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Abstract. Starting from the existing output-oriented plant capacity measure, this paper proposes a
new input-oriented plant capacity measure. Furthermore, we empirically illustrate both input-
oriented and output-oriented decompositions of technical efficiency integrating these technical
concepts of capacity utilization. In particular, we pay attention to the impact of convexity of the tech-
nology on both input-oriented and output-oriented plant capacity measures.

1. INTRODUCTION

Empirical studies on efficiency and productivity grounded in frontier specifica-
tions are abundantly available and these frontier methodologies have become
standard empirical tools that serve a variety of academic, regulatory and mana-
gerial purposes. Apart from its prolific application in the academic literature
analysing private and public sector performance-related issues (see e.g. Liu
et al. (2013) for a survey of empirical frontier applications), the implementation
of incentive regulatory mechanisms using frontier-based performance bench-
marks is rather widespread in liberalized network industries (e.g. for the electric-
ity sector see the Jamasb and Pollitt (2001) survey). To cite but one example of a
managerial application, the Sherman and Ladino (1995) study documents how a
US bank employed a basic frontier model to find sufficient savings in its branch
network to fund its strategy of expansion.

Many empirical applications take a long-run perspective in that it is assumed
that all inputs and/or outputs are under managerial control. While a focus on a
sub-vector of, for example, inputs is straightforward, the large majority of the
frontier-based literature, in fact, ignores the notion of capacity utilization.
Consequently, a part of the measured amount of inefficiency may well be due
to the short-run fixity of some of the inputs. Caves (2007) argues that a variety
of efficiency concepts and capacity notions have yielded a rich body of empirical
knowledge on firm behaviour that is part of the so-called old industrial organi-
zation literature. There are, indeed, many examples of empirical research on
organizations focusing on capacity utilization. For example, Ghemawat and
Nalebuff (1985) show how the probability of firm survival depends on the ability
to adjust capacity in order to keep production costs under control when facing
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changes in demand. Managing capacity utilization smoothly is an organiza-
tional factor of strategic value.

This paper concentrates on the development of plant capacity measures using
nonparametric frontier technologies. More specifically, this paper makes two
contributions to the literature. First, it proposes a new input-oriented plant
capacity measure that complements the existing output-oriented counterpart,
as applied by, for instance, Valdmanis et al. (2004). Second, we empirically
explore the differences between both these plant capacity notions using tradi-
tional convex as well as nonconvex technology specifications.

The paper is structured as follows. Section 2 offers a brief literature review on
the different capacity notions around in the literature and their use in a nonpara-
metric frontier context. It devotes some particular attention to the small litera-
ture having utilized the plant capacity concept. The next section introduces
technologies and distance functions allowing us to define the traditional
output-oriented plant capacity measure as well as its new input-oriented coun-
terpart. Then, the new input-oriented plant capacity measure is illustrated using
a numerical example. An empirical section illustrates these new plant capacity
measures for both convex and nonconvex nonparametric frontier technologies
using a sample of Canadian farms specialising in milk production. Conclusions
are drawn in a final section.

2. LITERATURE REVIEW

2.1. Economic and technical capacity utilization: A taxonomy

The economic literature contains a variety of capacity notions. A useful taxon-
omy is to distinguish between technical (engineering) and economic (mainly
cost-based) capacity concepts (see e.g. Johansen, 1968; Nelson, 1989). We first
pay attention to the technical or engineering notion, and then to the economic
concepts using a cost function approach.1

Johansen (1968) followed a technical approach by introducing the notion of
plant capacity.2 Plant capacity is defined as the maximum output vector that
can be produced with existing equipment with unrestricted variable inputs per
unit of time. This capacity notion clearly takes an engineering perspective. Färe
et al. (1989a,b) transpose this notion into a multi-output frontier framework
using some combination of output efficiency measures (see also Färe et al., 1994).

At least three ways of defining a cost-based notion of capacity have been pro-
posed in the literature (see Nelson, 1989). Each of these notions aims to isolate
the short-run excessive or inadequate utilization of existing fixed inputs (e.g. cap-
ital stock). A first notion is defined in terms of the output produced at short-run

1 Briec et al. (2010) show that it is possible to develop dual capacity measures using nonparametric
technologies for the case of other objective functions: e.g. profit maximization (following Squires,
1987). The case of revenue maximization (see Segerson and Squires, 1995) remains to be developed.
2 Johansen (1968) also proposes a synthetic capacity concept as the maximal output with existing
plant and equipment while accounting for the restricted availability of variable inputs. This seems
to correspond to technical efficiency.
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minimum average total cost given existing input prices (see Hickman (1964),
among others). A second definition focuses on the outputs for which short-run
and long-run average total costs curves are tangent (e.g. Segerson and Squires,
1990). This tangency point notion is known under two variations depending
on what are supposed to be the decision variables. One notion assumes that
outputs are constant and determines optimal variable and fixed inputs. Another
notion assumes that fixed inputs cannot adjust, but outputs, output prices and
fixed input prices do adjust. A third and final definition of economic capacity
considers the output determined by the minimum of the long-run average total
costs (e.g. Cassels, 1937; Klein, 1960). A brief summary of how these different
economic capacity concepts can be transposed in a nonparametric frontier
framework is found in De Borger et al. (2012).

