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Abstract
Swedish district courts have undergone a major mergers and acquisitions program between
2000 and 2010 to centralize activity in larger and fewer courts. The purpose of this contri-
bution is to conduct an efficiency analysis of these courts to identify the eventual efficiency
gains. Distinguishing mainly between technical and scale efficiency and determining the
returns to scale of individual observations, we try to find the potential rationales behind this
merger wave. We are to the best of our knowledge the first to combine traditional convex
with nonconvex nonparametric frontier methods to calculate efficiency before and after the
mergers. It turns out that the nonconvex methods provide a more cogent ex post explanation
of this historical merger wave aimed at increasing the size of operations. A battery of recent
test statistics rejects convexity in favour of nonconvexity.

Keywords Data envelopment analysis · Free disposal hull · Horizontal mergers · Technical
efficiency · Scale efficiency
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1 Introduction

Mergers and acquisitions (M&As) reflect a popular strategic choice for growth and expansion
of organisational boundaries. Horizontal M&As take place between organisations working in
the same market, while vertical M&As involve organisations operating in different markets
upstream or downstream (see Gaughan (2007) for a more complete taxonomy). From a
regulatory perspective (e.g., (Belleflamme & Peitz, 2010) or Viscusi et al. (2005)), since
horizontal M&As reduce the number of competitors, they raise the possibility of creating
market power implying social welfare losses. However, since horizontal M&As redefine
the organisational boundaries by integration of the production facilities, there is also the
possibility of achieving social welfare gains by cost reductions (assuming these are passed
onto the final consumers). The main reason for horizontal M&As is economies of scale
(advantages of production in higher volumes) and economies of scope (gains by changing
input and/or output mix).

Horizontal M&As may raise the price due to an effect on the market power. Mergers can
lead to substantial price increases if it makes collusion stable where before it was unstable.
M&As may create cost savings by reshuffling the production of outputs across production
facilities by exploiting cost differences, by using scale economies at a single plant, by creating
synergies by pooling certain functions, by creating a larger innovative capacity leading to
future efficiency gains, or by eliminating any eventual existing inefficiencies. It is well-known
that the cost savings effect is often overruled by the market power effect (e.g., Farrell and
Shapiro (1990) for an early study and Weinberg (2008) for a survey).

Outcomes of horizontal M&As are empirically evaluated using various methodologies. In
the industrial organization literature, it is common to distinguish between event studies for
stock market listed firms to assess shareholder value, direct price comparisons before and
after the mergers, and merger simulations using pre-merger market information to calibrate
some noncooperative oligopoly models (see, e.g. Belleflamme and Peitz (2010, Section 15.4)
for a broad overview or Budzinski and Ruhmer (2010) for a survey on merger simulations).
This literature also recognises that technical and cost inefficiencies contribute to cost savings
of horizontal M&As (see, e.g., Caves (2007) or Viscusi, Harrington, and Vernon (2005, p.
88–89) for a general argument and Akhavein et al. (1997) for an empirical study).

Since greater cost savings facilitate M&A being approved by the authorities, M&A partic-
ipants have an incentive to overstate any eventual cost savings. Thus, sinceM&A participants
are incentivised to overstate cost savings, it is important to obtain a conservative estimate.
In this respect, we opt for nonconvex in addition to the traditional convex deterministic
nonparametric production frontier models: the former exactly provide the most conservative
estimates of efficiency gains available in the literature.

In this empirical contribution, we address the following sequence of three questions with
regard to our empirical application based on a large unbalanced panel of Swedish district
courts. First, are there any substantial changes in productivity in this sample that may have
an impact on the assessment of the horizontal mergers? In the case of small or negligible
productivity change, then we can safely ignore it when assessing horizontal mergers and
specify an intertemporal production frontier whereby we amalgamate all observations over
all years confounded. To answer this question, we turn to the recent study of Chen et al. (2024)
which studies exactly the same sample using a Malmquist productivity index and a Hicks-
Moorsteen total factor productivity index under both variable and constant returns to scale and
under convexity and nonconvexity. These authors find that under none of these configurations
there is any productivity or total factor productivity that is significantly different from the
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status quo of no productivity growth. Thus, for this specific sample this lack of productivity
growth justifies the specification of an intertemporal production frontier: all observations
form a single frontier.

