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ABSTRACT

We analyse the role of new weak and strong commensurability conditions on efficiency measures and
especially on productivity measurement. If strong commensurability fails, then a productivity index (in-
dicator) may exhibit a homogeneity bias yielding inconsistent and contradictory results. In particular, we
show that the Luenberger productivity indicator is sensitive to proportional changes in the input-output
quantities, while the Malmquist productivity index is not affected by such changes. This is due to the
homogeneity degree of the directional distance function under constant returns to scale. In particular,
the directional distance function only satisfies the weak commensurability axiom in general. However, if
the directional distance function is a diagonally homogeneous function of the technology, then the di-
rectional distance function satisfies strong commensurability. This explains why the direction of an arith-
metic mean of the observed data works well. Numerical examples and an empirical illustration are pro-
posed. Under a translation homothetic technology, the Luenberger productivity indicator is not affected
by any additive directional transformation of the observations.

Weak and strong commensurability

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of this contribution is to point out some partic-
ular properties of a recent generalization of Shephard (1970) dis-
tance function, known as the directional distance function (DDF).
Distance functions are employed in consumption and produc-
tion theory. Luenberger (1992a,b) introduces the benefit function
as a directional representation of preferences, which generalizes
Shephard’s (1970) input distance function defined in terms of the
utility function. Luenberger (1995) introduces the shortage func-
tion as a transposition of the benefit function in a production con-
text. Chambers, Chung and Fare (1996) relabel this same function
as a DDF and since then it is commonly known by this name.
The DDF generalizes existing Shephardian distance functions by ac-
counting for both input reductions and output expansions and it is
dual to the profit function (see Chambers, Chung, & Fdre, 1998 for
details). Furthermore, the DDF offers flexibility due to the vari-
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ety of direction vectors it allows for (see, e.g., Chambers, Fire, &
Grosskopf, 1996). Chambers, Chung and Fdre (1996) analyze the
benefit function as well as the DDF in detail and extend the com-
position rules of McFadden (1978) to these new concepts. However,
it should be noted that there are alternative distance functions that
the DDF fails to generalise: examples include the hyperbolic graph
measure, the Holder distance function for any norm, etc. (see, e.g.,
Russell & Schworm, 2011).

These Shephardian distance functions have been extensively
used in the economic literature to measure productivity. Based
upon Shephardian distance functions as general representations
of technology, discrete-time Malmquist input- and output-oriented
productivity indexes - introduced by Caves, Christensen, & Diewert
(1982)- have been made empirically tractable by Fdre, Grosskopf,
Lindgren, & Roos (1995). Meanwhile, more general primal produc-
tivity indicators have been proposed. Chambers & Pope (1996) de-
fine a Luenberger productivity indicator (LPI) in terms of differ-
ences between DDFs (see also Chambers, 2002).!

Russell (1988) introduces an important property that any tech-
nical efficiency measure should satisfy: the commensurability con-

T Note that traditional “indexes” denote productivity measures based on ratios
while “indicators” use differences (see Diewert, 2005 for a detailed discussion).
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dition. This means that an efficiency measure should be invariant
with respect to any change in the units of measurement. This con-
dition is very natural and fundamental and most of the existing
technical efficiency measures (or distance functions) satisfy it. This
is the case for all the Shephardian measures, the Fire & Lovell
(1978) measure, perhaps the first non-radial measure in the lit-
erature, as well as the Zieschang (1984) measure (see Russell &
Schworm, 2009: footnote 8). Note that in the literature the com-
mensurability property is also known under the name of unit(s)
invariance.

Many of the new efficiency measures proposed in the literature
involve some parameters in their definitions. This is the case of the
measures proposed by Chambers, Chung and Fare (1996), Chavas &
Cox (1999), Mehdiloozad, Sahoo, & Roshdi (2014), and Briec (1999),
among others. Therefore, the notion of commensurability proposed
by Russell (1988) must be modified to take into account these gen-
eralized structures. A first purpose of this contribution is then to
generalise the commensurability notion to account for efficiency
measures involving some parameters.

The second purpose of this contribution is to indicate the prob-
lems for measuring productivity when a measure fails to satisfy
the commensurability property independently of the parameters it
is depending on. For instance, the LPI that is related to the ax-
iomatic properties of the directional distance function may yield
some irrelevant and contradictory results depending on the direc-
tion that is chosen. Briec, Dervaux and Leleu (2003) show that
the DDF satisfies a special version of the commensurability con-
dition when the direction g is “pre-assigned”. Hence, the Russell
(1988) commensurability condition cannot be applied to the DDF.
To overcome this problem, we introduce a slight modification of
the commensurability condition and we distinguish between two
notions called weak and strong commensurability, respectively.
Strong commensurability extends the original Russell (1988) com-
mensurability notion to the case where distance functions involve
specific parameters. It is shown that the directional distance func-
tion satisfies the weak commensurability but fails to satisfy strong
commensurability. However, many of the existing efficiency mea-
sures do satisfy the strong version of the commensurability condi-
tion.

We apply the formalism suggested by Russell (1988) that as-
sociates an efficiency score to any pair of production vector and
production technology. In general, a distance function (efficiency
measure) is defined given a production technology. If the direction
is a diagonally homogeneous function depending on the technol-
ogy, then a slightly modified formulation of the DDF satisfies the
strong commensurability condition. This explains why it is useful
to consider the direction of an arithmetic mean of the observed
data in empirical studies, as already suggested in Chambers, Fdre
and Grosskopf (1996: p. 185 and 190).

More importantly, under a constant returns to scale (CRS) as-
sumption, an efficiency measure that does not satisfy the strong
commensurability axiom cannot be homogeneous of degree 0. In
such a case, one can show the existence of a productivity bias
when a firm is proportionally re-scaled. In particular, the DDF is
homogeneous of degree 1 under CRS. This property has some im-
portant implications concerning the LPI when the direction g is
pre-assigned. In such a case, the LPI may yield some contradictory
results, while the Malmquist productivity index provides very in-
tuitive results in any case. Furthermore, it should be stressed that
these properties are independent of the returns to scale structure
of the production technology. If the technology satisfies a graph
translation homotheticity property, then the LPI does not exhibit
any bias when a firm is translated. Notice also that the fact that
the DDF yields a radial expansion of a production vector is not
problematic to evaluate technical efficiency, since the size of a firm
may have some implication on its efficiency score.
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Our empirical study shows that when the direction is propor-
tional under a CRS assumption, then the results are consistent with
those obtained in the Malmquist productivity index case. Some
irrelevant and contradictory results appear when the direction is
fixed independently of the technology. Interestingly, when the di-
rection is fixed as the arithmetic mean of all the observed data,
then the results are comparable to those obtained in the propor-
tional case, with some minor differences. This confirms the interest
of the latter specification as already proposed by Chambers, Fire
and Grosskopf (1996).

To develop these arguments, this contribution is structured as
follows. Section 2.1 develops the basic definitions of the technol-
ogy and the various distance functions and efficiency measures.
It provides two definitions of the commensurability property re-
fining the axiom proposed by Russell (1988). Section 3 analyzes
the implication of the commensurability condition on the consis-
tency of productivity measurement. This we do by introducing a
suitable notion of homogeneity bias. Section 4 provides a numer-
ical example reporting some contradiction and irrelevant results.
Section 5 proposes an empirical application comparing the result
in the proportional and directional cases. We end with a conclud-
ing Section 6.

2. Technology and efficiency measures: definitions

2.1. Technology: definition and assumptions

A production technology describes how inputs x
(X1, ....xm) € R are transformed into outputs y = (¥1,....¥n) €
R’. The production possibility set T is the set of all feasible inputs

and outputs vectors and it is defined as follows:
T={(xy) eRI™": (2.1)

We suppose that the technology satisfies a series of usual assump-
tions or axioms:

x can produce y} .