Onemotivation for developing an input-oriented plant capacitymeasure is that
it facilitates comparison with traditional and widely used economic notions based
on the cost function. In this perspective, the currently available output-oriented
plant capacity measure would then be more naturally compared with the more
scarcely used revenue-based capacity notion (e.g. Segerson and Squires, 1995).

2.2. Plant capacity: A selective review

Estimates of plant capacity have been reported regularly in the economic litera-
ture, although it is hard to deny that the notion of plant capacity is nowhere as
popular as some of the cost-based notions of capacity. We offer a selection of
plant capacity estimates in a variety of economic sectors.

Magnussen and Rivers Mobley (1999) compare Norwegian public and highly
regulated hospitals to the Californian private and less regulated hospitals. Key
findings are that the Norwegian hospitals have higher plant capacity utilization,
and that the excess capacity in California depends on competitive pressures.
Karagiannis (2015) analyses Greek public hospitals in 2 distinct years (1993
and 2002), while Kerr et al. (1999) estimate plant capacity of 23 acute hospitals
in Northern Ireland comparing two 3-year periods. Valdmanis et al. (2010) com-
pute state-wide hospital capacity in Florida based on the whole hospital popula-
tion as part of an emergency preparedness plan. Starting from a scenario
involving patient evacuations from Miami due to a major hurricane event, they
assess whether hospitals in proximity to the affected market can absorb the
excess patient flow. Finally, Valdmanis et al. (2004) estimate plant capacity uti-
lization in 68 Thai public hospitals in 1999 with a focus on the eventual trade-
offs between services for the poor and the nonpoor. They find that hospitals
are generally operating at relatively high capacity (90–95 percent) and that there
is no significant difference between capacity utilization across three types of
hospitals and across different regions.

Felthoven (2002) analyses the impact of the American Fisheries Act (AFA) of
1998 on the Pollock fishery and finds that decommissioned vessels exhibited a
lower level of technical efficiency and that the capacity utilization of the
AFA-eligible vessels increased after the law came into effect. Kirkley et al.
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(2002) focus on the US North Atlantic sea scallop fishery centred in Georges
Bank and various Mid-Atlantic resource areas with the dredge as dominant gear
type. They report a plant capacity of approximately 33% using stochastic fron-
tiers and a 22% rate with a nonparametric model, while there does not seem to
be a clear trend in plant capacity over time. Van Hoof and De Wilde (2005) es-
timate capacity of the Dutch beam-trawling fleet over the period 1992–1999,
finding an overall average of 0.83 plant capacity. They also explain the varia-
tions in plant capacity using a dummy for the home port, the price of plaice,
the quotas for sole, the spawning stock for both plaice and sole, and the fleet
sizes. Vestergaard et al. (2003) obtain for a small sample of 69 Danish gill-net
vessels in 1993 a high average plant capacity score of 0.92. Walden and
Tomberlin (2010) estimate plant capacity for 71 steel-hulled vessels using bot-
tom trawl gear fishing off the north-eastern US coast in the Exclusive Economic
Zone during 2006. They find an overall capacity utilization rate using a convex
model of only 52%, while a nonconvex model obtains a rate of 84%: the latter
result is deemed more credible.

Apart from these studies focusing on health care and fisheries, we are only
aware of one study focusing on another economic sector. Indeed, Sahoo and
Tone (2009) analyse plant capacity as well as other capacity notions for the
Indian banking sector. All these studies hide a large variation in methodological
choices. For instance, Felthoven (2002) and Kirkley et al. (2002) estimate plant
capacity using both nonparametric and stochastic frontier analysis. As another
example, while many articles limit themselves to just measuring plant capacity,
Karagiannis (2015) as well as Van Hoof and De Wilde (2005) also explain the
variations in plant capacity using different regression methods. As a final case,
Vestergaard et al. (2003) also develop partial plant capacity measures using
output-specific nonradial efficiency measures.

These plant capacity estimates have also been used as parameters in a so-
called short-run industry model attempting to reallocate outputs and resources
across production units so as to reduce excess capacity levels at the industry
level. Dervaux et al. (2000) apply such a model to reorganize French surgery
units, while Kerstens et al. (2006), Van Hoof and De Wilde (2005) as well as
Yagi and Managi (2011) explore its application in a fishery context. Another
methodological refinement based on the plant capacity notion is its inclusion
in a decomposition of the Malmquist productivity index (see De Borger and
Kerstens (2000) and the extension by Bye et al. (2009)).

3. PLANT CAPACITY: DEFINITIONS

3.1. Distance functions, efficiency measures and plant capacity notions

3.1.1. Distance functions and efficiency measures
To clear the ground, we start by defining technology and some basic notation.
Denoting an n-dimensional input vector (x ∈ℝn

+) and an m-dimensional output
vector (y ∈ℝm

+), the production possibility set or technology is defined as follows:
S = {(x,y) ∣ x can produce y}. The input set associated with S denotes all input
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vectors x ∈ℝn
+ capable of producing a given output vector y ∈ℝm

+: L(y) = {x ∣
(x,y) ∈ S}. In an analogous way, the output set associated with S denotes all out-
put vectors y ∈ℝm

+ that can be produced from a given input vector x ∈ℝn
+:

P(x) = {y ∣ (x,y) ∈ S}. Furthermore, it is often useful to partition the input vec-
tor into a fixed and variable part (x = (xf,xv)). By analogy, we define a short-run
technology Sf = {(xf,y) ∣ xf can produce y} and the corresponding input set
Lf(y) = {xf ∣ (xf,y) ∈ Sf} and output set Pf(xf) = {y ∣ (xf,y) ∈ Sf}.