Second, what are the effects of horizontal mergers on the overall technical efficiency as
well as the technical and scale efficiencies under convex and nonconvex technologies? This
question is addressed by computing the overall technical efficiency, the technical efficiency
as well as the scale efficiency under convex and nonconvex technologies characterised by
constant returns to scale and variable returns to scale. This may shed some light on the driving
factors behind horizontal mergers.

Third, what are the effects of the horizontal mergers on the global returns to scale charac-
terization of these observations? To address this question, we derive qualitative information
regarding the global returns to scale from the observations involved in the horizontal mergers.
Overall, we find that convexity is unable to rationalise the horizontal merger event, while
nonconvexity is perfectly capable to make sense of it.

For these purposes, this empirical contribution is structured as follows. Section2 provides a
selective literature review bothwith regard to the literature on nonparametric frontiermethods
onmergers and acquisitions and on the need to test for convexity within these methodologies.
Section3 provides some basic definitions of the traditional convex and the less widely applied
nonconvex technologies. It also defines input-oriented efficiency measures for measuring
overall technical efficiency, technical efficiency, and scale efficiency and describes how to
determine global returns to scale information. After developing this theoretical framework,
Sect. 4 describes the secondary unbalanced panel data set of Swedish district courts as well
as the historical horizontal merger process that took place during the years 2000 till 2009.
The historical merger process clearly aimed at increasing the scale of operations. But, the
mergers fail to satisfy additivity, a necessary condition for convexity. Section5 with the
empirical illustrations first presents convex and nonconvex estimates of overall technical
efficiency and its decomposition into technical and scale efficiency at the sample level, and at
the level of the years when horizontal mergers happened and the years thereafter. Convexity
fails to find improved scale efficiency, while nonconvexity does find scale improvement. We
also investigate returns to scale information under convex and nonconvex estimates. Finally,
we repeat the same analysis at the level of the pre-merger and the post-merger observations.
Section6 provides the conclusions.

2 Selective literature review

2.1 Nonparametric frontier methods onmergers and acquisitions

Our empirical evaluation tool is based on applied production analysis. In particular, deter-
ministic nonparametric production frontier models (sometimes labeled as Data Envelopment
Analysis (DEA)) are used to provide inner approximations of the boundaries of production
possibility sets subject to a set of minimal axioms on what is deemed feasible (see Ray
(2004)). Efficiency measures are used to position observations with respect to the boundary
of such deterministic nonparametric production frontiers: either the observation is part of the
boundary and technically efficient, or the observation is situated in the interior of the tech-
nology and it is technically inefficient (see Ray (2004)). This literature has led to evolved
efficiency decompositions that fundamentally distinguish between technical and cost (in case
of the cost function) efficiencies. Cost efficiency requires a point minimizing the linear cost
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function on the production frontier: an observation can be cost inefficient if it is situated
away from this tangency point. Allocative efficiency closes the eventual gap between both
cost efficiency and technical efficiency (see, for instance, Färe et al. (1994)): it indicates to
which extent an observation deviates from the cost minimising input mix. This methodology
is popular and has led to a large variety of empirical applications in a multitude of sectors (see
Daraio et al. (2020) for a meta-review) and it is a standard tool in the analysis of industrial
organization (e.g., Caves (2007)).

In this deterministic nonparametric production frontier literature, various strands of liter-
ature analyse the potential ex ante and effective ex post efficiency gains of horizontal M&As.
We provide a selective review of this literature, while focusing mainly on our own method-
ological choices for this contribution. We mention some studies focusing on the public court
sector that is the focus of our empirical application later on in this subsection, but only dig
deeper into this literature in the main body of the text.

In termsof the efficiencydecompositions alluded to above,we focus on technical efficiency
measured with respect to a flexible or variable returns to scale technology, overall technical
efficiency evaluated with regard to a constant returns to scale technology, and scale efficiency
as a ratio of overall technical efficiency and technical efficiency (see Banker et al. (1984) and
Färe et al. (1983) for this decomposition).1 Scale efficiency evaluates the optimal scale level
compatible with a long-run competitive equilibrium. It can be complemented with qualitative
information on global returns to scale for individual observations. The standard reaction to
such information on scale properties is that observations exhibiting increasing returns to scale
should consider expanding, while observations showing decreasing returns to scale should
contemplate contracting.

