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1. Introduction

The issue of the measurement of scale economies in nonpara-

metric production models has so far attracted rather little

analytical interest when compared to the vast literature on

‘‘production-based returns to scale’’1 (e.g., Banker, 1984;

Banker et al, 1984; Banker and Thrall, 1992; Banker et al,

1996; Färe et al, 1983, 1985; Kerstens and Vanden Eeckaut,

1999). The latter contributions invariably focus on the

maximization of ray average productivity of a decision

making unit (DMU) without considering the possible alloca-

tive inefficiency of its input mix. Given the importance of

allocative considerations in the evaluation of costs and its

specific bearing on the notion of optimal scale size, this

relative neglect is a bit strange. This same focus is actually

found in earlier seminal studies on returns to scale and

economies of scale in multiple output technologies ignoring

inefficiency (Panzar and Willig, 1977; Baumol et al, 1982). In

this sense, Tone and Sahoo’s (2003) remark that ‘‘scale in all

its definitions warrants the input mix and output mix to remain

constant’’ is pertinent.

The available methods for the estimation of ‘‘cost-based

returns to scale’’ with a variable input mix are at present
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limited to those developed by Färe and Grosskopf (1985) and

Sueyoshi (1999) for convex production models. However,

these methods are unsuitable for application to a non-convex

technology (e.g., the Free Disposal Hull (FDH) of Deprins

et al, 1984; Tulkens, 1993). On the one hand, Sueyoshi’s

measure of cost-scale elasticity provides local quantitative

information on the degree of scale economies, but this cannot

be defined due to the non-differentiability of the FDH

technology (see Sueyoshi, 1999, p. 1607). On the other hand,

the adaptation of Färe and Grosskopf’s (1985) scale efficiency

method to determine global qualitative information on the

scale-economies regime raises several difficulties in a non-

convex setting. Not only it is unable to provide a local measure

of the degree of scale economies, but it also cannot account for

the possible occurrence of global sub-constant scale econo-

mies, i.e., the case where the same level of the constant

returns-to-scale cost can be achieved by both increasing and

decreasing the current scale size. This latter phenomenon has

been introduced and theoretically discussed by Podinovski

(2004) only in the context of returns to scale, with Cesaroni

et al (2017) offering a first empirical exploration of the

framework in question, while application to cost analysis still

remains to be explored.

Besides the theoretical interest in filling the above gaps for

non-convex technologies, we believe that there is a more

compelling and practical interest in proceeding this way. In

fact, as remarked by Tone and Sahoo (2003), ‘‘most of the

real-life production processes fail to satisfy these stringent’’

convexity criteria, on account of several reasons such as

overheads, indivisibilities in capital equipment, process

1This expression, along with ‘‘cost-based returns to scale’’, is due to

Sueyoshi (1999, p. 1593). In the rest of the article we use returns to scale

and scale economies to denote production-based and cost-based returns to

scale, respectively.
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indivisibilities due to a different task length associated with

each single stage of the production process. Grifell-Tatjé and

Kerstens (2008) provide some evidence on the non-convex

nature of electricity distribution, while Hackman (2008,

pp. 125–133) describes explicit examples of non-convex

technologies that arise in resource allocation, producer bud-

geting and Data Envelopment Analysis with lower bounds.

The purpose of this work is threefold. First, we discuss the

analytical problems created by the implementation of Färe and

Grosskopf’s (1985) approach in a non-convex technology.

Second, following the approach of Banker and Thrall (1992),

we introduce a new convenient method for the estimation of

scale economies which relies on the minimization of the ray

average cost of an output mix, which overcomes the difficul-

ties of the previous approach. Third, we illustrate the

application of the proposed classification procedure on a data

set with the aims of checking for the presence of global sub-

constant scale economies and of determining the behavior of

local scale economies. In addition, this empirical illustration

permits to test whether or not the divergence between global

and local indicators—pointed out by Podinovski (2004) in a

production setting—extends to cost analysis.

This paper is structured as follows. Section 2 introduces the

non-convex technology and examines the difficulties of the

Färe and Grosskopf (1985) method. Section 3 presents our

new method and briefly discusses its specific features in

relation to the problems at hand. Section 4 illustrates the

empirical application to a representative sample of Italian local

public transit companies. Section 5 offers some conclusions

and raises some issues for future research.

