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The purpose of this contribution is to empirically implement and supplement the proposals made by 

Podinovski (2004b) to explore the nature of both global and local returns to scale in nonconvex nonpara- 

metric technologies. In particular, we both propose a simplified method to compute the global returns 

to scale and employ some secondary data sets to investigate the frequency of the special case of global 

sub-constant returns to scale. Furthermore, when determining global returns to scale using both convex 

and nonconvex technologies, we verify how often the resulting information is concordant or conflicting. 

Finally, besides comparing the FDH and DEA evolution of ray-average productivity for some typical indi- 

vidual observations, we introduce in the literature two original methods for the determination of local 

returns to scale in nonconvex technologies. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Thanks to the seminal article of Charnes, Cooper, and Rhodes

(1978) , the nonparametric approach to production theory has be-

come one of the success stories in the operations research (OR) lit-

erature in terms of both methodological developments and empir-

ical applications. While one of the early bibliographical overview

article listed about 800 published articles and dissertations re-

lated to Data Envelopment Analysis (DEA) over the years 1978–

1996 (see Seiford, 1997 ), one of the more recent bibliography ar-

ticles of Emrouznejad, Parker, and Tavares (2008) counted already

40 0 0 research articles in journals or book chapters up to the year

2007. 1 

While the axiom of convexity is traditionally maintained in

these nonparametric production models (see Afriat, 1972 ; Banker,

Charnes, & Cooper, 1984 ; Charnes et al., 1978 ; Diewert & Parkan,

1983 or any of the early contributions in both economics and

OR), Afriat (1972) was probably the first to mention a basic sin-
� We acknowledge comments made by participants in the North American Pro- 

ductivity Workshop VIII (Ottawa) and in the 10th Asia-Pacific Productivity Con- 

ference (Brisbane). The constructive comments of three referees are gratefully ac- 

knowledged. 
∗ Corresponding author. 

E-mail address: k.kerstens@ieseg.fr (K. Kerstens). 
1 Including unpublished dissertations, working papers, and conference papers 

would have led to over 70 0 0 entries. 
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0377-2217/© 2016 Elsevier B.V. All rights reserved. 
le output nonconvex technology imposing the assumptions of

ree disposal of inputs and outputs. Its multiple output extension

as probably first been proposed in Deprins, Simar, and Tulkens

1984) and these authors introduced the moniker Free Disposal

ull (FDH). 2 

Convexity is justified for time divisible technologies (see

ackman, 2008 ), but becomes questionable when time indivisibil-

ties compound all other reasons for spatial nonconvexities (e.g.,

ndivisibilities, increasing returns to scale, economies of specializa-

ion, externalities, etc.). Shephard (1967 , p. 215) puts things clearly

hen discussing the axiom of quasi-concavity of the production

unction in relation to convexity of the input level sets when for-

ally defining the notion of a production function: 

The last one is effectively the only assumption which would ap-

pear to be restrictive, but even so it is essential if the produc-

tion function is to represent the maximum output obtainable

for time divisible processes. If the processes are not time divis-

ible, the input [(1 − θ ) x + θy ] is not evidently feasible. .... We

exclude considerations of such technologies. 

In addition to this general criticism, there are other more

pecific criticisms of convexity around in the literature. For in-

tance, Emrouznejad and Amin (2009) indicate that the traditional
2 Tone and Sahoo (2003 , p. 172) mention Scarf ( 1981a, 1981b ) as an impor- 

ant but neglected predecessor of FDH, because he studied activity analysis models 

ased on integer data. 

http://dx.doi.org/10.1016/j.ejor.2016.10.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.10.030&domain=pdf
mailto:k.kerstens@ieseg.fr
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4 As shown in Appendix A , the equivalence holds for standard (i.e., one-stage) 
onvexity axiom is problematic when some of the inputs and/or

ome of the outputs are ratio variables. 

This basic FDH model has been extended in at least two di-

ections. First, Kerstens and Vanden Eeckaut (1999) introduced

onstant, nonincreasing and nondecreasing returns to scale tech-

ologies complementary to the assumption of flexible or variable

eturns to scale embodied in the basic FDH model. Furthermore,

hese same authors proposed a new goodness-of-fit method to in-

er the characterization of global returns to scale for nonconvex

echnologies, since none of the existing methods (see, e.g., Seiford

 Zhu, 1999 for an early overview and Banker, Cooper, Seiford,

hrall, & Zhu, 2004 for a more recent version) was suitable in this

onconvex setting. Second, this family of nonconvex technologies

as been supplemented by nonconvex cost functions with corre-

ponding returns to scale assumptions in Briec, Kerstens, and Van-

en Eeckaut (2004) . 3 

While these nonconvex technology and cost models are

owhere as popular as the convex DEA counterparts, the basic

DH model and its extensions have been regularly applied to as-

ess performance-related research questions in a variety of sectors.

e offer a limited selection of examples to provide some flavor of

hese results. Alam and Sickles (1998) study the evolution of tech-

ical efficiency in the US airline industry and analyze the news

alue of changes in frontier performance in relation to the stock

arket prices. Destefanis (2003) analyzes the macroeconomic re-

ationship between the growth of output and the growth of pro-

uctivity (known as Verdoorn’s law) using nonconvex FDH mod-

ls. Tone and Sahoo (2003) argue and illustrate that the noncon-

ex FDH model applied to a multi-stage production technology is

apable to capture scale effects arising from process indivisibili-

ies, whereas standard convex nonparametric technologies fail to

xhibit such scale effects. Cummins and Zi (1998) contrast con-

ex and nonconvex estimates of both technical and cost efficiency

or US life insurers, while Balaguer-Coll, Prior, and Tortosa-Ausina

2007) document cost efficiency differences among Spanish munic-

palities. 

An important point to note is that the results of these non-

onvex technology and cost frontiers often yield different results

ompared to the convex ones. While it is true that nonconvex

echnology frontiers lead to higher efficiency levels and more ef-

cient observations, the studies of Balaguer-Coll et al. (2007) and

ummins and Zi (1998) document convincingly that convex cost

rontier estimates may be substantially below the nonconvex ones

nder variable returns to scale. 

Podinovski ( 20 04a, 20 04b ) is the first to indicate that the

oodness-of-fit method of Kerstens and Vanden Eeckaut (1999) to

haracterize global returns to scale for nonconvex technologies

which just like Färe, Grosskopf, and Lovell (1983) uses only

cale efficiency measures – is incomplete. In particular, he argues

hat one must distinguish a fourth type of global sub-constant

eturns to scale case in addition to the three traditional cases

constant, decreasing and increasing returns to scale). This global

ub-constant returns to scale case allows a unit to achieve its most

roductive scale size (see Banker et al., 1984 ) by both reducing and

ncreasing its scale of operations. This fourth type of global sub-

onstant returns to scale can never occur in traditional convex DEA

echnologies. 