Studies adopting a similar methodology include the following examples. Cummins et al.
(1999) apply this frontier approach to determine technical efficiency and returns to scale in
M&A in the US life insurance industry and find that merged firms realise greater efficiency
gains than those that do not, and that firms with increasing returns to scale are more likely
to be acquisition targets, among others. Harris et al. (2000) examine US hospitals using
intertemporal production frontiers and show that M&As increase efficiency levels and that
scale efficiency rather than technical efficiency is the main source of improved performance.
Similar studies on courts (e.g., Agrell et al. (2020), Castro and Guccio (2018), Gorman
and Ruggiero (2009), Peyrache and Zago (2016), among others) are discussed later on when
presenting our own empirical results. In a review Frantz (2015) states that there is no evidence
that mergers improve technical efficiency, underscoring the regulatory need to scrutinize
popular justifications in the media.

In a similar vein, Bogetoft and Wang (2005) initiate a substantial literature by proposing
a decomposition of the potential gains from merging into technical efficiency, size (scale),
and harmony (mix) gains and illustrate this proposal using agricultural extension offices
in Denmark showing that there are considerable expected gains. Kristensen et al. (2010)
conduct this decomposition to Danish hospitals and evaluate the potential gains from the
planned M&As, thereby showing that many hospitals are technically inefficient and some
merged hospitals are too large and experience decreasing returns to scale. One such study on
courts is found in Mattsson and Tidanå (2019).

1 Färe et al. (1983) predates Banker et al. (1984) in decomposing overall technical efficiency into technical
efficiency and scale efficiency. Both articles contain a different method to determine returns to scale. Fur-
thermore, Färe et al. (1983) in addition consider a structural or congestion efficiency component. However, a
Google Scholar search on 26 November 2023 reveals that in terms of citations the Banker et al. (1984) article
is cited 25905 times while the Färe et al. (1983) contribution is only cited 254 times: likely a clear case of the
Matthew effect at work.
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Other studies assess the effect of M&As on productivity growth. Rezitis (2008) provides
a parametric analysis of Malmquist productivity for ten Greek banks over the period 1993 till
2004 and finds that the decrease in productivity for the five post merging banks is due to an
increase in technical inefficiency and the disappearance of economies of scale,while technical
change is unaffected compared to the pre-merging level. Monastyrenko (2017) computes an
eco-efficiency Malmquist productivity index among European electricity producers in the
period 2005–2013 and finds that the heavily regulated domestic horizontal M&As have no
impact, while the horizontal cross-border M&As damage eco-efficiency in the short run
and become only positive in the medium run. Analogous studies focusing on courts (e.g.,
Giacalone et al. (2020); Mattsson et al. (2018), among others) are presented in the empirical
section.

As is commonwith the analysis of the public sector, we opt for an input-oriented efficiency
measure since the outputs are determined by the demand for justice of citizens (see, e.g., the
court survey of Aiello, Bonanno, and Foglia (2024, p. 18)). However, in the literature, one can
find several instances of articles focusing on output-oriented efficiency in courts (e.g., Castro
and Guccio (2018) or Giacalone et al. (2020)). For our large unbalanced panel of Swedish
district courts earlier analysed byAgrell et al. (2020),Mattsson et al. (2018) andMattsson and
Tidanå (2019), the approaches are mixed: Agrell et al. (2020) use an input orientation, while
Mattsson et al. (2018) andMattsson and Tidanå (2019) opt for output-oriented efficiency.We
empirically demonstrate that these district courts do in fact control their inputs: this need not
imply that courts themselves implement input changes, but rather that their administrative
authority continuously adds and/or subtracts (re-shuffles) resources. Silva (2018) seems to
be the first to assess efficiency by three methods reflecting relationships between inputs and
outputs in Portuguese courts: separate assessments, ratios, and differences. In some of these
models outputs are generated by output-specific inputs rather than by all inputs jointly.