(A1) (0,0) €T, (0,y)eT=y=0 (ie,
lunch);

(A.2) For all x € RT the subset A(x) = {(u,y) € T : u < x} of dom-
inating observations is bounded (i.e., infinite outputs cannot
be obtained from a finite input vector);

(A.3) T is closed (i.e., closedness); and

(A4) Y. y) eT, (wv)eRM"and (x,-y) < (u,-v) = W, v)eT
(i.e., strong input and output disposability).

(A5) V(x,y) €T, and all A > 0 (Ax,Ay) €T (i.e., CRS assumption).

inaction, and no free

The reader can consult Fire, Grosskopf, & Lovell (1994) for fur-
ther comments on these axioms. Note that not all of the above
axioms are needed to derive our main results.

2.2. Radial and directional efficiency measures

Distance functions fully characterise technology and for these
reason have become standard tools for estimating efficiency and
productivity relative to production frontiers. Let 7 be the class of
all the production technologies satisfying the axioms (A.1) — (A.4).

The radial input efficiency measure E; is the inverse of the
Shephard input distance function. It is the map E™ : R™*" x 7 —
R4 U{oo} defined as

EM(x,y,T) = ilgf{)» >0:(Ax,y) eT}. (2.2)
The radial output efficiency measure E°U : RT+" x 7 — R, U {00}
searches for the maximum expansion of an output vector by a
scalar 6 to the production frontier, i.e.:

E°(x,y, T) =sup{0 > 0: (x,0y) e T}. (2.3)
0



W. Briec, A. Dumas, K. Kerstens et al.

The DDF is a map D: R x R x T — RU {00, 00} de-
fined by:
B(x, ¥, h,k,T) =sup{§ : (x—S8h,y + k) e T}. (2.4)
SeR

It looks for a simultaneous input and output variation in the di-
rection of a pre-assigned vector g = (h, k) € R7"*" compatible with
the technology (see Chambers, Fire & Grosskopf, 1996). The DDF
is a special case of the shortage function (Luenberger, 1992b). It
is also closely related to the translation function as developed in
Blackorby & Donaldson (1980). Both functions measure the dis-
tance in a pre-assigned direction to the boundary of technology.

Fare, Grosskopf, & Margaritis (2008: p. 533-534) list a variety
of choices for the direction vector. This question on the choice of
direction vector has led to a rather substantial amount of literature
proposing a variety of directions and also trying to determine some
optimal type of direction vector in an endogenous way (see, for in-
stance, Atkinson & Tsionas, 2016, Daraio & Simar, 2016, Layer, John-
son, Sickles, & Ferrier, 2020, Zofio, Pastor, & Aparicio, 2013 for rep-
resentative examples). It is clear that the choice of direction vector
affects the value of the DDF as well as its relative ranking: see, e.g.,
Kerstens, Mounir, & de Woestyne (2012) for an empirical illustra-
tion. Furthermore, Zofio et al. (2013) illustrate that when the di-
rection vector is chosen to project inefficient firms towards profit
maximizing benchmarks, then the traditional distinction between
technical and allocative efficiency collapses: profit inefficiency can
be categorized as either technical (when firms are situated in the
interior of the technology) or allocative (when firms are situated
on the frontier).

Finally, the proportional distance function (PDF) is introduced
by Briec (1997). In the following we consider the Hadamard prod-
uct defined for all y,z € R? by

Yy 0z= 21, , VaZa)-

This Hadamard product notation is useful to simplify the formu-
lation of the PDF proposed by Briec (1997) who uses diagonal
matrices. The PDF is the map D> :RT*" x [0, 1]™" x T — RU
{—o00, 0} defined by

D*(x,y, o, B,T) =sup{6: x-Saxox,y+880y)ecT}. (2.5)
SeR
A special case corresponds to the situation where inputs and
outputs are equiproportionaly modified. This implies that o = 1,
and B = 1. In such a case, we have:

DF(x,y.T) : = DF (x,y, My, M)
=max{§: ((1-38)x (1+8)y)eT}. (2.6)

It is generally stated in the literature that this PDF (2.5) is a
special case of of the DDF (2.4) taking the direction g= (- ®
X, B ®y). Thus, we have:

D(xy -aox foy.T)=D*Xxy.a B.T). (2.7)

However, note that in such a case g is not pre-assigned since it
depends on x and y (see Russell & Schworm, 2011 : p. 146 for de-
tails).

In the following we establish under a CRS assumption that the
DDF (2.4) is homogeneous of degree 1, while the PDF (2.5) is ho-
mogeneous of degree 0. The equiproportionate case (o« = 1, and
B =1,) is established by Boussemart, Briec, Kerstens and Pou-
tineau (2003) who show relationships between the radial and the
proportional measures. This confirms that these distance functions
are slightly different.

Briec, Dervaux and Leleu (2003: Prop. 1) establish that under a
CRS assumption, the DDF is homogeneous of degree 1. Thus, if the
technology satisfies a CRS assumption, then:

DOxAygT)=AD (xy.gT) VA=>0. (2.8)

1483

European Journal of Operational Research 303 (2022) 1481-1492

This result means that proportionally multiplying inputs and out-
puts by a scalar implies an equivalent proportional multiplication
of the DDF. It is shown further that this property has some impor-
tant implications for the LPI.

An overview of the axiomatic approach to input efficiency mea-
sures is found in Russell & Schworm (2009). A survey of efficiency
measures in the graph of technology or in the full (input, out-
put) space, like the DDFs and PDFs, is found in Russell & Schworm
(2011) and in a more limited sense in Pastor & Aparicio (2010).

Note that in the remainder of this contribution, we use the sim-
plified notations: z= (x,y), g= (h, k) and y = («, B).

2.3. Weak and Strong Commensurability of Efficiency Measures

This subsection revisits the commensurability condition pro-
posed by Russell (1988: p. 21) in the input space only and by
Russell & Schworm (2011) in the input-output or graph space.? In
particular, we propose a new distinction between two notions of
strong and weak commensurability. This distinctions is necessary
since the introductions of efficiency measures depending on some
parameters. This is obviously the case of both the DDFs and PDFs.

We first consider a set of variables Z c RY an a set of parame-
ters ® c RY where d and d’ are two natural numbers. In the fol-
lowing, the Hadamard product is used to extend the commensura-
bility concept in a proper way. Given any subset Z of RY and any
vector c e RY,, we denote c©Z = {c®z:zeZ}. This notation is
equivalent to the formulation proposed by Russell (1988: p. 212)
who uses diagonal matrices. This formulation yields an equivalent
formulation of the usual definition of commensurability.

Definition 2.1. Let Z be a subset of RY and S be a collection of
subsets of R?, Let f:Z xS — RU {—o0, +o0}. We say that f sat-
isfies the commensurability condition on Z if for all c e RY,, we
have:

flcoz,col) = f(z)5).

This definition is refined and extended as follows for a large
class of maps involving some parameters.

Definition 2.2. Let Z be a subset of R? and let S be a collection
of subsets of RZ. Let ® be a subset of R?. Let f:Zx ® x S —>
R U {—o0, +00}. We say that f satisfies:

(a) A strong commensurability condition on Z and S if for all

ceRY,, we have:

flcoz,0,coS) =f(z0,95).

(b) A weak commensurability condition on Z and S if there ex-
ists a map & : RY, > RY, such that for all c e RY,:

flcoz.E(@ 00.cos) = f(z.6.9).