The input distance function offers a complete characterization of the input set
L(y) and is defined as follows:

Di x; yð Þ ¼ max γ : γ ≥0; x=γ∈L yð Þf g : (1)

Next, one can define the radial input efficiency measure as:

DFi x; yð Þ ¼ min λ j λ≥0; λ x∈L yð Þf g : (2)

The latter measure is the inverse of the input distance function (DFi(x,y) = [Di(x,
y)]�1). Its main properties (e.g. Hackman, 2008) are that it is situated between
zero and unity (0 < DFi(x,y) ≤ 1), with efficient production on the boundary
(isoquant) of the input set L(y) represented by unity. Furthermore, the radial in-
put efficiency measure has a cost interpretation.

The output distance function offers a complete characterization of the output
set P(x) and it can be defined as follows:

Do x; yð Þ ¼ min μ : μ≥0; y=μ∈P xð Þf g : (3)

Next, one can define the radial output efficiency measure as:

DFo x; yð Þ ¼ max θ : θ≥0; θy∈P xð Þf g : (4)

The latter measure is the inverse of the output distance function (DFo(x,
y) = [Do(x,y)]

�1).3 Its main properties (e.g. Hackman, 2008) are that it is
larger than or equal to unity (DFo(x,y) ≥ 1), with efficient production on the bound-
ary (isoquant) of the output set P(x) represented by unity. Furthermore, the radial
output efficiencymeasure has a revenue interpretation. By analogy, denote the out-
put distance function and radial output efficiency measure of the short-run output
set Pf(xf) by Do

f (xf,y) and DFo
f (xf,y), respectively. Then, Df

o x f ; y
� � ¼

min μ : μ≥0; y=μ∈P f x f
� �� �

and DF f
o x f ; y
� � ¼ max θ : θ≥0; θy∈P f

�
x f
� �g:

3.1.2. Output-oriented plant capacity utilization
We now first recall the definition of the output-oriented plant capacity utiliza-
tion measure (see Färe et al., 1989a,b). An output-oriented measure of plant

3 There are also definitions around in the literature whereby the output-oriented efficiency measure
equals the output distance function.
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capacity utilization requires solving an output efficiency measure relative to both
a standard technology and the same technology without restrictions on the avail-
ability of variable inputs. Plant capacity utilization in the outputs (PCUo(x,x

f,y))
is defined as:

PCUo x; x f ; y
� � ¼ DFo x; yð Þ

DF f
o x f ; yð Þ ; (5)

whereDFo(x,y) andDF f
o x f ; y
� �

are output efficiency measures relative to technol-
ogies including respectively excluding the variable inputs as defined before.
Notice that 0 < PCUo(x,x

f,y) ≤ 1, because 1 ≤ DFo(x,y) ≤ DFo
f (xf,y). Thus,

output-oriented plant capacity utilization has an upper limit of unity, but no
lower limit.

This leads to the following basic output-oriented decomposition:

DFo x; yð Þ ¼ DF f
o x f ; y
� �

:PCUo x; x f ; y
� �

: (6)

Thus, the traditional output-oriented efficiency measure DFo(x,y) can be
decomposed into a biased plant capacity measure DF f

o x f ; y
� �

and an unbiased
plant capacity measure PCUo(x,x

f, y), following the terminology introduced by
Färe et al. (1989a,b, 1994). We explain these notions with the help of Figure 1.

Figure 1 attempts to develop the intuition behind both the output-oriented and
input-oriented plant capacity measures in a single variable input and output
space. The total product curve for given fixed inputs is the polyline abcd and its
horizontal extension at d. Observations are denoted by squares and projection
points by circles.We focus on observation e. We start by explaining the geometric
intuition behind the output-oriented plant capacity measure and its components.

The output-oriented plant capacity measure compares point e to its vertical
projection point e000 on the frontier on the line segment cd, and also compares
the translated point e0 (which consumes more variable inputs) to its vertical

Figure 1. Total product curve with input and output-oriented plant capacity
measures.
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projection point on the horizontal frontier segment emanating from point d with
maximal outputs. The traditional output-oriented efficiency measure DFo(x,y)
is, therefore, represented by the ratio of distances 0″e000/0″e (≥ 1). The biased
plant capacity measure DF f

o x f ; y
� �

starts measuring from the translated point
e0. This translated point has an identical output level as point e, but without con-
straints on its amount of variable inputs it manages to generate the maximum
output level at point d. Therefore, the biased plant capacity measure
DF f

o x f ; y
� �

is represented by the ratio of distances 00d/00e0 (≥ 1). This biased
plant capacity measure correctly reveals the maximal output available (repre-
sented by point d), but it still starts from an inefficient point (represented by
point e0). The unbiased plant capacity measure PCUo(x,x

f,y), as the ratio of
both these efficiency measures, is represented by the ratio of distances (0″e000/
0″e)/(00d/00e0). Because the ratios 0″e and 00e0 are identical, this simplifies to
the ratio 0″e000/00d (≤ 1). Thus, the unbiased plant capacity measure correctly
compares the maximum output e000 that can be reached starting from point e
with the maximal output d that can be reached starting from the translated point
e0. The exact position of point e (or its translation e0) and, thus, its efficiency sta-
tus, does not influence this plant capacity measurement for a given level of var-
iable inputs. The maximal output d can be labelled the plant capacity output.
Obviously, this unbiased plant capacity measure PCUo(x,x

f,y) is linked to the
distance e000d0, where the point d0 is the translation from the maximal output at
point d to the output level comparable with point e.