2.2 Nonparametric frontier methods: the need for testing convexity

Already Farrell (1959) points out that the convexity assumption maintained in almost all
production models precludes the various reasons that may generate nonconvexities in tech-
nology. First, indivisibilities point to the fact that inputs and outputs in production are not
perfectly divisible and thus not continuous (see Scarf (1986; 1994)). These same indivisibil-
ities may also limit the up- and especially the downscaling of production processes. Second,
economies of scale and increasing returns to scale may yield nonconvex technologies where
organisations have an interest to continue scaling up production. Third, economies of special-
isation instead of economies of diversification may reveal gains in switching costs and time
and yield nonconvex technologies. Fourth, both negative and positive externalities in pro-
duction yield nonconvexities in the technology of the affected organisations. More recently,
network externalities and nonrival inputs (like ideas) can be added as additional sources of
nonconvexities.

Convexity is then maintained in economics and part of operations research because of
the assumption of perfect time divisibility (for instance, Shephard (1970, p. 15)), or simply
because of analytical convenience. Hence, if time is not perfectly divisible (i.e., positive setup
times exist), then nonconvexities may matter.2 It is often -implicitly or explicitly- assumed

2 Scarf (1986, p. 120) is very sharp in his critique of convexity: “Unfortunately, convexity of the production set
is not a strikingly realistic description of economic reality. Convexity requires that the production possibility
set exhibit constant or decreasing returns to scale: That you or I can manufacture automobiles in our own
backyards with the same degree of efficiency as that achieved by the Ford Motor Co. Economies of scale
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that nonconvexities have no impact on the estimates of the parameters of interest in production
and, e.g., cost approaches alike. However, a basic deterministic nonparametric production
frontier imposing flexible or variable returns to scale and dispensing with convexity has been
originally developed by Deprins et al. (1984) (sometimes labeled Free Disposal Hull (FDH)).
Kerstens and Vanden Eeckaut (1999) extend this basic nonconvex frontier by introducing
constant, non-increasing and non-decreasing returns to scale assumptions. Moreover, these
same authors propose a new goodness-of-fit approach to infer the characteristics of global
returns to scale for nonconvex technologies. All these nonconvex nonparametric frontier
technologies are smaller than the corresponding convex nonparametric frontier models and
thus yield more conservative estimates of efficiency.

Furthermore, seminal contributions to axiomatic production theory indicate that if tech-
nology is convex, then the cost function is convex in the outputs (e.g., Jacobsen (1970,
Proposition 5.2, (Q.9))). Thus, using contraposition, if technology is nonconvex, then the
cost function is nonconvex in the outputs. In what can be considered a refined statement,
Briec et al. (2004) propose nonconvex nonparametric cost frontiers with any returns to scale
assumption and prove that these are always larger than or equal to the convex corresponding
counterparts with similar returns to scale assumption: these are only identical under a single
output and constant returns to scale.

While it is intuitively clear that convexity can have a potentially drastic impact on technolo-
gies, Cesaroni et al. (2017) empirically illustrate that overall technical efficiency, technical
efficiency, and scale efficiency are quite different under convexity and nonconvexity, and that
returns to scale are also impactedwith even contradictory indications as a possibility. Kerstens
andVan deWoestyne (2021) systematically review evidence and illustrate the potentially very
substantial impact of convexity on cost function estimates, as well as on the determination
of scale economies again documenting the possibility of contradictory indications as an
empirical regularity. Dang (2022) affirms the findings for the Chilean hydro-electric power
generation plants in Atkinson and Dorfman (2009).3 In particular, using a recent machine
learning method to estimate second derivatives, Dang (2022) reports curvature violations
rejecting convexity of technology.

Kerstens et al. (2019) empirically compare a large series of technical and economic (i.e.,
cost-based) capacity notions on both convex and nonconvex technologies. Having defined
these capacity notions in detail, an empirical comparison using a secondary data set leads
to two key empirical conclusions. First, all these different technical and economic capacity
notions follow different distributions. Second, these distributions almost always differ under
convex and nonconvex technologies. Finally, Baležentis et al. (2024) employ an additive
Luenberger-Hicks-Moorsteen productivity indicator and these authors even report opposite
signs between convex and nonconvex productivity measures for a substantial part of the
sample in each of the analysed years in their panel data. Thus, it is undeniable that convexity
matters both theoretically and from an empirical point of view.