2. FDH and the Färe and Grosskopf (1985) approach
to scale economies

2.1. Preliminary definitions

The production possibility set we consider is the FDH of the

observed production possibilities. Introducing notation, we

have n observations, indexed by j (j = 1, …, n), using m

inputs xijði ¼ 1; . . .;mÞ to produce s outputs, yrjðr ¼ 1; . . .; sÞ.
The observed input and output vectors are xj ¼
ðx1j; . . .; xmjÞ0 � 0 and yj ¼ ðy1j; . . .; ysjÞ0 � 0, respectively, with

xj; yj 6¼ 0, and where the prime indicates the transposition

operation. Denoting the m 9 n matrix of inputs as X ¼
x1; . . .; xn½ � and the s 9 n matrix of outputs as Y ¼ y1; . . .; yn½ �,
then the general form of the production possibility set can be

expressed as

TK ¼ x;yð Þ Xz�xj ; Yz�y; zj �wkj; kj 2 0;1f g;
Xn

j¼1

kj ¼ 1

( )

ð1Þ

where z is the n 9 1 vector with components equal to wkj, and
w[ 0 is a scaling factor which introduces different returns to

scale assumptions in the technology, indexed by K. These are

the following: w[ 0 , TCRS; w ¼ 1 , TVRS; w� 1 ,
TNIRS; w� 1 , TNDRS, where the abbreviations CRS, VRS,

NIRS and NDRS stand for constant, variable, non-increasing

and non-decreasing returns to scale, respectively. Note that

TVRS is the least restrictive reference technology among the

listed ones, in that it generates the smallest set enveloping the

original observations.

As far as costs are concerned, we denote the vector of input

prices as pj ¼ ðp1; . . .; pmÞ[ 0 with pjxj representing the total

cost of observation j for producing its output vector yj, which

also represents its current scale size.2 In any of the reference

technologies listed above, the cost efficiency of this unit can

be evaluated by solving the following mixed-integer program-

ming problem:

Min
ðxh;yh;zhÞ

pjxhzh

pjxj
s:t:
yhzh � yj

ð2Þ

where h = 1, …, n denotes a generic observation. A solution

to program (2), ðx�; y�; z�Þ, determines the cost efficiency

score of observation j as
pjx

�z�

pjxj
, which is equal to 1 for a cost-

efficient DMU.

We conclude this subsection with an important definition.

Definition 1 For an observation j global sub-constant scale

economies occur when in TCRS,
pjx

�z�

pjxj
\1 and there are at

least two solutions z1
* and z2

* such that pjx
�
1z

�
1 ¼ pjx

�
2z

�
2 ¼

pjx
�z� with z1

*\ 1 and z2
*[ 1.

In other words, global sub-constant scale economies are the

case where a scale inefficient unit has the same CRS optimal

cost determined by two different scale sizes, one which is

larger and the other which is smaller than the current scale

size: y�1 and y�2, respectively, where y�1z
�
1 � yj and y�2z

�
2 � yj.

2.2. The Färe and Grosskopf (1985) approach

The method developed in Färe and Grosskopf (1985) relies on

the computation of cost-scale efficiency—defined as the ratio

between CRS and VRS cost efficiency scores—of the points

lying on the frontier of the technology. If the examined point is

cost-scale efficient, then it exhibits CRS. Otherwise, a third

NIRS reference technology is used to establish qualitative

information on the nature of scale inefficiency, i.e., on the

direction to the VRS optimal scale size whose projection

determines the CRS cost efficiency score. In particular, if

2A scale size variable indicates the level at which either inputs or outputs

are actually being employed by a unit under evaluation (i.e., current). In

the analysis of scale economies, this scale size variable is normally

expressed in terms of the outputs (see, e.g., Färe and Grosskopf, 1985,

p. 600). We follow this convention (as moreover discussed in Section 3).
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NIRS and VRS cost efficiencies are equal, then scale

inefficiency is due to DRS (the optimal scale size is lower

than the current one), otherwise it is due to IRS (the optimal

scale size is greater than the current one). Podinovski (2004)

denotes the resulting classification as global because it is based

on the absolute minimum cost (i.e., the CRS cost) and is

determined by a scale size which may be rather distant from

the current under examination. As such, the method does not

provide quantitative information relating to the degree of scale

economies, which is commonly measured as a scale elastic-

ity—the ratio of marginal to average cost.

The straight application of this method to a non-convex

technology may encounter the same problem documented by

Podinovski (2004, p. 242) in the analysis of returns to scale to

production. Essentially, the occurrence of multiple optima in

the CRS cost efficiency problem can lead to a wrong

classification of the global scale-economies regime of some

observations: These could be classified as enjoying increasing

scale economies, while they actually operate under a sub-

constant regime.

