∈ T 0 } so δ = − 5 

4 . 

Collecting these results leads to the following LPI: 

 (z 0 , 10 z 1 , g, T 0 , T 1 ) = 

1 

2 

[ 
5 

12 

−15 

6 

+ 

1 

8 

+ 

5 

4 

] 
= 

1 

2 

(
− 17 

24 

)
= −0 . 35 . 

(4.12) 

ince the indicator is now negative, it suggests a productivity loss 

etween periods t = 0 and t = 1 . 

Again, one can remark contradictory results between these two 

ases. The LPI based on the DDF fails to measure productivity 

hanges properly. This is due to the homogeneity degree of the 

DF. 

These numerical results are summarized in Table 1 . 

. Empirical illustration 

As an empirical illustration, we propose to focus on the school- 

ng productivity of European countries using the PISA-OECD and 

urostat data. Indeed, PISA (Programme for International Student 

ssessment) is an OECD program that aims to evaluate the perfor- 

ances of educational systems of OECD member countries. Since 

0 0 0 and every three years, surveys are conducted to evaluate 15- 

ear-olds’ ability to use their reading, mathematics, and science 

nowledge in 36 OECD member countries and partner countries. 

n parallel, Eurostat collects and harmonizes published data from 

ational statistics institutes of European Union countries for vari- 

us themes like education. 

To analyze schooling productivity, we consider as outputs the 

ISA reading scores, mathematics scores, and science scores in 

018 and 2009 of 15-year-olds’ pupils to measure schooling pro- 

uctivity over almost one decade. Following Agasisti, Munda, & 

ippe (2019) , as inputs we select three types of resources: stu- 

ent/teacher ratio, government expenditure per student, and total 

ublic expenditure on education as percent of GDP. Furthermore, 

e distinguish those inputs for primary and secondary education 

evels and consider those resources during the schooling of pupils, 
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Table 1 

Malmquist index and luenberger indicator: numerical examples. 

Case 1 Productivity Case 2 Productivity 

Output case z t = (1 , 4 
5 
) z t = (1 , 4 

5 
) 

z t+1 = (1 , 5 
4 
) z t+1 = (10 , 50 

4 
) 

Malmquist M 

o = 1 . 56 > 1 + M 

o = 1 . 56 > 1 + 

Luenberger L = 0 . 45 > 0 + L = −1 . 8 < 0 - 

Graph case z t = (1 , 3 
4 
) z t = (1 , 3 

4 
) 

z t+1 = (1 , 5 
4 
) z t+1 = (10 , 50 

4 
) 

Proportional L ∝ = 0 . 238 > 0 + L ∝ = 0 . 238 > 0 + 

Luenberger L = 0 . 21 > 0 + L = −0 . 35 < 0 - 

Table 2 

Description of inputs and outputs. 

Variable Label Time Period 0 Time Period 1 

Output 1 Reading scores 2009 2018 

Output 2 Mathematic scores 2009 2018 

Output 3 Science scores 2009 2018 

Input 1 student/teacher ratio (inverse) for primary education 2003 (except: Estonia 2001) 2012 (except: Greece 2013) 

Input 2 student/teacher ratio (inverse) for secondary education 2007 2016 (except: Norway 2017) 

Input 3 Government expenditure per student (based on FTE) for primary education 

(PPS) 

2003 (except: Estonia 2005; 

Greece 2005; Hungary 2004) 

2012 (except: Belgium 2011; 

Norway 2011) 

Input 4 Government expenditure per student (based on FTE) for secondary education 

(PPS) 

2007 (except: Hungary 2006) 2016 

Input 5 Total public expenditure on primary, lower and upper secondary education 

as % of GDP for primary education 

2003 2012 (except: Slovakia 2011) 

Input 6 Total public expenditure on primary, lower and upper secondary education 

as % of GDP for secondary education 

2007 (except: Greece 2005) 2016 

Table 3 

Productivity scores and ranking. 

Country Malmquist Rank LPI PDF Rank LPI DDF Rank LPI Mean Rank 

Italy 1,117 1 0,055 1 1,114 1 0,059 1 

Sweden 1,111 2 0,052 2 0,492 3 0,055 2 

Estonia 1,081 3 0,039 3 0,675 2 0,037 3 

Austria 1,039 4 0,019 4 -0,278 8 0,027 4 

Portugal 1,001 5 0,000 5 -0,419 11 -0,006 6 

Netherlands 0,998 6 -0,001 6 -0,045 4 -0,003 5 

UK 0,977 7 -0,012 7 -0,127 5 -0,011 7 

France 0,959 8 -0,021 9 -0,213 7 -0,018 8 

Norway 0,959 9 -0,020 8 -0,721 15 -0,024 10 

Hungary 0,934 10 -0,034 10 -0,378 9 -0,020 9 

Germany 0,932 11 -0,035 11 -0,399 10 -0,032 11 

Greece 0,923 12 -0,040 12 -0,503 12 -0,033 12 

Belgium 0,914 13 -0,043 13 -0,696 14 -0,053 14 

Czechia 0,889 14 -0,058 14 -0,174 6 -0,034 13 

Slovenia 0,875 15 -0,067 15 -1,270 20 -0,054 15 

Latvia 0,845 16 -0,084 16 -0,836 17 -0,066 17 

Poland 0,828 17 -0,093 17 -0,528 13 -0,062 16 

Slovakia 0,786 18 -0,119 18 -0,958 18 -0,080 18 

Finland 0,781 19 -0,123 19 -1,551 21 -0,130 21 

Lithuania 0,715 20 -0,162 20 -0,754 16 -0,093 19 

Bulgaria 0,686 21 -0,181 21 -1,053 19 -0,099 20 

Average 0,921 -0,044 -0,411 -0,031 
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.e., for primary education in 2003 and 2012 so theoretically when 

upils are 9-year-olds’ and for secondary education in 2007 and 

016 so theoretically when pupils are 13-years-olds’. The reader 

an consult Table 2 for more details on these data. A sample of 

1 European Union countries is collected. The original data can be 

ound in Table B.1 in Appendix B. 