We can now also explain why 0<PCUo(x,x
f,y) ≤ 1. Imagine that point ewould

shift somewhat to the right (say anywhere on the line segment ee0, but not to point
e0) and be capable of generating a somewhat higher maximal output than the one
indicated by point e000. Then, the distance to the plant capacity output (point d)
would become shorter than the distance e000d0 and, hence, PCUo(x,x

f,y) would
increase. Obviously, the reverse would be true if point e would shift somewhat
to the left and be capable of generating a somewhat lower maximal output than
the one indicated by point e000: then, PCUo(x,x

f,y) would decrease.
We can now also explain when PCUo(x,x

f,y) = 1: imagine that point e would
shift to the right to point e0; then the distance e000d0 would vanish. Otherwise stated,
in this case there is no longer any difference between the traditional output-
oriented efficiency measure DFo(x,y) and the biased plant capacity measure
DF f

o x f ; y
� �

: both would measure an identical ratio of distances; hence PCUo(x,
xf,y) becomes unity. Note that the latter result is independent of the efficient or
inefficient nature of the point considered, because we have already shown that
the efficiency status does not influence plant capacity measurement. Thus, the
output-oriented plant capacity utilization has an upper limit of unity, but no lower
limit (i.e. this lower limit is determined by the empirical configuration of the data).

3.1.3. Input-oriented plant capacity utilization: A new definition
We now turn to the new definition of the input-oriented plant capacity measure.
Plant capacity utilization in the inputs (PCUi(x,x

f,y)) is defined as:
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PCUi x; x f ; y
� � ¼ DFSR

i x f ; xv; y
� �

DFSR
i x f ; xv; 0ð Þ ; (7)

where DFSR
i x f ; xv; y
� �

and DFSR
i x f ; xv; 0
� �

are both sub-vector input efficiency
measures reducing only the variable inputs relative to the technology,
whereby the latter efficiency measure is evaluated at a zero output level.
Obviously, this requires the following three definitions: DFSR

i x f ; xv; y
� � ¼

min λ : λ≥0; x f ; λxv
� �

∈L yð Þ� �
is a sub-vector input efficiency measure reducing

variable inputs, L(0) = {x ∣ (x,0) ∈ S} is the input set with zero output level, and
DFSR

i x f ; xv; 0
� � ¼ min λ : λ≥0; x f ; λxv

� �
∈L 0ð Þ� �

is the sub-vector input effi-
ciency measure reducing variable inputs evaluated relative to this input set with a
zero output level. Notice that PCUi(x,x

f,y) ≥ 1, because 0 ≤ DFSR
i x f ; xv; 0
� �

≤
DFSR

i x f ; xv; y
� �

≤1.Thus, input-orientedplant capacity utilizationhas a lower limit
of unity, but no upper limit.

This leads to the basic input-oriented decomposition:

DFSR
i x f ; xv; y
� � ¼ DFSR

i x f ; xv; 0
� �

:PCUi x; x f ; y
� �

: (8)

Thus, the traditional sub-vector input-oriented efficiency measure
DFSR

i x f ; xv; y
� �

is decomposed into a biased plant capacity measure
DFSR

i x f ; xv; 0
� �

and an unbiased plant capacity measure PCUi(x,x
f,y). We

explain the geometric intuition behind these notions in two steps: the basic rela-
tions are developed with the help of Figure 1, and the need for sub-vector vari-
able input-oriented efficiency measures in defining the input-oriented plant
capacity measure is explained with the help of Figure 2.

The sub-vector input-oriented plant capacity measure compares point e to its
horizontal projection point e0000 on the frontier on the line segment bc, and also
compares the translated point e″ (which consumes equal amounts of variable
inputs but yields a zero output level) to its horizontal projection point on the

Figure 2. Isoquant with input and output-oriented plant capacity measures.
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vertical frontier segment ab with zero outputs. The traditional sub-vector input-
oriented efficiency measure DFSR

i x f ; xv; y
� �

is, therefore, represented by the ratio
of distances 0000e0000/0000e (≤ 1). The biased sub-vector plant capacity measure
DFSR

i x f ; xv; 0
� �

starts measuring from the translated point e″. This translated
point has identical variable inputs compared to point e, but has a zero output
level: it manages to generate the minimum output level at point a above which
positive output production levels start. Therefore, the biased plant capacity mea-
sure DFSR

i x f ; xv; 0
� �

is represented by the ratio of distances 0a/0e″ (≤ 1). This
plant capacity measure correctly reveals the minimal variable input level avail-
able (represented by point a) for a given minimal (= zero) output level, but it still
starts from an inefficient point (represented by point e″). The unbiased plant
capacity measure PCUi(x,x

f,y), as the ratio of both these efficiency measures,
is represented by the ratio of distances (0000e0000/0000e)/(0a/0e″). Because the ratios
0e″ and 0000e are identical, this simplifies to the ratio 0000e0000/0a (≥ 1). Thus, the
unbiased plant capacity measure correctly compares the minimal amount of var-
iable inputs e0000 compatible with current output levels starting from point e with
the minimal amount of variable inputs a compatible with a zero output level
starting from the translated point e″. The exact position of point e (or its transla-
tion e″) and, thus, its efficiency status, does not influence this plant capacity mea-
surement for a given level of outputs. The minimal (in casu zero) output a can be
labelled the plant capacity output. Evidently, this unbiased plant capacity mea-
sure PCUi(x,x

f,y) is linked to the distance b0e0000, where the point b0 is the transla-
tion from the output at point b to the output level comparable with point e.