Independent of this contribution, there have been three arti-

les that basically simplify the computations needed to imple-

ent the goodness-of-fit method of Kerstens and Vanden Eeck-

ut (1999) to characterize returns to scale: Soleimani-damaneh, Ja-

anshahloo, and Reshadi (2006) , Soleimani-damaneh and Reshadi
3 Ray (2004) shows that the nonconvex cost function based on flexible returns to 

cale FDH is the multiple output version of the cost function implicit in the Weak 

xiom of Cost Minimization of Varian (1984) . 

c

s

I

S

2007) , and Soleimani-damaneh and Mostafaee (2009) . In fact,

oleimani-damaneh and Mostafaee (2009) furthermore offer some

tability intervals to preserve the returns to scale classification via

 polynomial time algorithm based on combining certain ratios of

nputs and outputs. However, the classification procedure for global

eturns to scale proposed by these authors does not allow for the

ub-constant returns to scale case. Therefore, we discuss how to

mend their procedures for this purpose. 

As far as the role of local returns to scale is concerned, Banker

1984) and especially Banker and Thrall (1992) show that in a con-

ex technology global and local characterizations – based on scale

fficiency and scale elasticity measures, respectively – coincide. 4 

he innovation of Podinovski ( 20 04a, 20 04b ) is that he points out

hat this equivalence between global and local indicators breaks

own for nonconvex technologies, due to the non-monotonic be-

avior of the ray average productivity (RAP) of a unit when ex-

anding or contracting towards a point of most productive scale

ize. 5 However, he only provides an illustration of the RAP func-

ion in a single input and output fictitious FDH technology (see

odinovski, 2004a , p. 234), while our aim is to depict this behavior

nd its consequences in an empirical multiple inputs and outputs

etting. Moreover, we try to fill a gap in the literature due to the

ack of explicit methods for ascertaining local returns to scale in

onconvex technologies, with the aim of complementing the work

f Podinovski ( 20 04a, 20 04b ) even from a theoretical point of view.

This contribution intends to achieve several goals. First, we

ant to empirically determine the prevalence of the global sub-

onstant returns to scale case. Second, we want to establish some

pecific links between the Podinovski ( 20 04a, 20 04b ) articles on

he one hand, and the contributions made by Soleimani-damaneh

t al. (2006) and Soleimani-damaneh and Reshadi (2007) on the

ther hand. Third, we want to explore the similarities and differ-

nces between global returns to scale characterizations under the

ypothesis of convexity or nonconvexity. Fourth, we shed some

ight on the changes in returns to scale in an empirical multiple

nputs and outputs nonconvex technology by depicting the evo-

ution of ray-average productivities for a selection of particular

bservations, and by comparing this evolution to its convex coun-

erpart. Finally, we propose two methods for the classification of

ocal returns to scale in nonconvex technologies and discuss their

asic properties and relationship to the traditional criterion based

n scale elasticity. To the best of our knowledge, this is the first

ontribution shedding some light on these issues. 

For these purposes, this paper is structured as follows.

ection 2 provides some basic definitions of the traditional

onvex and the less widely applied nonconvex technologies.

ection 3 summarizes the known results to characterize returns

o scale at the global level and introduces two criteria for the de-

ermination of their local counterpart in FDH and in a nonconvex

mooth technology. Then follows a Section 4 with some empirical

llustrations based on secondary data sets. Section 5 concludes and

utlines future research issues. 

. Nonparametric technologies: a unified representation 

Consider a set of K observations A = { ( x 1 , y 1 ) , . . . , ( x K , y K ) } ∈
 

m + n 
+ . A production technology describes all available possibilities

o transform input vectors x = (x 1 , . . . , x m 

) ∈ R 

m + into output

ectors y = (y 1 , . . . , y n ) ∈ R 

n + . The production possibility set or
onvex production technologies. It may not hold for more complex technologies, 

uch as the two-stage examples discussed in Sahoo, Zhu, Tone, and Klemen (2014) . 

n this article, we restrict attention to standard, one-stage production technologies. 
5 RAP indicates average productivity in a multiple inputs and output technology. 

ee also Ray (2004 , pp. 63–64) for this RAP notion. 
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technology S summarizes the set of all feasible input and out-

put vectors: S = { (x, y ) ∈ R 

m + n 
+ : x can produce y } . Given our focus

on input-oriented efficiency measurement later on, this technol-

ogy can be represented by the input correspondence L : R 

n + → 2 R 
m + 

where L ( y ) is the set of all input vectors that yield at least the out-

put vector y : 

L (y ) = { x : (x, y ) ∈ S } . (1)

The radial input efficiency measure can be defined as: 

E i ( x, y ) = min { λ : λ ≥ 0 , λx ∈ L (y ) } . (2)

This Farrell efficiency measure, which is the inverse of the input

distance function, indicates the minimum contraction of an input

vector by a scalar λ while still remaining in the input correspon-

dence. Obviously, the resulting input combination is located at the

boundary of this input correspondence. For our purpose, the radial

input efficiency has two key properties (see, e.g., Hackman, 2008 ).

First, it is smaller or equal to unity (0 < E i ( x , y ) ≤ 1), whereby ef-

ficient production on the isoquant of L ( y ) is represented by unity

and 1 − E i ( x, y ) indicates the amount of inefficiency. Second, it has

a cost interpretation. 

Nonparametric specifications of technology can be estimated by

enveloping these K observations in the set A while maintaining

some basic production axioms (see Hackman, 2008 or Ray, 2004 ).

We are interested in defining minimum extrapolation technologies

satisfying strong disposability in the inputs and outputs, all four

traditional returns to scale hypotheses (i.e., constant, nonincreas-

ing, nondecreasing and variable (flexible) returns to scale), includ-

ing those technologies that satisfy the assumption of convexity and

those that do not 

A unified algebraic representation of convex and nonconvex

technologies under different returns to scale assumptions for a

sample of K observations is found in Briec et al. (2004) : 

S �, � = 

{ 

(x, y ) ∈ R 

m + n 
+ : x ≥

K ∑ 

k =1 

x k α z k , y ≤
K ∑ 

k =1 

y k α z k , 

K ∑ 

k =1 

z k = 1 , z k ∈ �, α ∈ �

} 

, (3)

where 

( i ) � ≡ �CRS = { α : α ≥ 0 } ;
( ii ) � ≡ �NDRS = { α : α ≥ 1 } ;
( iii ) � ≡ �NIRS = { α : 0 ≤ α ≤ 1 } ;
( iv ) � ≡ �VRS = { α : α = 1 } ; and 

( i ) � ≡ �C = { z k ≥ 0 } , and ( ii ) � ≡ �NC = { z k ∈ { 0 , 1 } } . 
First, there is the activity vector ( z ) operating subject to a convex-

ity (C) or nonconvexity (NC) constraint. Second, there is a scaling

parameter ( α) allowing for a particular scaling of all K observations

spanning the technology. This scaling parameter is smaller than or

equal to 1 or larger than or equal to 1 under nonincreasing returns

to scale (NIRS) and nondecreasing returns to scale (NDRS) respec-

tively, fixed at unity under variable returns to scale (VRS), and free

under constant returns to scale (CRS). 