The map & is called a re-scaling function. It captures the fact
that the parameters may be involved with the function f under
any arbitrary algebraic form. Notice that strong commensurability
implies weak commensurability when taking & (c) = 14, for all c.
However, in the remainder we focus on some cases where & is the
identity map (such that £ (c) = ¢ with d = d’). This implies that the
re-scaling of the parameter 6 is parallel to the one of the vari-
able x. In many situations we consider the case where Z = R]*"
on which the distance functions are defined.

In the first case, one can see that the map f is invariant with
respect to any change in the units of measurement and indepen-
dent of the parameter 6. This definition extends the commensu-
rability condition of Russell (1988) to the broad class of efficiency

2 The survey of Russell & Schworm (2009) mentions the commensurability con-
dition, but provides limited analysis.
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measures involving additional parameters. This is not true in the
second case, where solely the units of measurement of the param-
eter change.

Notice that this whole formalism can equivalently be formu-
lated using definite positive diagonal matrices as it has been done
in Russell (1988). However, the Hadamard product yields some
simplifications in many statements. The next result shows that,
given a map that satisfies a weak commensurability assumption,
one can construct a commensurable map replacing the parameter
with the point the function is evaluated at. This idea is implicitly
used in Briec (1999) to construct a commensurable Holder distance
function.

Perhaps more importantly, defining a suitable diagonally homo-
geneous map, one can show that the strong commensurability of
the PDF can be derived from the weak commensurability of the
DDF.

Let E be a subset of R%. In the following we say that a map
n : E — E is multiplicative if for all w,z € E, we have n(w® z) =
n(w) ®n(z). A map « : E — E is diagonally homogeneous if for
all w,zeE, k(W®z) =wQo K (z). This property plays an important
role in the analysis of commensurability. Note that we assume that
the dimension of the vector space that contains the set of param-
eters is d’ =d and Z = R%.

Proposition 2.3. Let S be a collection of subsets of RY and let ® be a
subset of RY. Let f:RY x ©® x S — RU {—o00, +o0}. Suppose that f
satisfies a weak commensurability condition on S and that & : IR%‘?H >
Ri + is the associated rescaling function that is multiplicative. Let k :
R‘i — R‘i be a diagonally homogenous map.

(a) Then, the map g:R%, x S — R defined as:

2(z.5) = f(z.§ 0k (2).5)

satisfies the strong commensurability condition for all z € RL.
(b) Suppose that there exists a multiplicative extension & : Rﬁ —
R4 of &. Then, the map §: RY x S —> R defined as:

§z.9) = f(2.§ 0k (2).5)
satisfies the strong commensurability condition for all z € Rﬂ.

The proof of this Proposition 2.3 as well as all other statements is
found in Appendix A.

In the following, we show that the DDF satisfies the weak ax-
iom of commensurability, but fails to satisfy the strong axiom. Both
the radial efficiency measure and the PDF do satisfy the strong
commensurability axiom. It is also shown that the PDF is homoge-
neous of degree 0. Recall that the DDF is homogeneous of degree
1.

In the next statement, we prove that the strong commensura-
bility axiom implies homogeneity of degree 0 under a CRS assump-
tion on technology.

Proposition 2.4. Let C be the collection of all the conical subsets of
R If f 1 RY x ® x C —> R satisfies the strong commensurability con-
dition, then it is homogeneous of degree 0 in its first argument.

Proposition 2.5. The PDF (2.5) satisfies the strong commensurability
axiom. The DDF (2.4) satisfies the weak commensurability axiom.

Proposition 2.4 implies that a map that is not homogeneous of
degree 0 under a CRS technology does not satisfy the strong com-
mensurability condition. The second result of Proposition 2.5 is al-
ready found in Theorems 2 and 3 of Russell & Schworm (2011), in
Briec, Dervaux and Leleu (2003), and in Pastor & Aparicio (2010).
It is important to stress that the strong commensurability of the
PDF can be derived from the weak commensurability of the DDF.
For example, the map « : y ® z is diagonally homogeneous. Taking
& as the identity map, that by definition is defined over R", one
can apply Proposition 2.3 to deduce the strong commensurability
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of the PDF using Eq.
yoz

Notice that the Holder distance function based upon a standard
¢ norm proposed in Briec (1999: p. 124) also fails to satisfy the
strong commensurability axiom. Let us consider the norm:

(2.7) that is obtained by replacing g with

1

W) > W)y = | Y ailwl”+ ) Bjlvl” ). (2.9)
ie[m] Jjeln]

In the «case where p=oco, we have [ V)|wy =

max{maxic[pm @;|u;|, Max;cn; Bj|vjl}. Briec (1999) defines the
so-called Holder distance function Dy, : R x R x T — R
defined for all ze T as

Dy, @ y.T) =inf{llz—wl,, :wedw(T)}, (2.10)

where oy (T) ={(x.y) eT: (u,-v) < (x,-y) — (u,v) ¢ T} is the
weakly efficient subset of the technology. Since for all ¢ = (a,b) ¢
RTH" we have oy (c©T) = c® dw (T), it is easy to show that this
Holder distance function satisfies the weak commensurability us-
ing the re-scaling function

E(a,b) = (a;", o G TP BP),
m—+n

where c¢=(a,b). In the case where (x,y)eR[{", Briec
(1999) shows that the commensurability can be obtained by
setting o; = x;P and B; = y;~P respectively for all i, j. This means
that we have replaced («, ) with £(x,y) and « is the identity
map. Therefore, such a property can be immediately derived from
Proposition 2.3. In such a case, the map & cannot be extended to
RITH»H.

+However, this result can be extended to the whole Euclidean
vector space using a suitable restriction of the weak efficient sub-
set. Notice that in the case of polyhedral norms (p =1, cc), the
Holder distance function is closely related to the DDFs and PDFs.

(2.11)

Proposition 2.6. If the production technology satisfies a CRS assump-
tion (A.5), then the PDF (2.5) is homogeneous of degree 0.

The next Proposition 2.7 establishes a result which implies in
Proposition 2.8 that the the DDF never satisfies the strong com-
mensurability condition for technologies having a nonempty inte-
rior. Note that this assumption is often implicit for any production
technology. In the following, for each subset E of RY, we denote by
int(E) its interior.

Proposition 2.7. Let us consider ¢ € Rt" whose components are all
identical and equal to A > 0.
(a) IfA > 1, then forall ze T:

B(C@Z,g,CQT) zAB(z,g,T),

If zint(T), then D(cozgcoT)> D(zgT).
(b) If > €]0, 1], then for all ze T:

D(cozgcoT)<ADzgT).

If z € int(T), then B(c@z, gcoT) < B(z, g T).
(¢) If T satisfies a CRS assumption (A.5), then:

B(C@Z,g,CQT) =AB(z,g,T).

Moreover, for all zeint(T), if A #1, then _D)(c(az,g,(:@T);é
=
D(z,gT).

In particular, Proposition 2.7 means that any homogeneous ex-
pansion (contraction) of the units of measurement implies an ex-
pansion (contraction) of the DDF. Consequently, the DDF does not
satisfy the strong commensurability axiom, since one can always
find a technology in 7 which violates the strong commensurability
condition, although the DDF satisfies weak commensurability (as
shown in Proposition 2.5).
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Proposition 2.8. The DDF (2.4) does not satisfy the strong commen-
surability axiom.

This result is perfectly general and it challenges the widespread
use of the DDF as an efficiency measure. We illustrate this lack of
commensurability in a LPI context.