We are now also in a position to explain why PCUi(x,x
f,y) ≥ 1. Imagine that

point e would shift somewhat up (say anywhere on the line segment ee000) and be
capable of generating a somewhat higher minimal variable input than the one
indicated by point e0000. Then, the distance to the plant capacity output (point
a) would become larger than the distance b0e0000 and, hence, PCUi(x,x

f,y) would
increase. Obviously, the reverse would be true if point e would shift somewhat
below and be capable of generating a somewhat lower variable input than the
one indicated by point e0000: then, PCUi(x,x

f,y) would decrease.
We can now also explain when PCUi(x,x

f,y) = 1: imagine that point e would
shift below to point e″; then the distance b0e0000 would vanish. Otherwise stated, in
this case there is no longer any difference between the traditional sub-vector
input-oriented efficiency measure DFSR

i x f ; xv; y
� �

and the biased plant capacity
measure DFSR

i x f ; xv; 0
� �

: both would measure an identical ratio of distances;
hence, PCUi(x,x

f,y) becomes unity. Note that the latter result is independent
of the efficient or inefficient nature of the point considered, because we have
already shown that the efficiency status does not influence plant capacity mea-
surement. Thus, the input-oriented plant capacity utilization measure has a
lower limit of unity, but no upper limit (i.e. this upper limit is determined by
the empirical configuration of the data).

Figure2develops thegeometric intuitionbehind theneed for sub-vectorvariable
input-oriented efficiency measures in defining the input-oriented plant capacity
measure. The isoquant denoting the combinations of fixed and variable inputs
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yielding a given output levelL(y) is represented by the polyline abcd and its vertical
and horizontal extensions at a and d, respectively. We focus on observation e to
illustrate first the output-oriented plant capacity utilization measure: for a given
fixed input vector, it scales up the use of variable inputs to reach a translated point
e0 that allowsmaximizing the vector of outputs. For the development of the input-
oriented plant capacitymeasure, it, therefore, seems logical to look for a reduction
in variable inputs for given fixed inputs towards the translated point e″ that is situ-
ated outside the isoquant L(y) because it produces an output vector of zero (it is
compatible with the isoquant L(0) that is situated lower).

In brief, while the output-oriented plant capacity measure evaluates capacity
by contrasting the frontier outputs for a given observation with respect to the
maximal outputs available (represented by the horizontal segment starting at
point d of the frontier in Fig. 1) net of inefficiency, the input-oriented plant
capacity measure assesses capacity by contrasting the minimum variable inputs
for an observation with given outputs with respect to the minimal variable
inputs for a translated observation producing a zero output (represented by
point a on the vertical segment ab of the frontier in Fig. 1), also net of
inefficiency. Otherwise stated, while the output-oriented plant capacity measure
compares output levels relative to the maximum level of outputs available, the
input-oriented plant capacity measure compares variable input levels relative
to the amount of variable inputs compatible with a zero output level.

3.2. Nonparametric technologies: Definitions

The choice for nonparametric frontier technologies is related to the fact that pri-
mal capacity notions (like plant capacity) are difficult to estimate using tradi-
tional parametric specifications.4 Therefore, plant capacity is measured
relative to a nonparametric frontier technology imposing strong disposability
in inputs and outputs, convexity and assuming variable returns to scale:

SC ¼ x; yð Þ : x≥ ∑
K

k¼1
xk zk ; y≤ ∑

K

k¼1
yk zk ; ∑

K

k¼1
zk ¼ 1; zk≥0

� �
: (9)

In view of the importance of nonconvexities in production stressed in Tone
and Sahoo (2003) and confirmed in the context of plant capacity estimation by
Walden and Tomberlin (2010), we also employ a nonconvex variable returns-
to-scale technology:

SNC ¼ x; yð Þ : x≥ ∑
K

k¼1
xk zk ; y≤ ∑

K

k¼1
yk zk ; ∑

K

k¼1
zk ¼ 1; zk∈ 0; 1f g

� �
; (10)

which only differs from the previous technology in that the activity vector (z) is
restricted to be a binary integer.