A simple example can be used to illustrate both the meaning

of global sub-constancy in cost analysis and the classification

error in question. In a three-dimensional space, consider three

observations having a two input–one output vector (x1j, x2j, yj)

and an identical input price vector (p1, p2): DMU A

ð1; 1:5; 1:5Þ, DMU B ð2; 3; 3Þ, DMU C ð2; 1; 2Þ with input

price vector ð2; 1Þ. Clearly, A and B are proportional replicas

of each other. The projection of the VRS Free Disposal Hull

TVRS on the (x1, x2) plane and its three-dimensional represen-

tation are illustrated in Figures 1 and 2, respectively.

From Figures 1 and 2, it can be easily seen that each of the

three fictitious observations is both a VRS cost-efficient unit

and a most productive scale size (i.e., CRS technically

efficient). Nevertheless, while A and B operate under global

constant scale economies, because their CRS cost efficiency

score is equal to 1, this is not true for C.3 In fact, C can decrease

the ray average cost of its production 5=2

� �
to the optimal level

equal to 7=3, by adopting both the input mix and the output scale

size of either A or B. In other words, its CRS optimal cost is

lower than its VRS cost: 7=3 � 2\5. This means that C operates

under global sub-constant scale economies in that it can either

decrease or increase the scale of production to reach the

minimum ray average cost along ray OB (see Figure 2).

This numerical example clarifies that the problem of

classifying global scale economies is in principle different

and more complex than the one of returns to scale. The

presence of allocative inefficiency in the input mix makes the

achievement of maximal ray average productivity, the CRS

technical-efficiency condition, not sufficient to obtain global

constant scale economies. This is paradigmatically shown by

the case of DMU C, which is CRS technically efficient and

whose input mix differs from those of DMUs A and B (for a

more profound theoretical discussion, see Cesaroni and

Giovannola, 2015, Section 3).

Turning back to the classification based on Färe and

Grosskopf’s (1985) method, we can remark that DMU C has a

NIRS cost efficiency score equal to 14=15, which differs from

its VRS cost efficiency score that equals unity. According to

Figure 1 Numerical example of cost efficiency in a two-input
section.

Figure 2 Numerical example of cost efficiency in a two input-
one output space.

3The calculation of CRS and NIRS scores according to model (2) is

shown in Appendix 1. The following discussion exploits the equivalence

mentioned later on at point 2. Section 3.1 to illustrate the CRS cost

efficiency score in terms of ray average cost.
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the above-told method, DMU C exhibits global increasing

scale economies, while it actually is characterized by global

sub-constant scale economies.

The difficulties raised by the presence of multiple optimal

solutions can only partially be solved by bringing the NDRS

technology into the picture of scale economies determination.

This is in the same spirit as Kerstens and Vanden Eeckaut’s

(1999) method which employs three reference technologies:

NIRS, NDRS and CRS. The error in the global classification is

still present, because unit C would be classified as constant

instead of the sub-constant characterization. Fortunately, this

shortcoming can be corrected by introducing the same

qualifications suggested by Podinovski (2004) for the returns

to scale case. These qualifications consist in the use of the

VRS (instead of the CRS) technology, and in the explicit

consideration of the sub-constant case. In this setting, global

sub-constant scale economies occur if and only if NIRS and

NDRS cost efficiency scores are equal and strictly lower than

the VRS score. Note that in our example DMU C satisfies

exactly these conditions.

We can conclude that the amended Kerstens and Vanden

Eeckaut’s (1999) method for the measurement of global scale

economies is computationally complex, because it requires the

solution of three mixed-integer programming problems (NIRS,

NDRS, VRS). Moreover, just like Färe and Grosskopf’s (1985)

procedure, it cannot provide quantitative information on the

degree of scale economies in a neighborhood of a DMU’s

scale of operations. The next section defines a method which

provides a solution to all these difficulties discussed so far.

3. A ray average cost approach

Cesaroni and Giovannola (2015) show that a dual measure of

returns to scale can be based on the minimization of the ray

average cost on a VRS technology, both convex and non-

convex, satisfying the assumption of strong disposability only.