In the following, we suggest a slight change in the traditional
definition of the DDF. Let g: 7 — RT*" be a vector valued map
defined as: g: T~ (h(T).k(T)). Let F be the set of all the maps

defined from 7 to R7*". The map D! (R < F x T defined as:

Di(x.y.gT) = sup {8 : (x = 8h(T),y + 8k(T)) e T}

is called the adjusted directional distance function (ADDF). Equiva-
lently, we have:

D*(x,y,gT) =D (xygT),T). (213)

Notice that this definition does not involve any fixed param-
eter: g is just assumed to be a functional defined over 7. We say
that g : RT*" — RT*" is diagonally homogeneous over T, if for all
ce RL. we have g(c©®T) =c®g(T). In the following, it is shown
that one can provide a sufficient condition for the strong commen-
surability of B:(x, v.8T).

(2.12)

Proposition 2.9. If g is diagonally homogeneous, then the ADDF
(2.12) is strongly commensurable.

It is not clear that the diagonal homogeneity of g is a neces-
sary condition for strong commensurability. For example, the PDF
is strongly commensurable though the direction is not fixed. This
condition, however, provides a technical argument to one of the
specifications proposed by Chambers, Fiare and Grosskopf (1996) in
a nonparametric context.

Let us denote P = (RT*") the set of all the finite parts of
R, Let A be the set of all the diagonally homogeneous set-
valued maps T:P=T. Let T(P)={T(A):AecP} and let T, =
{T(P) :Te A} be the set of all the production technologies in-
dexed in A and P. 7, encompasses as a special case a large
class of non-parametric production models. Suppose that A=
{(x1,¥1), (X2,¥2), ..., (x¢, y¢)} is a set of ¢ observed production vec-
tors. For all A€ P, let Cc(A) and Co(A) respectively denote the
conical hull and the convex hull of A and let K =R} xR" be
the free disposal cone. If TC is the set-valued map deﬁned by
To(A) = (Cc(A) + K) NR'™*™, then T-(A) corresponds to a CRS spec-
ification (see, eg Briec & Lemaire, 1999). If fv is the map de-
fined by Ty (A) = R™ x {0}) U (Co(A) + K) NR?*", then T/ (A) cor-
responds to a varlable returns to scale model, completed with the
inaction point (0,0) (to satisfy A.1). This procedure is not limited
to convex nonparametric models: for instance, a basic Free Dis-
posal Hull model is obtained from the application TF defined as
Tr(A) = {(0.0)} U (A+K) nRT*™,

Taking the direction

- (; zxk,}zyk),

kele] kele]

the DDF is independent of any change in the units of measure-
ments. This property can be related to Proposition 2.9. Actually,
note that two distinct data sets may yield the same technology.
To overcome such a problem, let us introduce the equivalence re-
lation A~A' < T(A) =T(A) and let P =P\ ~ the set of the
corresponding equivalence classes, that is the quotient set. Let W :

T(P) —> P which associates to any T e T(P) some A e P such that

(2.14)

T(A) T for all A e A. By construction, for all ¢ e RN, weNhave
T(coA) =coT(A) and this implies that Y(co T(A)) W(T(co

A))=coh=co \IJ(T(A)). It follows that W(coT)=co ¥ (T).
Now, let us consider the map m*: P — RTH" that associates to
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any equivalence class the arithmetic mean of some arbitrary ele-
ment of this equivalence class. Namely, m*(A) = ﬁ Y qear @ Where

for any A, A* is an arbitrary element of A. We retrieve the ap-
proach proposed by Chambers, Fire and Grosskopf (1996) and
Fdare, Grosskopf and Margaritis (2008) by defining the function
g: T"(P) — R as:

g(T) = m* (W (T)). (2.15)

Since W(cOT) =co V¥ (T) and m*(co W (T)) =co m*(¥(T)), we
deduce that g(c®T) = c® g(T). Notice that in such a case the di-
rection depends on the sample of units. Therefore, the DDF is not
translation invariant, as already mentioned in Aparicio, Pastor, &
Vidal (2016). Suppose that A is a subset of R", one could assume
that the direction is a generalized mean of the observed produc-
tion vectors with for all (i, j) € [m] x [n]
) +
Bj ,

1 .
= Z XkY,'a" e and k] = Z yk,jﬂj
kele] kele]
i,j. For example,

and oy, Bj#0 for all
a;, Bj — —oo, then we have the limit case:

= (\/st \/Yk) and g = (/\st N Yk
kel¢] kele]

kele] kele]

(2.16)

if aivﬂj — oo and

)

where v and A are the sup and inf lattice operator, respec-
tively. Note that these results do no contradict Proposition 2.8.
In Propositions 2.8 and 2.4, the parameters (direction) are as-
sumed to be independent of T. Layer, Johnson, Sickles and Ferrier
(2020) study how the shape of the nonparametric frontier estima-
tion may impact the optimal direction. Along this line, they pro-
pose an analysis showing that setting the median of the variables
as a direction tends to outperform the choice of other directions.
In such a case, we have:

hi = med{x; : k € [¢]} and k; = med{y, ; : k € [¢]},

(2.17)

(2.18)

where med stands for the median. Obviously, the median direction
also respects the commensurability condition of the ADDF.

Our research has focused here only on the Hdlder distance
function, the PDF and DDF, and the ADDF. It may be worthwhile
exploring in future work to which extent other graph-oriented ef-
ficiency measures analysed in Russell & Schworm (2011) and in
Pastor & Aparicio (2010) comply with this generalised commen-
surability definition. Having established that the Hélder distance
function and the DDF only satisfy weak commensurability, it is
time to explore the empirical consequences for productivity mea-
surement. Since the DDF is far more popular in empirical research
than the Hélder distance function, the next section focuses on how
weak commensurability may affect the empirical results of the
very popular LPI.

3. Productivity indices and indicators: implications of
commensurability

Recently, quite a bit of attention has been devoted to so-called
theoretical productivity indices (see Russell, 2018). A theoretical
productivity index is defined on the assumption that the technol-
ogy is known and non-stochastic, but unspecified and thus most
often approximated by a nonparametric specification of technology
using some form of efficiency measure. The foundational concepts
are on the one hand the Malmquist productivity index (Caves,
Christensen and Diewert, 1982) and on the other hand the Hicks-
Moorsteen productivity index (Bjurek, 1996). While the Malmquist
productivity index is fundamentally a measure of the shift of the
production frontier, the Hicks-Moorsteen productivity index is a ra-
tio of an aggregate output index over an aggregate input index.
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Thus, the Malmquist productivity index measures local technical
change (i.e., the local shifts in the production frontier), while the
Hicks-Moorsteen productivity index has a Total factor Productiv-
ity (TFP) interpretation. Kerstens & de Woestyne (2014) empirically
illustrate that the Malmquist productivity index offers a poor ap-
proximation to the Hicks-Moorsteen TFP index in terms of the re-
sulting distributions and that these problems persist under CRS as
well as under variable returns to scale (VRS).

Chambers, Fire and Grosskopf (1996) introduce the LPI as a
difference-based indicator of DDFs (see Chambers, 2002). This gen-
eralizes the Malmquist productivity index that is most often ei-
ther input- or output-oriented. Briec & Kerstens (2004) define a
Luenberger-Hicks-Moorsteen TFP indicator using input- or output-
oriented DDFs. LPIs and Luenberger-Hicks-Moorsteen productivity
indicators are also empirically quite different under CRS as well
as under VRS (see Kerstens, Shen, & de Woestyne, 2018). We now
formally define the output-oriented Malmquist productivity index
and the LPI that we need in our empirical analysis.

3.1. Productivity indices and indicators: definitions

At each time period let us denote T; the production technol-
ogy at the time period t and suppose that T; satisfies axioms
(A.1) — (A.4). Productivity indices and indicators aim to evaluate
productivity changes between discrete time periods and can be de-
composed to analyse the origins in the productivity changes.