Briefly discussing the computational methods for obtaining the

radial input efficiency measure (2) for each evaluated observation

relative to all technologies in (3) , the convex case just requires

solving a nonlinear programing problem (NLP): this is evidently

simplified to the familiar linear programing (LP) problem found

in the literature (see Hackman, 2008 or Ray, 2004 ) by substitut-

ing w k = δz k . For nonconvex technologies, nonlinear mixed inte-

ger programs must be solved in (3) : however, Podinovski (2004c) ,

Leleu (2006) and Briec et al. (2004) propose mixed integer pro-

grams, LP problems, and closed form solutions derived from an
mplicit enumeration strategy, respectively. Kerstens and Van de

oestyne (2014) review all methods in this nonconvex case in

ore detail and empirically document that implicit enumeration

s by far the fastest solution strategy. 

. Characterizing returns to scale 

.1. Global returns to scale 

For a given input mix and given output mix a Most Productive

cale Size (MPSS) point refers to a scale size where the level of

utputs produced ‘per unit’ of the inputs is maximized. Following

anker (1984) , Banker et al. (1984 , p. 37) and Banker and Thrall

1992 , Definition 1), the MPSS notion can be defined as follows. 

efinition 3.1. A production possibility ( x M 

, y M 

) ∈ S �, VRS repre-

ents an MPSS point if and only if for all production possibilities

 δx M 

, γ y M 

) ∈ S �, VRS we have γ / δ ≤ 1. 

This notion of MPSS is key in determining returns to scale for

eneral technologies, since it does not require any differentiability

ssumption (in contrast to the scale elasticity notion). Note that

odinovski (2004a , Definition 2) defines MPSS as the inverse of the

bove ratio. 

As a direct consequence of this definition, ( x M 

, y M 

) ∈ S �, VRS 

epresents an MPSS point if and only if r ∗ = 1 with 

 

∗ = max 

(
γ

δ
: (δx M 

, γ y M 

) ∈ S �,V RS , δ, γ > 0 

)
. (4)

his implies that at the optimum, r ∗ = 1 ⇔ γ ∗ = δ∗, which reflects

he familiar condition for proportional changes in inputs to equal

roportional changes in outputs at the optimum. 

Banker (1984) shows that in a convex technology each scale-

fficient point (i.e., CRS efficient) is an MPSS and also the reverse

see Banker, 1984 , Proposition 2), while each scale-inefficient point

ocally exhibits either decreasing or increasing returns to scale ac-

ording to the sign of the divergence between their actual scale

ize and their MPSS (see Banker, 1984 , Corollary 1). Thus, a clas-

ification method can exclusively rely on the “global” comparison

etween a unit and its MPSS (i.e., its scale efficiency), without de-

ending explicitly on the quantitative information supplied by the

local” scale elasticity measure. 

In the literature, several methods are available to obtain qual-

tative information regarding global returns to scale (see Seiford

 Zhu, 1999 ). Since none of these existing methods are suitable

or nonconvex technologies, Kerstens and Vanden Eeckaut (1999 ,

roposition 2) generalize the existing goodness-of-fit method pro-

osed by Färe et al. (1983) in a convex setting such that it becomes

erfectly general. Obviously, this qualitative information holds for

fficient points only: these are either efficient observations, or pro-

ection points in case of initially inefficient observations. 

roposition 3.1. Using E i ( x , y |.) and conditional on an efficient point,

echnology S �, VRS is characterized by: 

(a) GCRS ⇔ E i (x, y | CRS) = max { E i (x, y | CRS) , E i (x, y | NIRS) , E i (x, y |
NDRS) } . 

(b) GIRS ⇔ E i ( x , y | NDRS ) > max { E i ( x , y | CRS ), E i ( x , y | NIRS )} . 

(c) GDRS ⇔ E i ( x , y | NIRS ) > max { E i ( x , y | CRS ), E i ( x , y | NDRS )} . 

here GCRS, GIRS and GDRS stand for globally constant, increasing

nd decreasing returns to scale, respectively. 

As noted by Podinovski (2004b , p. 173), following Briec, Ker-

tens, Leleu, and Vanden Eeckaut (20 0 0 , Proposition 5) one can

implify the above result for general (i.e., convex and nonconvex)

echnologies. 
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roposition 3.2. Using E i ( x , y |.) and conditional on an efficient point,

echnology S �, VRS is characterized by: 

(a) GCRS ⇔ E i (x, y | NIRS) = E i (x, y | NDRS) . 

(b) GIRS ⇔ E i ( x , y | NDRS ) > E i ( x , y | NIRS ) . 

(c) GDRS ⇔ E i ( x , y | NIRS ) > E i ( x , y | NDRS ) . 6 

This result is qualified by Podinovski (2004a , Theorem 3) and

odinovski (2004b , Theorem 2) in that he adds a fourth case of

lobal sub-constant returns to scale case that is only relevant for

onconvex technologies. 

roposition 3.3. Using E i ( x , y |.) and conditional on an efficient point,

echnology S �, VRS is characterized by: 

(a) GCRS ⇔ E i (x, y | NIRS) = E i (x, y | NDRS) = E i (x, y | V RS) . 

(b) GIRS ⇔ E i ( x , y | NIRS ) < E i ( x , y | NDRS ) ≤ E i ( x , y | VRS ) . 

(c) GDRS ⇔ E i ( x , y | NDRS ) < E i ( x , y | NIRS ) ≤ E i ( x , y | VRS ) . 

(d) GSCRS ⇔ E i (x, y | NIRS) = E i (x, y | NDRS) < E i (x, y | V RS) . 

here GSCRS stands for the global sub-constant returns to scale

ase. 

As stressed in Podinovski ( 20 04a, 20 04b ), this case of global

ub-constant returns to scale cannot occur in convex technologies.

nstead of solving for these three efficiency measures using any of

he solution methods listed above, we follow a specific theorem in

oleimani-damaneh et al. (2006 , p. 1057) that proposes a simple

numeration algorithm valid for nonconvex technologies solely to

uarantee a maximal computational advantage. 

roposition 3.4. For a given FDH-efficient observation ( x o , y o ),

.e. E i (x o , y o | V RS) = 1 , let λ jo = max { y ro 
y r j 

: 1 ≤ r ≤ n, y ro + y r j > 0 }
nd θ jo = max { x i j λ

jo 

x io 
: 1 ≤ i ≤ m, x io + x i j > 0 } for j = 1 , . . . , K. Let

 

NC 
i 

(x o , y o | CRS) = min { θ jo : j = 1 , . . . K} . Now denote the set A o =
 k ∈ { 1 , . . . , K} : θ ko = E NC 

i 
(x o , y o | CRS) } . Assuming that ( x o , y o ) is an

DH-efficient point, then the following conditions identify the situa-

ion of RTS at this point: 

(a) There exists k ∈ A o such that λko = 1 ⇒ GCRS. 