We compute on these data four productivity indices and indica- 

ors: (i) the output-oriented Malmquist index (3.3) , (ii) the input- 

riented LPI based on the PDF (3.8) , (iii) the input-oriented LPI 

ased on DDF (3.5) with input direction: (0.01, 0.01, 10 0 0, 10 0 0,

.1, 0.1), and (iv) the input-oriented LPI based on DDF (3.5) with 

s input direction the means in the sample (0.073, 0.096, 4609.34, 

211.84, 1.254, 2.039). The results and the rankings obtained for 

ach index and indicator are presented in Table 3 . In the top 

ow, these four productivity indices and indicators are labeled 
1490 
Malmquist”, “LPI PDF”, “LPI DDF” and “LPI Mean”, respectively. The 

athematical programming problems for these indices and indica- 

ors are found in Appendix C. 

Note that in this empirical illustration we opt for input-oriented 

PIs rather than graph-oriented ones. This methodological choice 

voids any complications due to infeasibilities (see Briec & Ker- 

tens, 2009a ) and due to the need for positivity constraints on the 

rojection of the outputs (see Briec & Kerstens, 2009b ). 

Our results show similar sign interpretation and ranking for the 

almquist productivity index and for the proportional LPI. But, for 

he LPI based on the DDF, the results are different. Indeed, the 

anking is seriously modified. Some countries are better ranked 

ith the directional LPI (Czechia (+8); Lithuania (+4), Poland (+4)), 

hile some other countries are worse ranked (Norway (-7), Portu- 

al (-6), Austria (-4), Slovenia (-4)). We also notice that the sign 
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F  
nterpretation of the productivity indices and indicators is even in- 

erted for Austria. Indeed, the Malmquist index and the propor- 

ional LPI highlight that Austria has increased its schooling pro- 

uctivity between 2009 and 2018 by 3.8 %, whereas the directional 

PI reveals a productivity decrease for this same period of time. 

he countries are of different size and the choice of a preassigned 

irection that is independent from the observed data has a strong 

mpact on the results. This also explains the difference between 

he efficiency scores and the evaluation of productivity and it con- 

rms that strong commensurability is intimately linked to the ro- 

ustness of the results. 

Finally, using inputs means as direction for the directional LPI 

omewhat limits this issue. This confirms the idea that the choice 

f a direction as the mean of the observed data also yields relevant 

esults. Therefore, the strong commensurability, inherited from the 

iagonal homogeneity of the direction, has a significant impact on 

he evaluation of productivity changes as shown in Proposition 2.4 . 

he results indeed become closer to the Malmquist productivity 

ndex and the proportional LPI. This confirms that the choice of 

he direction as an arithmetic means of the observed production 

ectors yields more relevant results. 

While Layer, Johnson, Sickles and Ferrier (2020) investigate the 

mpact of measurement error on a stochastic DDF estimated us- 

ng convex nonparametric least squares in a Monte Carlo simula- 

ion framework, their key findings are similar. First, directions close 

o the average orthogonal direction to the true function perform 

est. Second, with noisy data selecting a direction that matches the 

oise direction of the data generating process improves estimator 

erformance. 

. Conclusion 

We have refined the notion of commensurability and have 

hown that it plays a crucial role in the measurement of efficiency 

nd productivity. An efficiency measure or distance function that is 

ot strongly commensurable is not homogeneous of degree 0 un- 

er a CRS assumption. Therefore, it may yield wrong evaluations 

hen empirically measuring efficiency and productivity. 

This contribution has verified in detail some numerical exam- 

les and an empirical illustration in which it is shown that the LPI 

ased upon the DDF may not be a relevant productivity indicator 

nder any returns to scale assumption. The simplest alternative to 

void these problems is to employ the LPI based upon the PDF. 

An avenue for future work is to explore in more detail to 

hich extent other graph-oriented efficiency measures analysed in 

ussell & Schworm (2011) and in Pastor & Aparicio (2010) com- 

ly with this generalised commensurability definition and satisfy 

he property of strong commensurability. In addition to the Hölder 

istance function and the DDF, it may well be that other graph- 

riented efficiency measures only satisfy weak commensurability 

nd therefore may provide dubious productivity measures. An- 

ther open issue worthwhile exploring is to check to which ex- 

ent overall efficiency concepts (e.g., based on the cost, revenue, or 

rofit function) as well as the allocative efficiency notions comply 

ith the commensurability conditions. 4 Furthermore, it could be 

seful to also empirically investigate how the Luenberger-Hicks- 

oorsteen indicator is affected in a similar way like the LPI in 

erms of the choice of directions for the input- and output oriented 

DF composing it. Finally, our numerical examples and empirical 

llustration could be complemented by some Monte Carlo analysis 

similar to Layer et al. (2020) ). 
4 In the case of cost efficiency Aparicio, Pastor, & Zofío (2017) show that the DDF 

oes not correctly encompasses the allocative efficiency component of the Shep- 

ardian approach. 
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