The Malmaquist productivity index can be based on the radial
output measure (2.3). In particular, Caves, Christensen and Diew-
ert (1982) suggest using a geometric mean between a period t
Malmquist productivity index M?*(z;, z;11, Tp):

E*(z, T)

MO (z, 2011, T}) = —— 22 3.1
2 0 = Fow 1) G
and a period t+1 Malmquist  productivity  index
MY (z¢, 241, T

Fout(z , T.
M 20,201, To) = e Te1) (32)

Eout(z 1, Tq)’
Similarly, Fire, Grosskopf, Lindgren and Roos (1995) define the
output-oriented Malmquist productivity index as the geometric
mean of (3.1) and (3.2) as follows:
1/2
i| . (33)

E®(ze41, T) B (2e11, Tenn)
Eout(z, Te)  E°"(z¢, Try1)
This productivity index allows to analyze productivity changes be-
tween different periods and it can be multiplicatively decomposed
into efficiency changes (EC) and technological changes (TC):
out
E* (X, ye. Tt) and TC
EoUt(Xey1, Yes1, Te1)
_ E®"(ze11, Tryn) E®" (2, Tey) 1
-\ Bz, Te)  EOM(z, Te) )

where EC represents the variation in efficiency between two pe-
riods and concerns the relative efficiency in the management of
input and output quantities over time, while TC captures techno-
logical changes (i.e., productivity growth not explained by changes
in input and output quantities).

The LPI based on the DDF (2.4) is defined as follows:

1= —
Lt zi1.8 T Tot) = 5[ B @8 1) = D 8. Ti)

MOUt(Zty Zt 41, Tta Tt+1) = [

EC =

(3.4)

— —
+D(z.8T) - D(zm,g,m]. (3.5)

This LPI can be additively decomposed into efficiency changes (EC)
and technological changes (TC):

— —
EG = D(z,8T) — D (z+1.& Tr+1) (3:6)
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and

TG = 5

— —
+D(z,8 Tes1) — D(zt,g,ﬂ)],

1= —
[D (Zt+1?g; Tt+1) -D (Zt+1;g7 Tt)
(3.7)

where the interpretation follows the one provided for the
Malmquist productivity index (3.3).

Paralleling this definition, Boussemart, Briec, Kerstens and Pou-
tineau (2003) define a proportional Luenberger indicator based on
the PDF (2.5) as:

1
[*(z. 2011, ¥) = i[D“(zt, V. Tea1) =D (Zes1. ¥ Ten)

DG,y T)~D @,y T | (38)
The decomposition defined in (3.6) and (3.7) is applicable to this
proportional case as well. Note that recently Pastor, Lovell, & Apari-
cio (2020) manage to transgress the distinction between technol-
ogy and TFP indices outlined above. These authors define a new
graph oriented inefficiency measure based on the PDF under CRS
and use it to define a new Malmquist productivity index that has
a TFP interpretation.

Early discussions by Ray & Desli (1997) and Lovell (2003),
among others, have led to refinements to the basic decomposi-
tion of the output-oriented Malmquist productivity index (3.4) to
account for the role of returns to scale. This has led to lively
discussions about the correct (tautological) decomposition of the
Malmquist productivity index. Early and somewhat dated surveys
on this multiplicative decomposition of the Malmquist productiv-
ity index are found in Lovell (2003) and Zofio (2007). These dis-
cussions somewhat straightforwardly transpose to the LPI that has
an additive structure.

However, Proposition 2.8 is perfectly general and, in particular,
it is independent of any returns to scale assumption. Therefore, all
decompositions of the LPI are potentially affected by the lack of
strong commensurability of the DDF.

Notice that while the LPI does not require a CRS specification of
the technologies, the large majority of empirical applications still
imposes such a restrictive assumption.> Therefore, given space lim-
itations this contributions limits itself to documenting the impact
of the lack of strong commensurability of the LPI to the CRS case
in both the numerical examples in Section 4 and the empirical il-
lustration in Section 5.

3.2. Productivity indices and indicators: homogeneity bias

This subsection analyzes the impact of the commensurability
condition on productivity measurement. We define a suitable no-
tion of homogeneity bias for productivity indices and indicators.
We also establish a relation between such a notion and the com-
mensurability of the efficiency measure upon which a productivity
index or indicator is based.

Definition 3.1. Let ® be a subset of R%. Let ¢ : R xRY x ® x
T xT — RU{—o00,0}. Let T, T;;1 € T. For all, (zt,z,1,0) € T; x
Tty x ® and all A > 0:

B (zt,ze41, .0, ) = &(2t, 2041, 0, Tt Te1)
—p(Azt, 241, 0, Ty, Tesr)

is called the homogeneity bias of ¢ in period t;

3 We provide some qualitative evidence for this claim. A Google Scholar search on
22 January 2022 yields about 979 results for the search term “Luenberger produc-
tivity indicator”. This same search term in conjunction with the search term “con-
stant returns to scale” obtains 422 hits, while this same search term in conjunction
with the search term “variable returns to scale” leads to 383 results.
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Bii1(zt,2e41. 9.0, A) = §(2zt, 2041, 0, Tt Ter)
— Pz, A2141,0, T, Tei1)

is called the homogeneity bias of ¢ in period t + 1.

The homogeneity bias measures the change of a productivity in-
dex or indicator when a firm is proportionally re-scaled at the time
periods t and t + 1. Since productivity is essentially based upon the
ratio between the outputs and the inputs involved in the produc-
tion process, one could expect that a productivity index or indica-
tor should be invariant with respect to such a re-scaling when the
technology satisfies a CRS assumption.

In the case of the LPI based on the DDF (2.4) the homogeneity
bias in t is then defined as:

Be(ze.ze41.L. 8 A) = L(2t,241. & Tt. Tr) — L(AZe, 2041, & T2, Tesr),
(3.9)

and the same homogeneity bias at the time period t + 1 is defined
as:

Bii1(ze, 241, L& A) = L(zt, 2441, 8 Tt Tegq) — L(ze, AZey1. & Tt Tein).

(3.10)

In the case of the proportional LPI based on the PDF (2.5) we
have the homogeneity bias in t:

Bt(zfa Zt+17 L(X? )/)=L‘X(Zr, Zt+1a V7 Tt, Tt+l)_L(x()\Zt7 Zt+l7 )/a Th Tt+1)s

(3.11)
and the homogeneity bias in t + 1:
Bei1(ze, 241, L%, y) = L*(zt, 2e41, V. Tt Tig)
—L%(zt, Azea, ¥, Te, Te). (312)

Finally, the output-oriented Malmquist productivity index is in-
dependent of any parameter. Hence, for all 6 € R?, we have the
homogeneity bias in t:

Bt (z¢, 2141, MeU, 0, A) = MOUt(Zu Zee1, Te, i)

—M°" (Az¢, Ze1 T, Tegn). (3.13)
and the homogeneity bias in t + 1:
Bii1(ze. 2e41. MY, 0, 1) = M*" (21, 2441, Tr. Tri1)
—M*"(z¢, Azeia Te, Tegn). (3.14)

The next result shows that given any efficiency measure satis-
fying the strong commensurability axiom, the corresponding pro-
ductivity index or indicator has a null homogeneity bias.

Proposition 3.2. Let ® be a subset of RY. Let ¢ : RY x RY x ©® x T x
T — RU({—o00, 00}. Let Ty, ;11 € T and assume that T; and T, sat-
isfy a CRS assumption. If ¢ satisfies the strong commensurability con-
dition, then for all (z;,2;.1,0) € Tt x .1 x ® and all A > 0,

B:(zt,zt41, 9,0, A) = Br1(2e, 2041, 9,0, A) = 0.
In the following, let:

Biri1(ze, Zey1, @) = Be (2, Zes1, @) + Beia (2, Zev1, D), (3.15)

denote the sum of the homogeneity bias in time period t and in
time period t+ 1. The next result shows that the homogeneity
bias of the proportional LPI (3.8) and Malmquist productivity index
(3.3) are null, though this is not the case for the LPI (3.5) based on
the DDF for which an explicit form of the bias can be provided.