(b) λko < 1 for each k ∈ A o ⇒ GIRS. 

(c) λko > 1 for each k ∈ A o ⇒ GDRS. 

(d) λko 
 = 1 for each k ∈ A o and furthermore, there exist k , k ′ ∈ A o 

such that λko < 1 and λk ′ o > 1 ⇒ GSCRS. 

Proof: For cases (a)–(c) see Soleimani-damaneh et al. (2006 , p.

058). The intuition for (d) can be given as follows. Expression (10)

n Cesaroni and Giovannola (2015 , p. 124) shows that θ ko is deter-

ined by the global maximum of the RAP of the FDH-efficient ob-

ervation ( x o , y o ). Then, it can be understood that case (d) above

ccurs when RAP is maximized at both the left ( λko < 1) and the

ight ( λko > 1), but not at the efficient point itself. �
Since Soleimani-damaneh et al. (2006) have not considered the

ossibility of global sub-constant returns to scale, which corre-

ponds to their case ( d ) , we have extended this proposition and

abeled the outcome with GSCRS , because of the presence of scale

nefficiency in the DMU under evaluation (inefficiency which the

uthors fail to consider). Exactly the same improvement applies to

oleimani-damaneh and Reshadi (2007 , Theorem 1) and Soleimani-

amaneh and Mostafaee (2009 , Theorem 1). 

To the best of our knowledge, no article ever reported any em-

irical evidence on the incidence of the global sub-constant returns

o scale in relation to the other cases. 
6 This proposition qualifies Briec et al. (20 0 0 , Proposition 4): as an implication of 

heir Proposition 5, since a CRS technology is always the union of NIRS and NDRS 

ulls, the goodness-of-fit test in their Proposition 2 always simplifies (not just for 

onvex technologies). 

l  

p  

i  

t  

s  
.2. Local returns to scale 

The exact relation between scale efficiency, which involves the

lobal maximization of RAP, and scale elasticity, which is based on

he maximization of RAP in a small neighborhood, has first been

laborated in convex nonparametric production frontiers in the

eminal analysis of Banker and Thrall (1992) . These authors prove

xplicitly the equivalence between the local method based on the

alues of scale elasticity and the global method relying on the sign

f the difference between actual and most productive scale sizes

see Banker and Thrall, 1992 , Propositions 3 and 4, resp.). Other

ontributions on this topic are, among others, those of Førsund

nd Hjalmarsson (2004) and Førsund, Hjalmarsson, Krivonozhko,

nd Utkin (2007) . The potential empirical differences between both

hese concepts have been illustrated in, for instance, Evanoff and

srailevich (1995) . 

However, as noted by Podinovski (2004a , p. 228): “in a general

onconvex technology the RTS classes no longer play the role of

lobal indicators”, because local maxima of the RAP function are

either necessarily global maxima nor necessarily located in the

ame direction. In other words, even for a differentiable noncon-

ex technology, global analysis of returns to scale must be sep-

rated from local analysis (i.e. “RTS classes”). With regard to the

atter, Podinovski (2004b , p. 172 and p. 177) clearly points out that

he use of the traditional notion of scale elasticity is only possible

or technologies with a sufficiently smooth boundary, but that this

otion is undefined for FDH because of the discontinuity of the av-

rage productivity function at any efficient point ( x 0 , y 0 ). 

In fact, the DEA frontier is sufficiently smooth to ensure the

ontinuity of the average productivity function at ( x 0 , y 0 ), which

ermits the use of the criterion based on the interval determined

y right-hand and left-hand scale elasticities, SE + = lim 

δ→ 1 + 
γ (δ) − 1 

δ − 1 

nd SE − = lim 

δ→ 1 −
γ (δ) − 1 

δ − 1 
with SE + ≤ SE − (see Banker, 1984 ;

adjicostas & Soteriou, 2006 ). According to this criterion, we have

ocal CRS if 1 belong to this interval, local IRS if SE + > 1 and local

RS if SE − < 1 . The three cases describe a situation where RAP in

 marginally small neighborhood of ( x 0 , y 0 ) is: maximized at the

fficient point, maximized at the right and left end of the neigh-

orhood, respectively. 

However, the scale elasticity approach is not suitable to an FDH

echnology. In fact, here, at any ( x 0 , y 0 ) we have SE + = 0 and

E − = ∞ . But, the drop (discontinuity) in RAP prevents from clas-

ifying this case as local DRS because RAP is not necessarily maxi-

ized at the left end of the neighborhood. This argument is clearly

llustrated in Fig. 1 , where RAP r ∗ and δ are displayed on the ver-

ical and horizontal axis respectively, and A is a non-GCRS efficient

oint under examination having coordinates (1, 1). 

Two important characteristics shown in this Fig. 1 must be

ointed out. First, in the open interval (1 − ε, 1 + ε) , or in any

maller interval, RAP is maximized at the efficient point A . Second,

he half-closed interval (1 − ε, 1 + ε ] , having the same size as the

ormer interval, contains the efficient point B which determines a

AP greater than 1 (while not necessarily being the MPSS of A ).

ith regard to this, it must also be considered that in multiple-

nput and multiple-output applications efficient points like A , B and

 can locate very close to each other, so that ε may turn out to be

egligible (see Section 4.4 ). 

The first consideration shows that, in an FDH technology, it is

n principle possible to classify each efficient point as exhibiting

ocal CRS, within an interval whose size varies across classified

oints. However, this is a sheer consequence of the discontinuity

n the RAP function. In fact, the second consideration clarifies that

here may exist intervals in which a marginally small resizing re-

ults in an immediate improvement of RAP, thereby invalidating
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Fig. 1. Relation between RAP ( r ∗) and δ. 
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the local CRS characterization. Clearly, these problems do not arise

with an GCRS efficient-point, because here RAP reaches its global

maximum (if A were such a point, in Fig. 1 B and C would be on

or below the straight line passing through 1): GCRS efficient points

can be correctly classified as exhibiting local CRS. 

The following method is then proposed for the local classifica-

tion of an efficient point ( x 0 , y 0 ) in an FDH technology: 

Definition 3.2. Define as relative maxima of the RAP of ( x 0 , y 0 )

the frontier points which yield RAP > 1, and choose an exogenous

small size ε > 0 for the neighborhood of the efficient point, then

in the closed interval [ 1 − ε, 1 + ε ] we have: 

1. Local CRS if there is no relative maximum of RAP. 

2. Local IRS if the greatest relative maximum of RAP is in (1 , 1 +
ε ] . 

3. Local DRS if the greatest relative maximum of RAP is in [ 1 −
ε, 1) . 

4. Local SCRS if the greatest relative maximum of RAP in [ 1 − ε, 1)

is equal to that in (1 , 1 + ε ] . 

Following this proposed definition, Fig. 1 illustrates the case of

local IRS. 