These authors in fact extend Banker’s (1984) and Banker and

Thrall’s (1992) analyses by allowing for a variable input mix

and a non-convex technology. In the following, we propose a

method for FDH technologies with special attention to the

inclusion of multiple solutions in the optimization program—

which induces the sub-constant case—and to its analogy with

the above-mentioned analyses. The general concept of scale

economies we employ does not deviate from the standard

approach, which ascertains the behavior of the cost function in

response to a variation of outputs at given input prices4 (see,

e.g., Baumol et al, 1982). Herein, constant scale economies are

said to occur when the average cost is stationary at a minimum

level, otherwise—given the convexity of the technology—we

have increasing or decreasing scale economies when the

average cost is decreasing with an increase or a decrease in the

output’s scale size, respectively (see Section 4.2.1 in Sueyoshi,

1999, and Section 4.2 in Tone and Sahoo, 2003). In this

approach, scale economies are a result of the technological and

organizational factors which define/determine the frontier of

the production possibility set at different levels of output (see

Silberton’s definition in Tone and Sahoo, 2003, p. 167), as an

example: an higher quantity of input utilization, due to larger

plants and associated higher variable-factors, may bring about

a lower average cost at an output’s scale size which is larger

than the current one.

3.1. A new classification method for scale economies

Evaluation of the overall and scale efficiency of the output mix

of a DMU j can be accomplished by means of a ray average

cost ratio or average-cost efficiency (ACE): The ratio between

the ray average cost evaluated at a unit ðxh; yhÞ 2 TVRS and that

evaluated at the DMU’s current scale size. Following Cesaroni

and Giovannola (2015, pp. 122–123), this ACE ratio can be

expressed as follows

Rj �
pjxh

pjxj
� cj;h ð3Þ

where cj,h is the radial scaling factor obtained from the

comparison between the output vector of j and that of h. This

radial scaling factor is computed as follows

cj;h ¼ max
r

yrj

yrh

� �
; where cj;h 2 0;1ð � ð4Þ

For an exogenously chosen unit h, the ACE ratio Rj indicates

the gain in average cost that a single DMU j achieves if it

changed its scale size by adopting xh to produce yh—or

equivalently the radial projection of its output vector onto the

scale size of unit h, 1
cj;h

� yj. Note that xh is arbitrary and not a

radial projection of the input mix xj, since input proportions

are allowed to vary. Moreover, remark that 1
cj;h

� yj � yh such

that the VRS assumption is not violated.

The efficiency score of a given DMU j is obtained from the

minimization of (3) over TVRS, determining the average-cost

efficiency measure (ACE) Rj
*. More importantly, it is proven

that the minimizer of this optimization program, which we call

an optimal scale size (OSS) o, has the following important

properties (see Cesaroni and Giovannola, 2015, Propositions 3

and 7 resp.):

(1) An OSS is average-cost efficient: Ro
* = 1;

(2) The ACE measure Rj
* is equal to CRS cost efficiency and

can be decomposed into the product of VRS cost

efficiency and cost-scale efficiency.

In other words, our optimal scale size minimizing the ray

average cost under VRS coincides with the scale size that

4In principle our method allows for a variation of input prices associated

to a change in the scale size (e.g. bulk buying of inputs may lower their

prices) but this choice implies that an optimal scale size is not necessarily a

most productive scale size, i.e. it is not CRS technically efficient. For a

discussion see Cesaroni and Giovannola (2015, Sect. 4.3).
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minimizes total cost of production under the CRS assumption,

i.e., Rj
* is equal to

pjx
�z�

pjxj
obtained in TCRS (see Definition 1).

This implies that the ACE measure can in principle be used to

estimate the global scale economies of a generic DMU. To this

purpose, we only need to consider the information given by

coefficients Rj
* and cj,o. The method for the classification of

scale economies of cost-efficient points in T can be formulated

as follows:

Proposition 1 For a cost-efficient DMU j, we have

(i) Rj
* = 1, and cj,o = 1 in a solution, then global

constant scale economies prevail

(ii) Rj
*\ 1 and cj,o\ 1, then global increasing scale

economies prevail

(iii) Rj
*\ 1 and cj,o[ 1, then global decreasing scale

economies prevail

(iv) Rj
*\ 1 and both cj,o[ 1 and cj,o’\ 1 in any pair

of different solutions, then global sub-constant

scale economies prevail.

Proof The possible existence of multiple solutions to the

minimization of (3) implies that multiple values of cj,o
might be associated to a given Rj

*. Therefore, (i), which

includes the case5 of Rj
* = 1 and cj,o = 1, can be

immediately derived from the above properties under (1)

and (2), while (ii), (iii) and (iv) follow from: expression

(4), the impossibility of the simultaneous occurrence of

Rj
*\ 1 and cj,o = 1 (see Cesaroni and Giovannola, 2015,

Appendix A.9). This ends the proof.