4 For instance, Färe (1984) shows that a primal capacity notion cannot be obtained for certain pop-
ular parametric specifications of technology (e.g., the Cobb–Douglas).
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For the sakeof clarity,weexplicitly add the two linearprogrammingmodels that
need to be computed to obtain the traditional output-oriented plant capacitymea-
sure. To simplify matters, we only treat the case of the traditional convex technol-
ogy (9): the case of the nonconvex technology (10) is similar. For an evaluated
observation (xo,yo), one can obtain the radial outputmeasureDFo(x,y) as follows:

DFo xo; yoð Þ ¼ max
θ; z

θ

s:t: ∑
K

k¼1
ykmzk≥θy

o
m m ¼ 1; :::;M ;

∑
K

k¼1
xknzk≤xon n ¼ 1; :::;N ;

∑
K

k¼1
zk ¼ 1;

zk≥0; θ≥0; k ¼ 1; :::;K:

(11)

The efficiency measureDF f
o x f ; y
� �

is computed for observation (xo,yo) as:

DF f
o x fo; yo
� � ¼ max

θ; z
θ

s:t: ∑
K

k¼1
ykmzk≥θy

o
m m ¼ 1; :::;M ;

∑
K

k¼1
x fknzk≤x

fo
n n ¼ 1; :::;N f ;

∑
K

k¼1
zk ¼ 1;

zk≥0; θ≥0; k ¼ 1; :::;K:

(12)

Note that there are no input constraints on the variable inputs.
Turning now to the new input-oriented plant capacity measure, one computes

the radial sub-vector input measure DFSR
i x f ; xv; y
� �

for an evaluated observation
(xo,yo) as follows:

DFSR
i x fo; xvo; yo
� � ¼ min

λ; z
λ

s:t: ∑
K

k¼1
ykmzk≥y

o
m m ¼ 1; :::;M ;

∑
K

k¼1
x fknzk≤x

fo
n n ¼ 1; :::;N f ;

∑
K

k¼1
xvknzk≤λx

vo
n n ¼ 1; :::;Nv; N f þ Nv ¼ N ;

∑
K

k¼1
zk ¼ 1;

zk≥0; λ≥0; k ¼ 1; :::;K:

(13)
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The sub-vector efficiency measureDFSR
i x f ; xv; 0
� �

is obtained for observation (xo,
yo) by solving:

DFSR
i x fo; xvo; 0
� � ¼ min

λ; z
λ

s:t: ∑
K

k¼1
ykmzk≥0 m ¼ 1; :::;M ;

∑
K

k¼1
x fknzk≤x

fo
n n ¼ 1; :::;N f ;

∑
K

k¼1
xvknzk≤λx

vo
n n ¼ 1; :::;Nv; N f þ Nv ¼ N ;

∑
K

k¼1
zk ¼ 1;

zk≥0; λ≥0; k ¼ 1; :::;K:

(14)

Note that the observed output levels on the right-hand side of the output con-
straints are set equal to zero. The determination of input utilization rates for
the variable inputs is straightforward in the output-oriented case (e.g. Färe
et al., 1994: Section 10.3), the determination of optimal variable inputs is equally
trivial in this input-oriented case.

Comparing the linear programs (11) to (14), two key observations can be
made. First, the radial output efficiency measure in equations (11) and (12) looks
for expansions in all output dimensions, while the radial input efficiency mea-
sure in equations (13) and (14) looks for reductions in the variable inputs only,
while accounting for the input constraints related to the fixed inputs. The latter
is in line with the need for a sub-vector approach explained in Figure 2 above.
Second, the linear program in equation (12) is different from the linear program
in equation (11) in that no input constraints related to the variable input dimen-
sions are included. In terms of Figure 1, the purpose of removing the constraints
with the current allocation of variable inputs is to be able to translate the obser-
vation e into the direction of point e0 in an effort to seek the maximum output
available in point d. The linear program in equation (14) is different from the lin-
ear program in equation (13) in that the output constraints are now set at a zero
level. In terms of Figure 1, the sub-vector efficiency measure looks for reductions
in variable inputs to be able to translate the observation e into the direction of
point e0000 and beyond in an effort to seek the minimum amount of variable
inputs compatible with a zero output level at point a.

4. NUMERICAL ILLUSTRATION

Consider a numerical example with a single fixed input, two variable inputs and
a single output containing 16 observations. The data is provided in the first five
columns of Table 1. The projection of the efficient frontier (assuming a convex
technology) in the input–output space containing the two variable input dimen-
sions and the output dimension is illustrated in Figure 3. For this illustration,
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fixed input is set to a high enough value (at least 3 with the current data) to
assure all observations being considered in the construction of the frontier.
The frontier is made slightly transparent allowing us to observe interesting
points behind this frontier. All initial observations are clearly visible except for
those occluded by the vertical plane.

To illustrate the new input-oriented capacity utilization measure (7), consider
the additional point a in Figure 3 with xf=3, xv= (7, 5) and y=4. The short-run
efficiency occurring in the numerator of equation (7) is computed using
equation (13). For point a, this results in DFSR

i x f ; xv; y
� � ¼ 0:7910 indicating

the allowable radial contraction of the variable inputs. When applied, this con-

traction leads to point b in Figure 3. In fact, DFSR
i x f ; xv; y
� � ¼ cbj j

caj j. The short-run
efficiency in the denominator of equation (7) is obtained using equation (14).
For point a, this yields DFSR

i x f ; xv; 0
� � ¼ 0:6119. This value can be observed in

Figure 3 as the ratio DFSR
i x f ; xv; 0
� � ¼ oej j

odj j . Combination of both efficiencies

using equation (7) leads to the input-oriented capacity utilization:

PCUi x; x f ; y
� � ¼ DFSR

i x f ; xv; y
� �

DFSR
i x f ; xv; 0ð Þ ¼

0:7910
0:6119

¼ 1:2927:

Note that this value can be considered as the ratio PCUi x; x f ; y
� � ¼ cbj j

oej j because
|ca|=|od|.