Observe that Definition 3.2 extends Podinovski’s global taxon-

omy to the local level and that, for a given point, these two clas-

sifications can in practice diverge. As for the latter feature, note

in fact that in a nonconvex technology a local maximum (i.e., the

greatest relative maximum of RAP in the ε neighborhood) does not

necessarily coincide with the global maximum (MPSS) and, more-

over, it is not necessarily located in the same direction. 

Furthermore, two remarks are in order. First, the method is a

refinement of the uniform local-CRS classification otherwise de-

livered by the discontinuity of RAP in the FDH technology: the

greater ε the more it is likely that a number of DMUs abandon the

CRS characterization. Second, the suggested method has the advan-

tage of detecting the point with highest RAP in an interval which

managers and regulators rate as feasible given financial constraints

and adjustment costs that may limit the size of short-run adjust-

ments in the scale of operations. This feature would not necessarily

be maintained in a classification criterion based on the endogenous

choice of the neighborhood, such as it is the case of a symmetric

interval determined by the efficient-point which is nearest to ( x 0 ,

y ) (see Fig. 7 in Section 4.4 ). 
0 
Having presented some basic properties and interpretation of

he local classification criterion proposed in Definition 3.2 , we fi-

ally address two important issues regarding the nature of the

ethod and its extension to technologies different from FDH. 

We point out that the principle on which the method pro-

osed in Definition 3.2 is based is the same underlying the stan-

ard notion of local RTS, i.e., the maximization of RAP in a small

eighborhood of an efficient point under examination. As a con-

equence, it is intuitive that our local criterion could apply to dif-

erent technologies, such as DEA and smooth nonconvex technolo-

ies where continuity of the RAP function allows to abandon the

eighborhood of exogenous small size. In DEA, the application of

efinition 3.2 yields the method based on right- and left-scale

lasticities. In fact, to ascertain this, it suffices to observe that in

 convex technology case 4 is impossible, while cases 1–3 can

xactly be associated to the specific reference-values of the scale

lasticities discussed above at p. 4. Under nonconvexity, we pro-

ose Definition 3.3 to extend our local criterion to a smooth ana-

ogue of the FDH technology. 

efinition 3.3. In a smooth nonconvex technology the local RTS at

n efficient point ( x 0 , y 0 ) are characterized as follows: 

1. Local CRS if SE = 1 and the second order derivative of RAP is

negative. 

2. Local IRS if SE > 1. 

3. Local DRS if SE < 1. 

4. Local SCRS if SE = 1 and the second order derivative of RAP is

positive. 

It can be easily seen that each of the four cases envisaged by

efinition 3.3 is the straightforward application of the correspond-

ng case of Definition 3.2 to a marginally small neighborhood of

 x 0 , y 0 ). For an illustration of the application of this criterion, one

an consult Fig. 5 in Podinovski (2004a , p. 235). In this figure, point

 is local CRS, point A is local IRS, point F is local DRS, and point

 is local SCRS. 

To the best of our knowledge, Definitions 3.2 and 3.3 introduce

n the literature two original methods for the local classification of

TS in general nonconvex technologies. Albeit new, these methods

re indeed based on the same standard principle of local RTS, i.e.

he maximization of RAP in a small neighborhood of an efficient

oint. 

.3. Production frontiers 

The reconstruction of production frontiers has been analyzed

n a few contributions (see, e.g., Hackman, 2008 , Chapter 10 for a

rief review). Since the convex technologies in (3) are convex poly-

edra, facets can be enumerated so as to reconstruct the bound-

ries of the technology. A two-dimensional projection is then de-

ned relative to a particular point of the technology. For example,

rivonozhko, Utkin, Volodin, Sablin, and Patrin (2004) offers para-

etric optimization tools to reconstruct an intersection of the mul-

idimensional convex production frontier with a two-dimensional

lane determined by any pair of given directions. We simply adapt

he same idea to a nonconvex technology. Moreover, to the best of

ur knowledge, this is the first time that a computed section of an

DH technology is ever displayed. 

While for the nonconvex case we follow the same basic setup,

e employ a specific enumeration algorithm. Indeed, as Podinovski

2004a , p. 233) indicates, MPSS points can be determined by solv-

ng either for the MPSS definition (3.1) relative to a VRS tech-

ology ( S �, VRS ), or a radial efficiency measure relative to a CRS

echnology ( S �, CRS ) (see also Banker, 1984 , Proposition 1). Follow-

ng Soleimani-damaneh and Reshadi (2007 , Lemma 1), the for-

er solution is equivalent to the specific enumeration algorithm
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Fig. 2. Two inputs single output (a) convex and (b) nonconvex CRS technology. 

Fig. 3. Single input single output representation of section of convex and noncon- 

vex CRS technologies. 

d  

S  

c

 

v  

c  

a

 

F  

t  

o  

n  

f  

t  

o

 

a  

i  

m  

a  

i

4

 

i  

t  

l

4

 

e  

d  

t  

1  

1  

p  

t  

fi

 

s  

s  

s  

w

4

 

o  

f  

t  

t  

i  

r

 

fi  

c  

t  

T  

s  

a  

t  

o  

(  

i

 

b  

i  

e  

(  

b  

n

T  

o

 

e  

7 The multiplicative decomposition of OTE need not hold exactly at the sample 

level, since arithmetic rather than geometric averages are reported. 
eveloped in Soleimani-damaneh et al. (2006 , p. 1057) and

oleimani-damaneh and Reshadi (2007 , pp. 2172–2173) for non-

onvex technologies and it is based on the notion of RAP. 

It is important to point out that average productivity under con-

exity may be higher or equal to average productivity under non-

onvexity. To develop this intuition, one can look at the two Figs. 2

nd 3 . 

From a small numerical example we reconstructed in

ig. 2 both a convex (part (a)) and nonconvex (part (b)) CRS

echnology in a two inputs single output space. In the convex case,

nly two points span the three faces of the convex cone. In the

onconvex case, three observations span the ridge lines emanating

rom the origin and determining the nonconvex cone because

hese observations operate under CRS. Based on these 3-D figures

ne may infer that the convex cone contains the nonconvex cone. 
This is clearly made visible by the section with a vertical plane

long a ray through the origin and along the single output depicted

n the same Fig. 2 . Fig. 3 depicts this latter section in just two di-

ensions by a projection into the X 1 Y -plane: it is clear that aver-

ge productivity under convexity is higher than under nonconvex-

ty along this particular section of Fig. 2 . 

. Empirical illustrations 

In this section, we first present the data sets adopted from ex-

sting studies. Then, we present empirical results on global returns

o scale. Thereafter, we turn to a selection of results focusing on

ocal returns to scale. 

.1. Secondary data sets employed 

To empirically illustrate these developments, we employ several

xisting data sets. Table 1 summarizes some key features of each

ata set: sample size, number of inputs and outputs, and the sec-

or. There is one small unbalanced panel ( Färe, Grosskopf, & Logan,

983 ) and four cross sections ( Cesaroni, 2011 ; Fan, Li, & Weersink,

996 ; Färe, Grosskopf, Logan, & Lovell, 1985 ; Haag, Jaska, & Sem-

le, 1992 ). Note that the time dimension in the panel is ignored:

his amounts to assuming there is no technical change over the

ve time periods. 