Based on the properties under point (2) above, two

important characteristics of the method can be pointed out.

First, j being a cost-efficient point in T, Rj
* represents its cost-

scale efficiency: in this sense, our method is based on the

measurement of cost-scale efficiency (just like the one of Färe

and Grosskopf, 1985). Second, the equivalence of ACE and

CRS cost efficiency programs implies that cj,o = zj
*, where the

second member denotes the CRS solution to program (2) and

is equivalent to
P

j=1
n kj

*, the sum of weights in the optimal

solution in Banker and Thrall’s (1992, p. 81) method.

As far as the sub-constancy case is concerned, expressions

(3) and (4) reveal that exact proportionality of two different

OSSs is a sufficient condition for obtaining it at a unit j which

is not cost-scale efficient. Accordingly, if exactly proportional

replicas of the observations acting as an OSS are present in the

data set, or rather are assumed to exist on the basis of an

elementary replicability postulate (see Tulkens, 1993, p. 191;

Agrell and Tind, 2001, p. 132), then we can empirically

establish the occurrence of the sub-constancy case.

3.2. Discussion

Measure Rj represents—by construction—the ratio between

average costs of two different VRS scales of production.

Therefore, it immediately supplies quantitative information on

the degree of scale economies, which is unavailable in the Färe

and Grosskopf (1985) approach. Moreover, the use of a ratio

of two average costs avoids the need to compute a scale

elasticity measure. A ratio of average costs provides at the

same time information whose meaning is unambiguous and

more useful from the managerial point of view compared to

the practical indeterminacy of the concept of marginal cost in a

non-convex setting.

In our approach, 1 - Rj
* indicates the maximum decrease in

average cost that can be associated with a discrete variation

1 - cj,o in the scale of production. These two magnitudes

suffice to completely characterize the global economies of

scale of any cost-efficient DMU. This indicates the direction in

which the absolute minimum of the ray average cost can be

found.

Furthermore, the two ratios in question can also be

employed to infer the local behavior of the ray average cost

in any neighborhood of this DMU’s output vector, by

enumerating all of the frontier points which determine a

positive degree of scale economies, 1 - Rj[ 0, i.e., points

that are relative minima. In this sense, the method is able to

supply relevant information about organizational and technical

changes which ensure reductions in the average cost in any

interval of the current scale of operations.

Also the computational advantages of our approach are

noteworthy. It brings to cost analysis the same kind of

simplification accomplished by Soleimani-damaneh et al

(2006) and Soleimani-damaneh and Reshadi (2007) in pro-

duction analysis. Their methods do not apply to cost analysis

and furthermore do not allow for the global sub-constant case,

a case which it is wrongly labeled as constant (see Cesaroni

et al, 2017).

4. Empirical application

We apply the proposed method to a sample of companies

operating in the Italian local public transit industry. The

sample is especially relevant for two reasons: first, it is the

sample used for the estimates regarding the supply-side

conditions as presented in the official annual report on the

sector6; second, it is taken from an industry which is about to

undergo a significant restructuring in the scale of activity of

individual firms, as a result of a higher degree of market

contestability which should follow the recent establishment of

the National Transport Authority.

The data set consists of observations taken from the balance

sheets of 43 companies in the year 2012, the latest available.

These companies account for the 60% of the sector’s aggregate
5See Case 2 in Banker and Thrall (1992), p. 81. A numerical illustration

is given in Appendix 2. 6See part 2, p. 41 and following in Isfort et al (2014).
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supply. Scale economies in transport industries require to take

account of the simultaneous expansion of an output, in our

case the vehicle-kilometers travelled, and the size of the

transport network. As a proxy of this latter network variable,

we introduce the area served by a company as a second output.

On the input side, we consider three inputs expressed in real

terms: the number of company staff, the number of vehicles

and the quantity of a composite commodity representing the

consumption of fuel, energy, materials and spare parts. Each

company faces a specific input price vector made up by: the

average wage of its staff, the average depreciation of its stock

of vehicles and a price index for the composite intermediate

commodity. For confidentiality reasons, names of individual

operators cannot be disclosed: When refereeing to any single

company, we use the name Decision Making Unit (DMU) and

its number in our database.

While a few studies have appeared on the cost efficiency of

Italian urban transit, most recent studies use parametric

specifications and are therefore little useful for comparative

purposes (e.g., Ottoz et al, 2009; Piacenza, 2006 among

others). The only nonparametric study we are aware of is

meanwhile quite dated (see Levaggi, 1994). Therefore, a

comparative analysis is hard to make.