Obviously, such evidence on the impact of convexity on the technology, on the cost func-
tion, on technical and economic capacity notions, and on one specific productivity indicator
remains just casual evidence at best. The convexity assumption is central to economics and to
the DEA literature in operations research and it is clear that it is not gone be abandoned unless
the evidence against it is massive and robust. Therefore, in this contribution we focus on yet

based on large indivisible pieces of machinery or forms of productive organization such as the assembly
line, which are not economically merited at small scales of operation, are a major ingredient of the industrial
revolution of the last 100 years. And their workings cannot be captured, either theoretically or computationally,
by the competitive paradigm.”
3 One of the two secondary data sets analysed in Kerstens and Van de Woestyne (2021).
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another potential empirical application area of relevance for industrial organization, namely
the evaluation of horizontal mergers using familiar technical and scale efficiency concepts. To
the best of our knowledge, we are the first study to combine convex and nonconvex methods
to study these technical and scale efficiencies for horizontal court mergers. Furthermore, for
replication purposes we opt to use data on Swedish district courts that have been analysed
before by Mattsson et al. (2018); Mattsson and Tidanå (2019); Agrell et al. (2020).

Anticipating our empirical results, our study of these data reveal that the horizontal merg-
ers have been crafted with the explicit goal to magnify the scale of the court operations.
However, this merger process does not respect the simple addition of observations, thus
failing a necessary condition for convexity. Then, the fundamental question is whether this
scale improvement is picked up by the convex and nonconvex models we are employing. The
empirical evidence indicates that nonconvex models find scale efficiency improvements but
no technical efficiency changes, while convex models report technical efficiency improve-
ments but no scale efficiency changes. Furthermore, the use of state of the art statistical tests
makes us reject convexity in favour of nonconvexity: this combination of tests has to our
knowledge never been used in a court setting.

3 Nonparametric technologies, efficiency and statistical tests

This study uses traditional convex and nonconvex nonparametric, deterministic frontiermeth-
ods to determine the static input-oriented efficiency of each operating unit. In this section we
introduce the static efficiency methods.

3.1 Nonparametric technology frontiers: a unified representation

Consider a set of K observations A = {(x1, y1) , ..., (xK , yK )} ∈ R
m+n+ . A production

technology describes all available possibilities to transform input vectors x = (x1, . . . , xm) ∈
R
m+ into output vectors y = (y1, . . . , yn) ∈ R

n+. The production possibility set or technology
S summarizes the set of all feasible input and output vectors: S = {(x, y) ∈ R

m+n+ :
x can produce y}. Given our focus on input-oriented efficiency measurement later on, this
technology can be represented by the input correspondence L : Rn+ → 2R

m+ where L( y) is
the set of all input vectors that yield at least the output vector y:

L( y) = {x : (x, y) ∈ S} . (1)

Nonparametric specifications of technology can be estimated by enveloping these K obser-
vations in the set A while maintaining some basic production axioms (see Hackman (2008)
or Ray (2004)). We are interested in defining minimum extrapolation technologies satisfying
strong disposability in inputs and outputs, all four traditional returns to scale hypotheses
(i.e., constant, non-increasing, non-decreasing, and variable (flexible) returns to scale), and
technologies that satisfy the convexity assumption and those that do not.

A unified algebraic representation of convex and nonconvex technologies under different
returns to scale assumptions for a sample of K observations is found in Briec et al. (2004):

S�,� =
⎧
⎨

⎩
(x, y) ∈ R

m+n+ : x ≥
K∑

k=1

α zk xk , y ≤
K∑

k=1

α zk yk ,
K∑

k=1

zk = 1, z ∈ �,α ∈ �

⎫
⎬

⎭
,

(2)
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where

(i) � ≡ �CRS = {α : α ≥ 0} ;
(ii) � ≡ �NDRS = {α : α ≥ 1} ;
(iii) � ≡ �NIRS = {α : 0 ≤ α ≤ 1} ;
(iv) � ≡ �VRS = {α : α = 1} ; and

(v) � ≡ �C = {z = (z1, . . . , zk) : zk ≥ 0} , and (vi) � ≡ �NC = {z : zk ∈ {0, 1}} .