Corollary 3.3. Suppose that at each time period T; and T;,; sat-
isfy (A.1) — (A.4) and a CRS assumption (A.5). For all (z;,z4,1) €
T x T,,1 we have:

(a) Be(zt, 241, MO, 0, A) = B 1 (zt, 241, MO, 6, )) = O;

(b) Be(zt, 241, L%, ¥, A) = Bey1 (26, 241, L%, 0, B, 1) = 0;
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(c) We have the identities:

1-Ar—= —
Bt(zt. 211,82 = —5—[ D (2.8 T1) + D (2. & T |:

A—1

Bi1(zt.241.8. 1) = 3

—> —>
[D (21,8 Tes1) + D (zi41.8. T ] and

1-X
Bri1(ze,2e41.8.0) = TL(ZU Ze41,8 T, Te).

Under a CRS assumption on technology, the Malmquist produc-
tivity index and the proportional LPI are not affected by a pro-
portional modification of one of the observations. However, this
is not true in the case of the LPI based on the DDF. Remark that
Chambers, Fare and Grosskopf (1996): p. 184) in their seminal ar-
ticle do impose a CRS assumption on technology.

3.3. Translation homothetic bias

In this subsection, it is shown that the things are very different
when one assumes a graph translation homothetic property of the
technology. First, notice that it is difficult to define the commensu-
rability axiom from an additive viewpoint. This is due to the fact
that the key axioms (A.1) — (A.4) are not preserved via a trans-
lation of the technology. However, it is interesting to analyze the
impact of the graph translation homotheticity on the structure of
the LPI (3.5).

We point to the fact that if the technology is graph transla-
tion homothetic, then the LPI with a fixed direction does not suffer
from the shortcomings due to its additive structure. A production
technology T is translation homothetic in the direction of g if for
all ze T and all § € R such that z+ g € RT*", we have z+6geT.
It was shown by Briec & Kerstens (2004) that under an assumption
of graph translation homotheticity:

D(z+6g, 8 T)=D(z,gT).

This means that the DDF is translation invariant.
Paralleling our earlier definition we define the translation ho-
mothetic bias as follows.

(3.16)

Definition 3.4. Let ® be a subset of RY. Let ¢ :RY x R? x @ x
T xT — RU{-o00,00}. Let Ty, T,y € 7. For all, (z,z,1.0) € T; x
T;y1 x ® and all A > 0:
TBi(zt, 241, 9,6, 8) = ¢(2,2041.0, T, Tr1)

—¢ (2 + 08 21,0, T, Te 1)
is called the translation homothetic bias of ¢ in period t;
TBei1(2t, 2041, 9, 0,0) = (2,241, 0, Tt Tey1)

—¢ (2,201 + 68,0, T, Tri1)

is called the translation homothetic bias of ¢ in period t + 1.

In the case of the LPI (3.5) the translation homothetic bias in t
is then defined as:

TBI‘ (Zf’ Z[+l’ Lv gv 8) = L(Zt, Z[‘+] ) gs Tl" Tt‘+])
—L(z + 08 211, 8 Te, Teyn); (317)

and the translation homothetic bias at the time period ¢t +1 is
then:

TBiy1(zt, 2041, L. 8 8) = L(zt, 2041, & Tt Tei)
—L(zt,2r11 +068.& Tt, Te11).- (3.18)

It follows that if the production technology is graph translation
homothetic at both the time periods t and t + 1, then:

TB:(z¢,2¢41,L,8,8) = TBeyq (2,241, L, g, 8) = 0.

This means that the translation homotheticity bias is zero.

(319)
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4. Numerical examples

In the following we compare the output-oriented Malmquist
productivity index and the LPL. To do so we introduce a numerical
example and we show that the LPI can yield inconsistent results
because of the structure of the DDF under a CRS assumption.

4.1. Output-oriented measures

We suppose that the technology is two-dimensional and that
To={®xy) :y<x}and Ty = {(x,y) : y < 2x}, which implies a CRS
assumption at each time period. Moreover, we assume that: zy =
(x0.¥0) = (1,2) and z; = (x1,y1) = (1, 3).

Let us compute the radial output-oriented efficiency measure at
each time period:

(i) E°%(z1, To) =sup{f : (1,63) e To} =sup{f : 63 < 1}.
Clearly, we have 36* =1 and E%(z;, Ty) = 6* = &;
(i) E°%(zp, To) = sup{6 : 62 < 1}, hence E®%(zp, Tp) = 0* = 3;
(iii) E%Ut(z;, Ty) = sup{f : 63 < 2}. Clearly, we have 36* =2 and
EU(zy,Ty) =6* = §;
(iv) E%U%(zp, Ty) = sup{6 : 02 <2}, hence E®(z;, Ty) = 6* = 3.

Inserting these results leads to the following output-oriented
Malmquist productivity index (3.3):
5552
4°4°8°5
This result indicates a productivity gain between t =0 and t =1,
since indeed the Malmquist productivity index is > 1.

Now we suppose that A = 10. It follows that we consider the
production vector at t = 1 defined as:

25>.

2, =10(t1.y1) = (10, 2

Although in the first and the second case the observation do not
use the same level of inputs and outputs, these observations have
the same efficiency scores. Thus, the productivity index should
yield the same result. This is indeed the case for the Malmquist
productivity index, since it is invariant with respect to a propor-
tional change of the second observation.

M*(z9,21.To. Th) = ( ) =1.56. 4.1)

4 5 8 5
E(Z,To) = ng(Zo,To) = Z,E(Zﬁ,Tl) = ng(Zole) =5

Hence, inserting these results we also obtain:

5555
4°4°2°8

Thus, a proportional multiplication of z; by 10 does not affect
the output-oriented Malmquist productivity index. This is normal
because the productivity does not change.

But, for the LPI (3.5) such proportional change in input and
output quantities does affect the indicator, thereby introducing
a bias. Recall that as in the Malmquist productivity index case,
the production vectors are zo = (1,%) and z; = (1,3). Let us
now consider the LPI with the direction of g= (0,1). This is an
output-oriented LPI which allows to be compared with the output-
oriented Malmquist productivity index:

MOUt(zos 1021, Tos T]) = ( >% =1.56.

(i) B(xo,yt,o,l,ﬂ):sup{(S:(1,§+8)eT1} which implies
that 4 +8* =2 and 3(xo,yo,0,1,Tl):8*:§;

-

(ii) 2(x1,y1,0,],T1) =sup{8: (1,5 +8) eT}.
2("1,5/1,0,1,7"1):%:

(iii) D (xo_,>y0, 0,1, Tp) =sup{d : (1, # +8) € T;}. Hence, 2 +5 =1
and D(Xo,y0,0,1,T0)=%:

Hence,
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(iv) D (x1,y1,0,1,Ty) = sup{8 : (1, 5 +8) € To}.
—
D (x1,¥1,0,1,Tp) = —3.

Hence,

Inserting these results leads to the following output-oriented
= 0.45.

LPI:
] -
(4.2)

Since this LPI is larger than zero, this suggests a productivity gain
between periods t =0 and ¢t = 1.

Now in the second case, the observation is again character-
ized by the following conditions: zy = (xg,yg) = (1, %) and z} =
10(x1.y1) = (10, 3).