4.1. Estimates of global scale economies

This subsection illustrates the results obtained regarding the

measurement of global scale economies of individual compa-

nies. We first present estimates obtained in the FDH model

and then those due to an extension of the model based on a

selective replicability postulate, which can be inferred from

the former estimates.

In Table 1, we compare cost efficiency and average-cost

efficiency scores (CE and ACE, respectively) of the original

observations. We can note a remarkable difference between

the summary statistics of the two kind of efficiency measures,

which denotes a widespread diffusion of cost-scale ineffi-

ciency as witnessed by the ratio between the two means

reaching a 0.72 value and by the number of efficient units:

Only 3 of the 22 cost-efficient units exhibit cost-scale

efficiency.

The qualitative information on the nature of scale ineffi-

ciency and its breakdown according to the scale size of the

main output is shown in Table 2, where the abbreviations

DSE, ISE, CSE and GSCE stand for decreasing, increasing,

constant, and sub-constant scale economies, respectively. No

single case of global sub-constancy has been found, while the

40 cost-scale inefficient units are mainly operating under

decreasing rather than increasing scale economies, i.e., their

current scale of operations is larger/lower, respectively, than

that which minimizes the ray average cost.

Table 3 presents some characteristics of the observations

operating under constant scale economies. Two out of the

three OSSs have a size lower than 10 million vehicle-km and

act as a benchmark for some dominated unit, contrary to the

largest OSS (DMU 2) which does not dominate any unit.

Moreover, note that DMU 32 is the benchmark for the large

majority of cost-scale inefficient units (38 out of 40 times).

Moreover, the information displayed in Tables 2 and 3 can

be used to point out that the number of firms in a long-run

equilibrium of the industry, characterized by CRS cost

efficiency at the current aggregate output, is likely to be

substantially greater than the existing number of firms. In fact,

not only cost-scale inefficient units are concentrated mainly in

the decreasing regime, i.e., the scale-size range above that of

DMU 32 (9.2 million vehicle-km), but even the average output

size of these decreasing regime units exceeds by far that of the

units in the increasing regime, operating below DMU 32. In

other words, if the aggregate output of the cost-scale

inefficient units was to be produced according to the optimal

scale size, in order to minimize its total cost, the number of

firms should be increased.

Another interesting implication, which is more relevant at

the company level, regards the comparison between the cost

structure of the observed DMUs (defined by the percentages of

the actual cost due to each input,
pixiP
i

pixi
) and that of the

prevailing optimal scale size (DMU 32). The results are shown

in Table 4

Table 1 Comparison of efficiencies

CE ACE CE ACE

Summary statistics of efficiency scores DMU type
Minimum 0.4927 0.3278 Inefficient 21 40
Mean 0.8768 0.6321 Efficient 22 3
Maximum 1 1
Stand. Dev. 0.1609 0.1686

Table 2 Global scale economies

Vehicle-Km DSE ISE CSE GSCSE Total
(Millions) (# of units)

\5 1 7 1 0 9
5–10 1 10 1 0 12
10–20 10 0 0 0 10
20–40 8 0 1 0 9
[40 3 0 0 0 3
Total 23 17 3 0 43

Table 3 Optimal Scale Size (OSS) Characteristics

Vehicle-Km Service area Dominated units (#)
(millions) (km2)

DMU 9 5.36 2779.34 2
DMU 32 9.2 2275.42 38
DMU 2 31.6 11687.06 0
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The difference between the actual and the optimal cost

structure is very significant both in its uniformity (number of

positives/negatives) and in its amount. We remark that, when

compared to the prevailing optimal scale size, nearly all

DMUs exhibit: a higher percentage of staff cost (+11.6

percentage points on average), a lower percentage on vehicles

(-4.6 p.p.) and on the intermediate consumption commodity (-7

p.p.). Therefore, the managerial implications derived from

DMU 32 include, in addition to the variation of the output’s

scale size, the necessity of reorganizing the cost structure by

reducing the weight of staff and by increasing that of the

number of vehicles (input 2 with a direct impact on input 3 as

far as fuel and lubricating oil consumption are concerned) and

of their ordinary maintenance (spare parts which are part of

input 3).

Quite interestingly, by considering the DMUs projections on

the efficient frontier,7 the following three-dimensional graph

illustrates the complex behavior of the estimated cost function

in our non-convex technology. In Figure 3, the vertical axis

represents the frontier cost, while the axes in the horizontal

plane denote the two outputs service area and vehicle-km

produced, respectively. The chosen perspective should give an

idea of the alternation of concave and convex behavior of the

total cost with respect to outputs.