Table 1. Numerical example: Input-oriented plant capacity utilization for convex
(C) and nonconvex (NC) technologies

DFSR
i x f ; xv; y
� �

DFSR
i x f ; xv; 0
� �

PCUi(x, x
f, y)

Number xf xv1 xv2 y C NC C NC C NC

1 2 1.0 7.0 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 2 3.0 6.0 3 0.8542 1.0000 0.8542 1.0000 1.0000 1.0000
3 2 3.5 6.5 3 0.7664 0.9231 0.7664 0.9231 1.0000 1.0000
4 2 4.5 4.0 3 0.8723 1.0000 0.8723 1.0000 1.0000 1.0000
5 2 5.0 4.5 3 0.7810 0.9000 0.7810 0.9000 1.0000 1.0000
6 2 5.5 2.0 3 0.9535 1.0000 0.9535 1.0000 1.0000 1.0000
7 2 6.0 1.0 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
8 2 7.5 4.0 3 0.6308 0.7333 0.6308 0.7333 1.0000 1.0000
9 3 3.0 9.5 5 1.0000 1.0000 0.6260 0.7368 1.5976 1.3571
10 3 10.0 1.0 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
11 3 4.5 9.0 5 0.9086 1.0000 0.5694 0.6667 1.5957 1.5000
12 3 5.5 10.5 5 0.7651 0.8571 0.4795 0.5714 1.5955 1.5000
13 3 6.5 6.5 5 0.9132 1.0000 0.5734 0.6923 1.5924 1.4444
14 3 7.5 7.5 5 0.7914 0.8667 0.4970 0.6000 1.5924 1.4444
15 3 9.0 5.0 5 0.8251 1.0000 0.5190 0.6111 1.5899 1.6364
16 3 10.0 9.0 5 0.6216 0.7222 0.3905 0.4500 1.5920 1.6049
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If the output of point a is increased from 4 to 4.5 (i.e. it now takes on posi-
tion a0 in Fig. 3), then the numerator in equation (7) increases to

DFSR
i x f ; xv; y
� � ¼ c0b0j j

c0a0j j ¼ 0:8823 while the denominator remains unchanged.

Consequently, the input-oriented capacity utilization also increases to:

PCUi x; x f ; y
� � ¼ DFSR

i x f ; xv; y
� �

DFSR
i x f ; xv; 0ð Þ ¼

0:8823
0:6119

¼ 1:4418:

This new value corresponds with the ratio PCUi x; x f ; y
� � ¼ c0b0j j

oej j . Thus, we

observe an increase of the input-oriented capacity utilization when the output
is increased, which necessitates more inputs. This corresponds with intuition.
However, as mentioned above, note that the input-oriented plant capacity mea-
sure never attains a maximum value, in contrast to the output-oriented plant
capacity measure. Thus, the input-oriented capacity measure does not measure
capacity utilization with respect to some maximum, but with respect to the

Figure 3. Efficient frontier in input–output space and projections for a particular
observation illustrating the new input-oriented plant capacity utilization measure.
[Color figure can be viewed at wileyonlinelibrary.com]
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minimal amount of variable inputs compatible with zero outputs (i.e. minimal
inputs needed to start producing nonzero outputs).

For completeness sake, the short-run efficiencies and the corresponding PCU
are computed for all initial observations, both for a convex and a nonconvex
technology. The results are reported in Table 1 and already reveal that convex
and nonconvex results need not be the same.

5. EMPIRICAL ILLUSTRATION

To illustrate the ease of implementing the plant capacity frameworks developed
in this contribution, the decompositions (6) and (8) are computed using the data
in Fan et al. (1996). These data contain 471 specialized dairy farms from the
province of Quebec in Canada.5 The single output is milk production per
cow. The four inputs are: forage consumption; grain and concentrate consump-
tion; value of capital stock; and labour-person units. These inputs are also
expressed in units per cow. For the purpose of the analysis, the fixed inputs
are capital and labour, and the variable inputs are forage consumption and grain
and concentrate consumption.

Table 2 provides basic descriptive statistics for both the traditional output-
oriented and the new input-oriented decompositions (6) and (8), respectively,
using both convex (upper part of table) and nonconvex (lower part of table)
technologies. Apart from the percentage of efficient observations relative to
the sample, we report the geometric average (to respect the multiplicative
decomposition), the standard deviation, and the minima or maxima (bold faced)
depending on the context.

Contrasting input and output orientations, we find 10.40% and 2.34% efficient
observations for the radial efficiency measures, 3.40% and 2.34% efficient obser-
vations for the biased plant capacity, and 11.25% and 4.88% efficient observa-
tions for the unbiased plant capacity, respectively. In addition, the geometric
average reveals an approximately 27% input-oriented inefficiency while it shows
an approximately 17% output-oriented inefficiency. For the biased plant capac-
ity measure, there is an approximately 40% input-oriented inefficiency compared
to a 26% output-oriented inefficiency. Finally, for the unbiased plant capacity
measure, one observes a 20% input-oriented capacity utilization compared to
an approximately 7% output-oriented capacity utilization.