Again, we compute the output-oriented DDF at each time pe-
riod:

6

LOUt(ZO,Z],O,l,TQ,T1)=%[5 3 1 1

+ts+g

39
10

1

N —

(i) B(xo,yo, 0,1,Ty) =sup{d : (1, % +46) eTy} which implies
that 2 +8=2and § = §;

(ii) D (x4,¥1,0,1,T;) =sup{8 : (10,22 +8) e T, 4} which im-
plies that 2 +8 =20 s0 § = ;

(iii) B(xo,yo, 0.1, Ty) =sup{d : (1, g +38) ey} which implies
that 2 + 8 = 1 and therefore § = 1;

(iv) D (x1,y1,0,1, Ty) = sup{s : (10, L 1+8)eT) Thus, ¥ +6
10 s0 § = 3.

Collecting again these results leads now to the following
output-oriented LPI result:

[

Remark that the output-oriented LPI is now negative (—1.8) while
it was initially positive (0.45). Thus, the LPI initially suggests a pro-
ductivity gain, while it now indicates a productivity loss. However,
this is a contradiction: in both cases the observation should have
the same productivity. Therefore, the LPI is very sensitive to pro-
portional changes in quantities and it does not allow to estimate
changes in efficiency.

1

2

6

5

15

2

1

5

5

L(zo7loz]sgs TOvT1) = 2

j.

4.2. Graph-oriented measures

Fig. 1 illustrates the idea behind the homogeneity bias. When
a production vector is proportionally expanded, then the DDF is
increasing. Hence, the LPI may be significantly modified.

Consider the production vectors zo = (1, 3) and z; = (1. 3).

Let us compute the LPI based on the PDF (3.8) as introduced by
Boussemart, Briec, Kerstens and Poutineau (2003). We consider the
case where o = 1,y and B = 1l,. At each time periods t, s we have

D*(xe.ye. ) = max{8 : (1 = 8)x., (1 +8)ye) € Ty} (4.4)
Under a CRS assumption, we have the relation:

E°U(x;, ye, Ts) — 1
DXty Ty) = ooV 1) (45)

Eout(x;,y;, Ts) +1°

Boussemart, Briec, Kerstens and Poutineau (2003) define the LPI
based on the PDF as follows:

L%, Y. Xe11, Yer1, It Te + 1)

1
5[0y T = Dy )

+D%(X¢, yt, T1) — D™ (Xe11, Yess Tt+1):|~
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Y

Ty

102

To

21

‘20

50/4

Fig. 1. Homogeneity Bias.

Since the PDF is homogenous of degree 0, we obviously have
for all A > 0:

L*(Xe, Yo Xe1: Yerts Tt Tevr) = L (Xe, Yoo AXeg1s AYers Te, Ter).
(4.7)

Moreover, from Boussemart, Briec, Kerstens and Poutineau (2003),
we also have under a CRS assumption, the second order approxi-
mation:

L*(Xe, Yo Xe1: Yer1 Tt Tegr)

1
~ 5 In (MO (e, ye X Yoot T Teen)). (4.8)

Assuming that zo = (1,2), z; = (1, 3), one can compute the
PDFs at each time period as follows:

(1) DO((Xo,yo,T1) = max{(S (1 -4, % + %8) € T]}
should have ¢ + 26 =2(1-6) and § = 3;

(i) D*(x1,y1. ) =max{8§ : (1-8,3+38) e Ty} so 3+38=
2(1-8) and § = &;

Hence, we

(iii) D*(X0,Y0.To) = max{8: (1 -8, & + 28) € To}. Thus, 2+ 26
=1-8and §=1;

(iv) D*(x1.y1.To) = max{8 : (1 -3, 3 +8) € Ty}. Hence, we de-
duce § = -1

9

Inserting these results yields the following proportional LPI:
5 31 1

m 1B77%%

Suppose now that z; = (10, £), since the PDF is homogeneous
of degree 0, we have:

L*(zo,21, Ty, Ty) = L% (29, 10z;) = 0.238.

(20,21, To, Ty) = %[ ] —0.238. (4.9)

(4.10)
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Therefore, the productivity change is the same. The results are par-
allel to those obtained using the output-oriented Malmquist pro-
ductivity index.

Let us now compute the LPI based on the DDF (3.5) as follows:

(i) D (x0.y0.1,1.T;) = sup{8 : (1 -, 3 +8)eT}. Thus so 3 +
§=2(1-6)and § = 3;

(ii) D (x1,y1,1,1,Ty) = sup{s : (1 -6, 2+8) e} thus§=3;

(iii) B (X0, Y0, 1,1, Ty) =sup{ : (1-8,3+8) e Ty} so 2+68=

1-8andé=14;

(iv) D (x1,y1,1,1,Ty) = sup{8 : (1 -8, 3+68) eT), thus § = —1.

53

12 12

1

8

1

8

1

2

5

Inserting these results into the LPI yields:
=0.21.
)

] ( (4.11)

Thus, this LPI being larger than > 0 suggests a productivity gain
between periods t =0 and t = 1.

Now in the second case the production vectors become zy =
(x0,¥0) = (1, 3) and 7} = 10(x;,y1) = (10, ).

The DDFs in each time period are now:

1
L(ZOle»g, TOs Tl) = il:

=g
(i) _D)(XO»YOshyk»Tl)Z%;
(i) D (x1,y1.h.k.T;) =sup{8: (10-8,2 +8) e T'}
L +5=2(10-6)and § = ¥2;
(iii) D (xo.y0.h. k. Tp) = ;
(iv) D (x1,y1,h k, Ty) = sup{8 : (10— 8,2 +68) e T} s0 § = —3.

Ne¢j

Collecting these results leads to the following LPI:
) — 0.35.

5 15 1 5]:1< 17
(4.12)

12 6 872722
Since the indicator is now negative, it suggests a productivity loss
between periods t =0 and t = 1.

Again, one can remark contradictory results between these two
cases. The LPI based on the DDF fails to measure productivity
changes properly. This is due to the homogeneity degree of the
DDF.

These numerical results are summarized in Table 1.

1
L(zo. 1021.8.To. Ti)=5 |

5. Empirical illustration

As an empirical illustration, we propose to focus on the school-
ing productivity of European countries using the PISA-OECD and
Eurostat data. Indeed, PISA (Programme for International Student
Assessment) is an OECD program that aims to evaluate the perfor-
mances of educational systems of OECD member countries. Since
2000 and every three years, surveys are conducted to evaluate 15-
year-olds’ ability to use their reading, mathematics, and science
knowledge in 36 OECD member countries and partner countries.
In parallel, Eurostat collects and harmonizes published data from
national statistics institutes of European Union countries for vari-
ous themes like education.

To analyze schooling productivity, we consider as outputs the
PISA reading scores, mathematics scores, and science scores in
2018 and 2009 of 15-year-olds’ pupils to measure schooling pro-
ductivity over almost one decade. Following Agasisti, Munda, &
Hippe (2019), as inputs we select three types of resources: stu-
dent/teacher ratio, government expenditure per student, and total
public expenditure on education as percent of GDP. Furthermore,
we distinguish those inputs for primary and secondary education
levels and consider those resources during the schooling of pupils,
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Table 1
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Malmquist index and luenberger indicator: numerical examples.