As far as the assumption of replicability is concerned, we

believe that it may turn out to be a deceiving hypothesis. In the

absence of specific and sound knowledge of the technical and

organizational characteristics of the production technology, it

can arbitrarily enlarge the number of CRS points of a

production technology. Therefore, to limit this kind of risk,

we draw on some information on the OSS characteristics and

impose the replicability assumption only for those of these

units falling in a suitable output range.8 From Table 3, we

conjecture that a relatively safe choice could be to introduce an

integer replicability of order 2 only for DMUs 9 and 32. Such

an extension of the FDH model yields 10 observations

operating under global sub-constant scale economies: These

are depicted in Table 5.

The Lambda 1 column reports the cj,o coefficient estimated

in the FDH model, while the next column (Lambda 2) presents

the analogous coefficient ensuing from the introduction of

replicability. The interpretation of these results is rather

straightforward. Take as an example DMU 41. While adopting

the optimal input mix of its OSS, this unit could either

decrease its scale of operations by 43% (measured in terms of

its OSS output) or increase it by nearly 29% to obtain a 40%

reduction in its average cost.

4.2. Estimates of local scale economies

Integer replicability of an appropriate order can introduce the

sub-constant scale economies case, but anyway its validity is

questionable. In this subsection, we are showing that global

sub-constant scale economies are in practice not necessary to

reach the conclusion that a firm, while changing its input mix,

can reduce its ray average cost by either increasing or

decreasing its scale of operations. To this purpose recall that,

for a single cost-efficient DMU j, we can describe the local

Table 4 Actual and optimal cost structures

Input 1 Input 2 Input 3

Average difference 0.116 -0.046 -0.070
Number of positives 42 4 1
Number of negatives 0 38 41

Figure 3 Estimated cost function.

Table 5 Global Sub-Constant Scale Economies (GSCSE) under
replicability

Unit Lambda 1 Lambda 2 ACE

DMU 3 1.1130 0.5565 0.7594
DMU 8 1.3674 0.6836 0.5858
DMU 13 1.9968 0.9984 0.7089
DMU 21 1.0290 0.5145 0.7537
DMU 27 1.9968 0.9984 0.7350
DMU 28 1.5151 0.7575 0.7805
DMU 31 1.1033 0.5516 0.6999
DMU 37 1.1130 0.5565 0.7150
DMU 41 1.4238 0.7119 0.5971
DMU 43 1.9968 0.9984 0.7191

7We are considering radial-efficient projections of the original observa-

tions in the sense of Podinovski (2004, p. 244): see his Definition 5.

8On the suitability of an upper bound in the replicability assumption, see

Tone and Sahoo (2003, pp. 171–172). Mairesse and Vanden Eeckaut

(2002) develop a similar argument in an FDH context.
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behavior of its ray average cost by first computing (Rj,cj,i) with
respect to each point i belonging to the efficient frontier and

then selecting those points that determine a positive degree of

scale economies (Rj\ 1). Such computations have been

performed for various units of the sample and reveal that, in

a non-convex technology, the global and local indicators of

scale economies can be in contrast with each other. In general

terms, we can define this contrast as a situation in which there

exists at least a relative minimum in the ray average cost

which is located in the opposite direction with respect to that

of the absolute minimum.

In the following figures, we illustrate the different types of

behavior of the ray average cost in the original FDH model for

various units. Each DMU under examination is located at the

point having coordinates (1,1), with Rj and cj,i being

represented on the vertical and the horizontal axis,

respectively.

Figure 4 reports a situation for DMU 5 in which the contrast

between local and global indicators does not occur. In fact, it

can be observed that each of the frontier points delivering a ray

average cost lower than one has cj,i[ 1: Both the global and

the local indicators point to the decreasing economies of scale

direction.

Conversely, Figure 5 illustrates some moderate contrast for

DMU 21. The global indicator is clearly situated in the

decreasing direction, slightly to the right of 1; nevertheless,

there exist two points in the increasing direction: The farthest

on the left gives a ray average cost (0.867) which is halfway

between 1 and the absolute minimum (0.754).

The case of a deep contrast is well described in Figure 6 that

illustrates DMU 8. While the global indicator is in the

decreasing direction (between 1 and 2), we can note that: a)

there are five points in the increasing direction; b) the most

efficient point in the increasing direction delivers a ray

average cost of 0.694, which is rather close to the absolute

minimum (0.586).