The main points to note are the following. There are three

ingle output samples, and two multiple-output samples. Sample

izes vary from very small to rather big. The data sets have been

orted in Table 1 according to their sample size. In the other tables

e maintain the same order. 

.2. Global returns to scale 

Turning to the determination of global returns to scale, we set

urselves two goals. First, we want to document any eventual dif-

erences between convex and nonconvex technologies in terms of

he nature of returns to scale for individual observations. This has

o the best of our knowledge nowhere been reported. Second, it

s important to evaluate the incidence of the global sub-constant

eturns to scale case developed by Podinovski ( 20 04a, 20 04b ). 

Table 2 reports the basic decomposition of overall technical ef-

ciency (OTE) into a scale efficiency (SCE) and a technical effi-

iency (TE) component. This amounts to comparing efficiency rela-

ive to CRS and VRS technologies. In particular, OT E = E i (x, y | CRS) ,

 E = E i (x, y | V RS) and SC E = E i (x, y | C RS) /E i (x, y | V RS) . The first and

econd parts of Table 2 report this decomposition for the convex

nd nonconvex family of technologies. For each data set, there are

hree lines per efficiency component in a column: (i) the number

f efficient observations, (ii) the average efficiency, and (iii) the Li

1996) test statistic. We comment on each of these three elements

n turn. 

For any efficiency component, it is well-known that the num-

er of efficient observations is higher or equal under nonconvex-

ty compared to the convex case. This number turns out to be

qual for the OTE and SCE components in two data sets: Färe et al.

1985) and Färe et al. (1983) . Average efficiency is also known to

e higher or equal under nonconvexity, except for the SCE compo-

ent since it is a ratio derived from the other two components. 7 

his average turns out to be equal for the OTE component in just

ne data set: Färe et al. (1985) . 

One can assess the differences between convex and nonconvex

fficiency estimates by using a test statistic initially proposed by
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Table 1 

Sources of empirical data. 

Article Sample # Inp. # Outp. Sector Remarks 

Färe et al. (1985) 32 3 1 Electricity 

Haag et al. (1992) 41 4 2 Agriculture 

Färe et al. (1983) 86 3 1 Electricity Unbalanced ( N = 20 and T = 5) 

Cesaroni (2011) 92 2 5 Car registration 

Fan et al. (1996) 471 3 1 Agriculture 

Table 2 

Decomposition of overall technical efficiency: convex and nonconvex. 

Sample Convexity Nonconvexity OT E NC & 

OTE SCE TE OTE SCE TE ¬OTE C 

Färe et al. (1985) #Eff. obs. 2 2 9 2 2 29 0 

Mean 0.905 0.952 0.951 0.905 0.906 0.998 0.0 0 0 

Li-test † 0.0 0 0 6.887 ∗∗∗ 8.533 ∗∗∗

Haag et al. (1992) #Eff. obs. 8 8 10 20 20 41 12 

Mean 0.841 0.959 0.880 0.923 0.923 1.0 0 0 0.856 

Li-test † 4.208 ∗∗∗ 2.270 ∗∗ NA 

Färe et al. (1983) #Eff. obs. 4 4 18 4 4 68 0 

Mean 0.897 0.966 0.930 0.898 0.907 0.990 0.0 0 0 

Li-test † 0.0 0 0 21.926 ∗∗∗ 26.032 ∗∗∗

Cesaroni (2011) #Eff. obs. 9 9 15 12 12 56 3 

Mean 0.652 0.876 0.733 0.702 0.761 0.911 0.972 

Li-test † 0.313 5.547 ∗∗∗ 21.123 ∗∗∗

Fan et al. (1996) #Eff. obs. 18 18 49 60 60 164 42 

Mean 0.765 0.945 0.811 0.841 0.921 0.913 0.924 

Li-test † 18.459 ∗∗∗ 19.999 ∗∗∗ 52.878 ∗∗∗

† Li test: critical values at 1% level = 2.33 ( ∗∗∗); 5% level = 1.64 ( ∗∗); 10% level = 1.28 ( ∗). 
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Li (1996) that is valid for both dependent and independent

variables. 8 The null hypothesis of this Li-test states that both con-

vex and nonconvex distributions for a given efficiency measure are

equal. One can reject the null hypothesis of equal distributions for

all components for the Fan et al. (1996) data set and for at least

two components for all remaining data sets. 9 Thus, it seems rather

safe to conclude that convex and nonconvex efficiency estimates

differ for most components and data sets. 

The last column of Table 2 reports both the number of CRS effi-

cient observations under nonconvexity that are CRS inefficient un-

der convexity, and the average amount of convexity-related OTE

( = E C 
i 
(x, y | CRS) /E NC 

i 
(x, y | CRS) ) for these same observations. 10 On

the one hand, this is the net gain in the number of MPSS points

due to dropping convexity. It varies between 0 and 42 observa-

tions among the data sets analyzed. On the other hand, convexity-

related OTE indicates the amount of overall technical efficiency

that can be attributed to the convexity axiom. Not surprisingly,

this convexity-related OTE equals zero in two data sets: Färe et al.

(1985) and Färe et al. (1983) . On average, this amount varies be-

tween 0.856 and 0.972 when computed relative to the concerned

observations: thus, the convex estimates suggest further gains in

overall technical efficiency varying between 2.8% and 14.4%. Recall

that Fig. 3 represents the section shown in both convex and non-

convex technologies depicted in Fig. 2 : it clearly illustrates these

cases where the nonconvex CRS technology is situated below the

convex one. Thus, convex CRS technologies may well overestimate

potential gains in average productivity. 
8 Dependency is a basic characteristic of extremum or frontier estimators, since 

efficiency measures depend, among others, on sample size. Note that Fan and Ullah 

(1999) refine the same test. 
9 Note that this Li-test cannot be computed for the nonconvex TE component 

of Haag et al. (1992) , since all observations are technically efficient and hence the 

kernel density cannot be estimated. 
10 The notion of convexity-related efficiency is introduced by Briec et al. (2004) : 

for any input-oriented efficiency component it is the convex efficiency measure di- 

vided by the nonconvex one. 
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Tables 3 and 4 each have two major parts. The first and sec-

nd parts of Table 3 report on the percentage of observations rel-

tive to the sample size operating under increasing (IRS), constant

CRS) and decreasing returns to scale (DRS) for the convex and

onconvex technology, respectively. Table 4 again has two major

arts. The first part lists the efficient observations on both tech-

ologies that share a common characterization of returns to scale

or each of the three cases. The second part focuses on conflicting

ases: switches from IRS to DRS (denoted IRS–DRS), from CRS to

RS (CRS–IRS), from CRS to DRS (CRS–DRS), and the total percent-

ge of these conflicts relative to the sample size. 