Case 1 Productivity ~ Case 2 Productivity
Output case  z = (1, %) z=(1.%)
Ze1 = (1, %) Ze41 = (10, %)
Malmquist M°=1.56>1 + M°=156>1 +
Luenberger L=045>0 + L=-18<0 -
Graph case z=(13) z=(1.3)
Ze = (1, %) ze41 = (10, %)
Proportional [*=0.238>0 + [*=0238>0 +
Luenberger L=021>0 —+ L=-035<0 -
Table 2
Description of inputs and outputs.
Variable Label Time Period 0 Time Period 1
Output 1 Reading scores 2009 2018
Output 2 Mathematic scores 2009 2018
Output 3 Science scores 2009 2018
Input 1 student/teacher ratio (inverse) for primary education 2003 (except: Estonia 2001) 2012 (except: Greece 2013)
Input 2 student/teacher ratio (inverse) for secondary education 2007 2016 (except: Norway 2017)
Input 3 Government expenditure per student (based on FTE) for primary education 2003 (except: Estonia 2005; 2012 (except: Belgium 2011;
(PPS) Greece 2005; Hungary 2004) Norway 2011)
Input 4 Government expenditure per student (based on FTE) for secondary education 2007 (except: Hungary 2006) 2016
(PPS)
Input 5 Total public expenditure on primary, lower and upper secondary education 2003 2012 (except: Slovakia 2011)
as % of GDP for primary education
Input 6 Total public expenditure on primary, lower and upper secondary education 2007 (except: Greece 2005) 2016

as % of GDP for secondary education

Table 3

Productivity scores and ranking.
Country Malmquist Rank LPIPDF Rank LPIDDF Rank LPI Mean Rank
Italy 1,117 1 0,055 1 1,114 1 0,059 1
Sweden 1,111 2 0,052 2 0,492 3 0,055 2
Estonia 1,081 3 0,039 3 0,675 2 0,037 3
Austria 1,039 4 0,019 4 -0,278 8 0,027 4
Portugal 1,001 5 0,000 5 -0,419 11 -0,006 6
Netherlands 0,998 6 -0,001 6 -0,045 4 -0,003 5
UK 0,977 7 -0,012 7 -0,127 5 -0,011 7
France 0,959 8 -0,021 9 -0,213 7 -0,018 8
Norway 0,959 9 -0,020 8 -0,721 15 -0,024 10
Hungary 0,934 10 -0,034 10 -0,378 9 -0,020 9
Germany 0,932 11 -0,035 11 -0,399 10 -0,032 11
Greece 0,923 12 -0,040 12 -0,503 12 -0,033 12
Belgium 0,914 13 -0,043 13 -0,696 14 -0,053 14
Czechia 0,889 14 -0,058 14 -0,174 6 -0,034 13
Slovenia 0,875 15 -0,067 15 -1,270 20 -0,054 15
Latvia 0,845 16 -0,084 16 -0,836 17 -0,066 17
Poland 0,828 17 -0,093 17 -0,528 13 -0,062 16
Slovakia 0,786 18 -0,119 18 -0,958 18 -0,080 18
Finland 0,781 19 -0,123 19 -1,551 21 -0,130 21
Lithuania 0,715 20 -0,162 20 -0,754 16 -0,093 19
Bulgaria 0,686 21 -0,181 21 -1,053 19 -0,099 20
Average 0,921 -0,044 -0,411 -0,031

i.e,, for primary education in 2003 and 2012 so theoretically when
pupils are 9-year-olds’ and for secondary education in 2007 and
2016 so theoretically when pupils are 13-years-olds’. The reader
can consult Table 2 for more details on these data. A sample of
21 European Union countries is collected. The original data can be
found in Table B.1 in Appendix B.

We compute on these data four productivity indices and indica-
tors: (i) the output-oriented Malmquist index (3.3), (ii) the input-
oriented LPI based on the PDF (3.8), (iii) the input-oriented LPI
based on DDF (3.5) with input direction: (0.01, 0.01, 1000, 1000,
0.1, 0.1), and (iv) the input-oriented LPI based on DDF (3.5) with
as input direction the means in the sample (0.073, 0.096, 4609.34,
6211.84, 1.254, 2.039). The results and the rankings obtained for
each index and indicator are presented in Table 3. In the top
row, these four productivity indices and indicators are labeled
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“Malmquist”, “LPI PDF”, “LPI DDF” and “LPI Mean”, respectively. The
mathematical programming problems for these indices and indica-
tors are found in Appendix C.

Note that in this empirical illustration we opt for input-oriented
LPIs rather than graph-oriented ones. This methodological choice
avoids any complications due to infeasibilities (see Briec & Ker-
stens, 2009a) and due to the need for positivity constraints on the
projection of the outputs (see Briec & Kerstens, 2009b).

Our results show similar sign interpretation and ranking for the
Malmquist productivity index and for the proportional LPI. But, for
the LPI based on the DDF, the results are different. Indeed, the
ranking is seriously modified. Some countries are better ranked
with the directional LPI (Czechia (+8); Lithuania (+4), Poland (+4)),
while some other countries are worse ranked (Norway (-7), Portu-
gal (-6), Austria (-4), Slovenia (-4)). We also notice that the sign
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interpretation of the productivity indices and indicators is even in-
verted for Austria. Indeed, the Malmquist index and the propor-
tional LPI highlight that Austria has increased its schooling pro-
ductivity between 2009 and 2018 by 3.8 %, whereas the directional
LPI reveals a productivity decrease for this same period of time.
The countries are of different size and the choice of a preassigned
direction that is independent from the observed data has a strong
impact on the results. This also explains the difference between
the efficiency scores and the evaluation of productivity and it con-
firms that strong commensurability is intimately linked to the ro-
bustness of the results.

Finally, using inputs means as direction for the directional LPI
somewhat limits this issue. This confirms the idea that the choice
of a direction as the mean of the observed data also yields relevant
results. Therefore, the strong commensurability, inherited from the
diagonal homogeneity of the direction, has a significant impact on
the evaluation of productivity changes as shown in Proposition 2.4.
The results indeed become closer to the Malmquist productivity
index and the proportional LPI. This confirms that the choice of
the direction as an arithmetic means of the observed production
vectors yields more relevant results.

While Layer, Johnson, Sickles and Ferrier (2020) investigate the
impact of measurement error on a stochastic DDF estimated us-
ing convex nonparametric least squares in a Monte Carlo simula-
tion framework, their key findings are similar. First, directions close
to the average orthogonal direction to the true function perform
best. Second, with noisy data selecting a direction that matches the
noise direction of the data generating process improves estimator
performance.

6. Conclusion

We have refined the notion of commensurability and have
shown that it plays a crucial role in the measurement of efficiency
and productivity. An efficiency measure or distance function that is
not strongly commensurable is not homogeneous of degree 0 un-
der a CRS assumption. Therefore, it may yield wrong evaluations
when empirically measuring efficiency and productivity.

This contribution has verified in detail some numerical exam-
ples and an empirical illustration in which it is shown that the LPI
based upon the DDF may not be a relevant productivity indicator
under any returns to scale assumption. The simplest alternative to
avoid these problems is to employ the LPI based upon the PDF.

An avenue for future work is to explore in more detail to
which extent other graph-oriented efficiency measures analysed in
Russell & Schworm (2011) and in Pastor & Aparicio (2010) com-
ply with this generalised commensurability definition and satisfy
the property of strong commensurability. In addition to the Hélder
distance function and the DDF, it may well be that other graph-
oriented efficiency measures only satisfy weak commensurability
and therefore may provide dubious productivity measures. An-
other open issue worthwhile exploring is to check to which ex-
tent overall efficiency concepts (e.g., based on the cost, revenue, or
profit function) as well as the allocative efficiency notions comply
with the commensurability conditions.* Furthermore, it could be
useful to also empirically investigate how the Luenberger-Hicks-
Moorsteen indicator is affected in a similar way like the LPI in
terms of the choice of directions for the input- and output oriented
DDF composing it. Finally, our numerical examples and empirical
illustration could be complemented by some Monte Carlo analysis
(similar to Layer et al. (2020)).

4 In the case of cost efficiency Aparicio, Pastor, & Zofio (2017) show that the DDF
does not correctly encompasses the allocative efficiency component of the Shep-
hardian approach.
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