Switching focus on the differences between convex and nonconvex results,
several findings stand out. First, the percentage of efficient observations is equal
or higher for the radial efficiency measures, the biased plant capacity, as well as
the unbiased plant capacity. Second, also the level of efficiency and the level of
biased plant capacity is higher. For the unbiased plant capacity, the input-
oriented level of biased plant capacity is higher, but the output-oriented level
is slightly lower. The latter result is possible because the unbiased plant capacity
measure is a ratio of two efficiencies, both of which can be ordered. While these

5 We maintain all observations rather than opting for a preliminary screening looking for any poten-
tial outliers.
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empirical findings are overall in line with expectations, these results once more
highlight the impact of convexity on plant capacity utilization results.

Figure 4 contains four boxplot subfigures summarizing the distributions of
the: (a) input-oriented convex results; (b) output-oriented convex results; (c)
input-oriented nonconvex results; and (d) output-oriented nonconvex results.
Recall that this boxplot graphically displays a five-number summary containing
the ‘minimum’, the lower hinge, the median, the upper hinge, and the ‘maxi-
mum’. The length of the box between both hinges represents the interquartile
range, while the vertical line in the centre marks the median. The length of the
whiskers denoting the range is here drawn no longer than 1.5 times the length
of the box, such that points plotted beyond the whiskers are potential outliers
and indicate tails heavier than the normal distribution.

In addition to the descriptive statistics highlighted above, these boxplots
reveal some skewness in some of the efficiency measures and plant capacity mea-
sures, as well as the existence of a limited number of potential outliers. In

Figure 4. Boxplots of efficiency decompositions (6) and (8): (a) input-oriented
and convex; (b) output-oriented and convex; (c) input-oriented and convex; and
(d) output-oriented and nonconvex.
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particular, both the position of the median within the box and the relative length
of both whiskers suggest skewed distributions for most efficiency measures and
plant capacity measures, except for the Biased PCU in Figure 4a. In addition,
several points plotted beyond the whiskers reveal heavy tails compared to the
normal distribution for most efficiency measures and plant capacity measures,
except for the biased PCU in Figure 4c.

Table 3 reports on the first line the Spearman rank correlation coefficients for
some components of the output-oriented and input-oriented decompositions (6) and
(8). First, input-oriented versus output-oriented components are compared given
convexity and nonconvexity, respectively. Correlations are moderately high for
the PCU component, which is our central interest. Then, convex versus nonconvex
components are compared given input orientation and output orientation, respec-
tively. The rank correlations are now rather high for the PCU component. Thus, in-
put and output orientations seem to differ more than convex and nonconvex results.

The same Table 3 also reports on the second line the results of a formal test
statistic proposed by Li (1996).6 The null hypothesis of this Li-test states that
both distributions are equal for a given efficiency score and underlying specifica-
tion of technology. A glance at Table 3 reveals that one can safely reject the null
hypothesis of equal distributions for all cases. Thus, input-oriented as well as
output-oriented and convex as well as nonconvex radial efficiency measures,
biased and unbiased plant capacities are significantly different from one another.

6. CONCLUSIONS

This paper introduces a new input-oriented plant capacity measure that comple-
ments the existing output-oriented plant capacity measure. Instead of focusing
on maximal outputs for given fixed inputs and unlimited amounts of variable
inputs, it focuses on reducing variable inputs for given fixed inputs compatible
with an output level of zero. Thus, it measures plant capacity in relation to the
minimal variable inputs at which production at positive output levels starts.

Table 3. Spearman rank correlations and Li-tests on decompositions (6) and (8)

Efficiency Biased PCU Unbiased PCU

Convex Input versus output �0.6793 0.2220 0.4963
46.82*** 106.79*** 37.80***

Nonconvex Input versus output �0.8678 0.0684 0.3681
2.82*** 43.24*** 32.27***

Input C versus NC 0.8525 0.9371 0.7713
52.16*** 23.56*** 11.45***

Output C versus NC 0.8092 0.9642 0.7216
49.47*** 5.41*** 24.53***

†Li test: critical values at 1% level = 2.33. (***); 5% level = 1.64 (**); 10% level = 1.28 (*). C, convex tech-
nologies; NC, nonconvex technologies; PCU, plant capacity utilization.

6 This test is valid for both dependent and independent variables. Note that dependency is a charac-
teristic of frontier estimators: efficiency levels depend on sample size, among others.
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A numerical example serves to illustrate the geometric intuition behind this
new input-oriented plant capacity measure. An empirical illustration using spe-
cialized Canadian dairy farms underscores the differences and similarities
between the input-oriented and output-oriented plant capacity measures. It also
emphasises the impact of choosing either a convex or a nonconvex technology,
confirming the earlier conclusion of Walden and Tomberlin (2010) that convex-
ity matters for estimating plant capacity.

This new definition enlarges the empirical toolbox for practitioners. It also of-
fers a natural framework when addressing questions whereby capacity is phrased
in terms of the inputs. For instance, the increasing share of Internet banking as
well as new payment systems (e.g. based on smart phone applications) decreases
the capacity utilization of existing bank branches. This will ultimately lead to
new questions on the optimal configuration of bank networks in either more
or less the same number, but smaller branches, or more geographically concen-
trated branches of approximately the same size.
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