One can draw the following conclusions. First, the amount of

ommon efficient observations spanning both technologies is quite

odest. Obviously, the amount of common CRS observations is low

ecause few observations are CRS efficient in the convex case in

he first place. While the percentage of common IRS observations

s low, especially the DRS part of technology is built on strikingly

ittle common ground: almost no observations are in common. Sec-

nd, apart from the first study with the smallest sample size, all

ther samples yield some minimal to moderate conflict in classi-

cation between convex and nonconvex technologies. This conflict

aries from a modest about 7% for the Färe et al. (1983) sample

o a quite substantial about 40% for the Haag et al. (1992) case, all

hree cases confounded. Third, the detailed sources of conflict in

lassification vary a lot among the different sam ples. While for the

aag et al. (1992) study the CRS–IRS conflict dominates for about

0% of observations, for Cesaroni (2011) , Färe et al. (1983) and Fan

t al. (1996) the IRS–DRS case is dominant: for a small about 7%

or the first two cases to a substantial about 14% of observations

or the third sample. 

On the empirical evaluation of the incidence of the global sub-

onstant returns to scale case we can be very brief. We found

one in any of the five samples investigated. This explains why

his notion is not reported in any of the tables so far. It remains an

pen question which conditions determine the existence as well as

he empirical incidence of this global sub-constant returns to scale
ase. 
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Table 3 

Returns to scale on convex and nonconvex technologies: basic results. 

Sample Convexity Nonconvexity 

GIRS (%) GCRS (%) GDRS (%) GIRS (%) GCRS (%) GDRS (%) 

Färe et al. (1985) 78 .13 6 .25 15 .63 78 .13 6 .25 15 .63 

Haag et al. (1992) 53 .66 19 .51 26 .83 43 .90 48 .78 7 .32 

Färe et al. (1983) 66 .28 4 .65 29 .07 73 .26 4 .65 22 .09 

Cesaroni (2011) 83 .70 9 .78 6 .52 78 .26 13 .04 8 .70 

Fan et al. (1996) 52 .44 3 .82 43 .74 52 .23 12 .74 35 .03 

Table 4 

Returns to scale on convex and nonconvex technologies: common efficient observations and conflicts. 

Sample # Common effic. obs. Conflicting cases 

GIRS (%) GCRS (%) GDRS (%) GIRS– GCRS– GCRS– Total 

GDRS (%) GIRS (%) GDRS (%) conflicts (%) 

Färe et al. (1985) 15 .63 6 .25 6 .25 0 .00 0 .00 0 .00 0 .00 

Haag et al. (1992) 4 .88 19 .51 0 .00 9 .76 19 .51 9 .76 39 .02 

Färe et al. (1983) 16 .28 4 .65 0 .00 6 .98 0 .00 0 .00 6 .98 

Cesaroni (2011) 2 .17 9 .78 1 .09 7 .61 2 .17 1 .09 10 .87 

Fan et al. (1996) 1 .70 3 .82 1 .91 13 .80 3 .40 5 .52 22 .72 
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Table 5 

Local returns to scale in the nonconvex technology. 

Sample # Units 

Local IRS Local CRS Local DRS Local SCRS Total 

Cesaroni (2011) 9 78 5 0 92 
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.3. The behavior of RAP 

To illustrate the role played by the behavior of RAP in the above

esults to scale, and how it may affect local returns to scale, we

ave chosen to depict some typical observations selected from the

esaroni (2011) sample. In particular, we have selected observation

0 because it is efficient in both the convex and nonconvex CRS

echnologies. Then, we depict observation 44 representing the con-

ict between GIRS–GDRS. 11 

For each of these cases we show a pair of figures: the above

epresents the optimal ( δ, γ )-combinations of a section from the

rigin through the observation in input–output space; the below

epicts the evolution of RAP along the same radial section. The

bservations under scrutiny are situated at the coordinates (1, 1)

n both the upper and lower parts of the figures. The convex (non-

onvex) case is shown as a dashed (continuous) line. Note that for

he RAP figure one must distinguish between points where RAP is

maller and larger than unity: only the latter points indicate im-

rovements with respect to the observation under evaluation and

re candidates for optima. RAP points smaller than unity form at

est a local optimum or sub-optimum for themselves in that RAP

ay be stationary at such points. But, these points can never be

ptimal since the RAP level is below that of the observation under

xamination. 

We first comment on observation 40 depicted in Fig. 4 . Being a

nique optimal MPSS point labeled A , there is a close to optimal

oint labeled B to the right where RAP is close to constant under

onvexity but varies a lot under nonconvexity. Beyond this point B

o the right RAP declines monotonously under convexity and more

apidly and close to monotonously except for the end of the em-

irical range under nonconvexity. To the left of the MPSS point A ,

AP declines monotonously, albeit more rapidly again under non-

onvexity. 

Next, we comment on observation 44 shown in Fig. 5 . As can

e noticed from the upper part, this observation is situated under

RS (IRS) under convexity (nonconvexity). In the lower part, it is

learly visible that the MPSS point under nonconvexity labeled A is

ituated to the right of unity, while the MPSS point under convex-

ty labeled B is positioned slightly to the left of unity and suggests

 higher RAP than the nonconvex case. This is a perfect illustration

f the phenomenon depicted by a numerical example in Fig. 3 . To
11 These observation numbers are internal numbers attributed by us. We are not 

n a position to disclose the identity of these observations. 

t  

C  

c  

b  
oth the right and especially the left from the nonconvex MPSS

oint A , there is quite some variation: there are three local optima

f RAP to the right and at least six local optima of RAP to its left.

nder convexity, the RAP curve suggests a smooth rise and decline

round its optimal point B . 

Summarizing these results, one can draw two preliminary con-

lusions. First, the evolution of RAP under nonconvexity is not

mooth at all and reveals a variety of local optima that remain

idden in the smooth increase and subsequently decrease of RAP

n the convex case. Remedying issues of suboptimal scale size is

ather straightforward under convexity. Any diagnosis of IRS or

RS leads to an unambiguous recommendation to either increase

r decrease the scale of operations, whereby any step in the right

irection monotonously increases or decreases RAP, respectively.

nder nonconvexity remedying the scale of operations is much

arder and depends on choosing the right step size to either in-

rease or decrease the scaling of the unit under evaluation. In em-

irical applications, there seem to be many areas where the lack

f data is filled up by the convexity axiom, while the noncon-

ex approach clearly reveal the gaps in the empirical range of the

ata and our ensuing lack of knowledge about the technology. Of

ourse, it cannot be excluded that sector specialists (managers, en-

ineers, regulators, etc.) may have an a priori understanding on

hich ranges of operation are actually feasible even though these

re currently not supported by the empirical range of the data. 

Second, under nonconvexity several relative maxima of RAP

ould in principle occur even in a significantly smaller range than

hat considered in Fig. 5 , thus affecting local returns to scale re-

ults. 