Finally, Figure 7 illustrates for DMU 12 a case of contrast

between globally increasing and locally decreasing economies

of scale. The absolute minimum of the ray average cost is

clearly in the increasing direction (cj,i\ 1) and is approxi-

mately equal to 0.5, but there is a point in the opposite

direction which is the nearest relative minimum and ensures a

0.72 ray average cost.

Besides the general possibility of obtaining reductions in the

ray average cost by both increasing and decreasing the scale of

operations, the comparison between local and global indicators

of scale economies illustrated so far brings to light two more

specific managerial implications. First, significant reductions

in the ray average cost that may not differ much from the one

corresponding to the absolute minimum (global indicator) can

be achieved within a smaller range of variation of the output’s

scale size (e.g., see the case of DMU 5). Second, this latter

variation can be in the opposite direction with respect to that of

the global indicator (e.g., see the case of DMU 12).

Figure 4 Local scale economies for DMU 5.

Figure 5 Local scale economies for DMU 21.

Figure 6 Local scale economies for DMU 8.
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Overall, the characteristics pointed out above in this section

become especially important when one considers that in the

short-run full adjustment of the firm’s scale of operations to

the optimum determined by the global indicator may be

hindered by the presence of adjustment costs, financial and

market-demand constraints.

5. Conclusions

This work has introduced a convenient method for the

classification of scale economies in non-convex production

models, which takes into account the global sub-constant scale

economies case and solves the difficulties typical for the

approach of Färe and Grosskopf (1985). The application of this

method has proven empirically that the contrast between

global and local indicators [as revealed by Podinovski (2004)]

extends to cost analysis. As far as the managerial implications

are concerned, the empirical analysis has, moreover, found out

that this kind of contrast can de facto provide an individual

firm with a wide menu of choices for restructuring its scale of

operations and input mix so as to achieve significant

reductions in unit costs of production.

Future research will have to investigate the existence of

necessary conditions for the occurrence of sub-constant scale

economies, as well as the possible different behavior of the ray

average cost in convex and non-convex technologies—which

may well prove that the sub-constant case and the contrast

between local and global indicators cannot occur in convex

analysis.
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Appendix 1: Derivation of cost efficiency scores
of the numerical example

Here we present the derivation from model (2) of the cost

efficiency scores shown in Section 2.2. Consider first DMU A,

i.e., j = A, and compute the cost ratios
pjxh
pjxj

for h = A, B, C,

obtaining, respectively, 1; 7
3:5 ;

5
3:5. The zh coefficient can be

determined as
yj
yh
which satisfies the output constraint yhzh C yj

with the equality sign. In the case under examination, we have

zA ¼ 1; zB ¼ 1:5
3
; zC ¼ 1:5

2
and min

pAxhzh
pAxA

¼ 1 for zA and zB:

both coefficients are a CRS solution to problem (2) of DMU A

because no constraint has been imposed on zh. The same

procedure can be applied to DMU B, i.e., j = B, thus obtaining

a CRS cost efficiency score equal to 1, while for DMU C it can

be easily checked that this score is min
pCxhzh
pCxC

¼ 14
15
—corre-

sponding to zA ¼ 2
1:5 and zB ¼ 2

3
.

Now we turn to the calculation of the NIRS cost efficiency

score of DMU C, j = C. The cost ratios for h = A,B,C are,

respectively, 3:5
5
; 7
5
; 1. The NIRS technology requires zh B 1;

therefore, we consider only zB ¼ 2
3
and zC ¼ 1 which yields

the NIRS cost efficiency score min
pCxhzh
pCxC

¼ 14
15
, corresponding

to zB.

Appendix 2: Illustration of the presence of multiple
solutions in case (i)

Condition (i) in Proposition 1 defines the CRS case, which in

presence of multiple solutions to the minimization of (3)

implies that, in addition to a solution Rj
* = 1 and cj,o = 1,

there may exist some other solution where Rj
* = 1 and

cj,o = 1 (see Banker and Thrall, 1992, p. 81). The numerical

example of the preceding section—regarding DMU A—

illustrates precisely this outcome. In fact, we remark (see

Section 3.1) that cj,o = zj
*, where the second member denotes

the CRS solution to program (2). As a consequence, DMU A

has RA
* = 1 at both cA,A = 1 and cA;B ¼ 1:5

3
; according to case

(i) it is classified as featuring global constant scale economies.
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