.4. Local returns to scale 

Hereafter, we present the results deriving from the applica-

ion of the FDH local method proposed in Definition 3.2 to the

esaroni (2011) sample. Table 5 illustrates the classification asso-

iated to the interval-size ε = 0 . 025 , which has been computed

y means of the application of Soleimani-damaneh et al. (2006)
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Fig. 4. Representation of radial section for observation 40 in input–output space (a) 

and evolution of RAP (b). 

 

 

 

 

 

 

 

 

 

Fig. 5. Representation of radial section for observation 44 in input–output space (a) 

and evolution of RAP (b). 
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n  

l  
enumeration-algorithm to frontier points contained in the 0.025

neighborhood of each efficient point under examination. 

We found no local sub-constant returns to scale case while the

majority of observations exhibits local CRS. Note however that 14

units leave the default CRS-characterization in favor of either the

IRS (9 units) or the DRS (5 units) condition. This fact indicates that

relative maxima of RAP are actually present in the 0.025 neighbor-

hood of these DMUs. Figs. 6 and 7 illustrate a local DRS (observa-

tion 45) and IRS case (observation 83), respectively. Observation 45

clearly has just one relative maximum of RAP situated at the left

end of the neighborhood. 
The case of observation 83 is particularly interesting due to the

eplication in a small interval of the complex behavior of RAP we

ave illustrated for the global case. In fact, in the increasing direc-

ion, we can observe the occurrence of three relative maxima of

AP within a 0.008 range with the greatest maximum delivering

 substantial increase in RAP (about 50%). This utterly clarifies the

emark we made at the end of Section 3.2 regarding one advantage

f our local classification method. 

These local returns to scale results are hard to summarize

eatly using standard descriptive statistics. While their local nature

ends itself excellently for depiction, this approach carries the risk
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Fig. 6. Local evolution of RAP for observation 45. 

Fig. 7. Local evolution of RAP for observation 83. 
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12 See, e.g., Chambers and Mitchell (2001) for other examples on the importance 

of nonradial changes. 
hat an empirical analysis becomes somehow casuistic and does

ot allow to draw any general conclusions at the sample level.

acking standards to report the results of nonconvex analysis in

conomics, this problem cannot be easily solved in the short run. 

. Conclusions 

Starting from the seminal contributions of Podinovski ( 2004a,

004b ) who characterizes both the notions of global and local re-

urns to scale for nonconvex technologies, this contribution leads

o three main conclusions. 

First, we have clearly empirically established that the charac-

erization of returns to scale on convex and nonconvex technolo-
ies may yield conflicting advice for substantial parts of samples.

his confirms that Podinovski ( 20 04a, 20 04b ) was certainly right

n further scrutinizing the notion of returns to scale for nonconvex

onparametric technologies. 

Second, while Podinovski ( 20 04a, 20 04b ) convincingly argued

or the existence a fourth type of global sub-constant returns to

cale case complementing the three traditional cases (constant, de-

reasing and increasing returns to scale), our empirical tests re-

eal that none of the five secondary data sets analyzed contains

 single observation that experiences such global sub-constant re-

urns to scale. Which conditions determine the existence as well as

he empirical incidence of this global sub-constant returns to scale

ase remains a question for future research. 

Third, we have made a start to explore the differences between

lobal and local returns to scale characterizations on FDH models.

specially the local results are revealing in that these clearly show

ow RAP evolves nonsmoothly and nonmonotonously under non-

onvexity, while it is smooth and monotonous for convex nonpara-

etric technologies. As spelled out earlier, this makes remedying

cale deficiencies much harder under nonconvexity. 

To the best of our knowledge, this is the first contribution that

as managed to shed some light on all these issues. Of course,

uch more remains to be done. For instance, outliers are an is-

ue for all nonparametric technology specifications and it could

e interesting to evaluate how these affect the empirical differ-

nces as to returns to scale observed between convex and noncon-

ex technologies. As another example, a comparison among other

efinitions of local returns to scale could prove insightful when

nalyzing nonconvex nonparametric technologies. Finally, while

his research has been confined to analyzing changes along a radial

ection in input–output space, keeping in mind that some man-

gers may well prefer mimicking actual observations (e.g., Halme,

orhonen, & Eskelinen, 2014 ), it could be interesting to also de-

elop an average productivity notion along a non-radial rather than

 radial path. 12 

ppendix A. Note on equivalence of RTS and direction to MPSS 

n any convex technology 

The equivalence between local and global returns-to-scale char-

cterizations in convex production technologies is pointed out by

odinovski (2004a , p. 228): “This dual role of RTS classification as

 local improvement indicator and direction to MPSS is preserved

n any convex technology”. In a smooth production technology, this

onclusion is established by means of Theorem 7 in Podinovski

2004a , p. 249). In a polyhedral production technology, the same

roperty is due to the results that Banker (1984) and Banker and

hrall (1992) obtain by means of the comparison between the con-

tant returns to scale (CCR) and the variable returns to scale (BCC)

odels, as we are going to illustrate in the remainder. In brief, this

quivalence holds for standard (i.e., one-stage) convex production

echnologies. 

RS case: 

In a CRS technology, by definition, an efficient point ( x 0 , y 0 ) > 0

s an optimal solution to the CCR problem (2) in Banker and Thrall

1992 , p. 77) with r ∗0 = 1 , then according to their Proposition 1 this

oint is an MPSS. Given the fact that in the CRS technology this

fficient point is not an extreme scale size, Proposition 1 in Banker

1984) can then be used to show that local constant returns-to-

cale prevail at this MPSS. 
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IRS and DRS cases: 

The equivalence results achieved by Banker and Thrall

(1992) for the VRS technology (BCC) are quite general, because re-

ferred to an efficient frontier which allows for different portions,

each satisfying different RTS assumption (CRS, DRS or IRS). The

general validity of their Propositions 3 and 4 can be illustrated by

means of a simple graphical example regarding the IRS case. Mu-

tatis mutandis, the same conclusion will symmetrically hold for a

DRS frontier. 

Consider Fig. 9 in Podinovski (2004a , p. 250) as a representation

of a convex technology with an IRS efficient-frontier. Each of the

frontier points comprised between A and C exhibits local increas-

ing returns to scale according to Definition 8 and Proposition 3

( Banker and Thrall, 1992 , p. 79). These points are not extreme scale

sizes and therefore Proposition 4 (see Banker and Thrall, 1992 , p.

80) can be applied to conclude that these points are less than their

MPSS (which is in fact represented by point C). As far as point A is

concerned, which is a smallest scale size, we note that according

to Definition 8-footnote 5 (see Banker and Thrall, 1992 , p. 79) it

can be classified as showing local increasing returns to scale, be-

cause ρ∗ > 1; here, Proposition 4 cannot be directly applied, but

it is nevertheless evident that A is less than its MPSS (point C). Fi-

nally, with regard to C we note that, according to Definition 8, it

exhibits constant returns to scale and that – given the fact that it

is not an extreme scale size – Proposition 4 holds. 
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