First, there is the activity vector (z) operating subject to a convexity (C) or nonconvexity
(NC) constraint. Second, there is a scaling parameter (α) allowing for a particular scaling of
all K observations spanning the technology. This scaling parameter is smaller than or equal
to 1 or larger than or equal to 1 under non-increasing returns to scale (NIRS) or decreasing
returns to scale (DRS) and non-decreasing returns to scale (NDRS) or increasing returns to
cale (IRS) respectively, fixed at unity under variable returns to scale (VRS), and non-negative
under constant returns to scale (CRS).

3.2 Input-oriented efficiencymeasures and estimating returns to scale

The radial input efficiency measure can be defined as:

E�,�
i

(
x, y : S�,�

) = min
{
θ | (θ x, y) ∈ S�,�, θ ≥ 0

}
. (3)

This efficiency measure indicates the minimum contraction of an input vector by a scalar θ

while still producing the same outputs compatiblewith technology S. Obviously, the resulting
input combination is located at the boundary of the input correspondence. For our purpose, the
radial input efficiency has two key properties (see, e.g., Hackman (2008)). First, it is smaller
than or equal to unity (0 < E�,�

i

(
x, y : S�,�

) ≤ 1), whereby efficient production on the

isoquant of the input correspondence L( y) is represented by unity and 1−E�,�
i

(
x, y : S�,�

)

indicates the amount of inefficiency. Second, it has a cost interpretation.

Definition 3.1 Under the assumptions on the technology S�,� defined in (2) and following,
e.g., Färe et al. (1983), the following input-oriented efficiency notions can be distinguished:

• Technical Efficiency (T E) is the quantity: T E�
i (x, y) = E�,VRS

i

(
x, y : S�,VRS);

• Overall Technical Efficiency (OT E) is the quantity:
OT E�

i (x, y) = E�,CRS
i

(
x, y : S�,CRS);

• Scale Efficiency (SCE) is the quantity: SCE�
i (x, y) = E�,CRS

i

(
x, y : S�,CRS) /

E�,VRS
i

(
x, y : S�,VRS).

Since E�,CRS
i

(
x, y : S�,CRS) ≤ E�,VRS

i

(
x, y : S�,VRS) ≤ 1, clearly 0 < SCE�

i (x, y)
≤ 1 (see Banker et al. (1984) or Färe et al. (1983)). Using Definition 3.1, the following
identity follows:

OT E�
i (x, y) = T E�

i (x, y) · SCE�
i (x, y). (4)

This decomposition simply states that OT E evaluated under CRS is the product of T E
evaluated under VRS and SCE (see Färe et al. (1994)).

Briefly discussing the computational methods for obtaining the radial input efficiency
measure (3) for each evaluated observation relative to all technologies in (2), the convex case
just requires solving a nonlinear programming problem (NLP): this is evidently simplified to
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the familiar linear programming (LP) problem found in the literature (see Hackman (2008) or
Ray (2004)) by substitutingwk = αzk . For nonconvex technologies, nonlinear mixed integer
programs must be solved in (2): however, Podinovski (2004); Leleu (2006) and Briec et al.
(2004) proposemixed integer programs, LPproblems, and closed form solutions derived from
an implicit enumeration strategy, respectively. Kerstens and Van de Woestyne (2014) review
all methods in this nonconvex case in more detail and empirically document that implicit
enumeration is by far the fastest solution strategy. Furthermore, implicit enumeration makes
use of (scaled) vector dominance that compare an inefficient observation with an observation
that somehow dominates it: this facilitates learning. Daraio et al. (2019) provide a review of
software options (with the main focus on the convex methods).

Proposition 3.1 (Briec, Kerstens, andVandenEeckaut (2004, Lemma3)) It is straightforward
to establish the following relations between convex and nonconvex input-oriented efficiency
components:

• T EC
i (x, y) ≤ T ENC

i (x, y);
• OT EC

i (x, y) ≤ OT ENC
i (x, y);

• SCEC
i (x, y)

>=
<
SCENC

i (x, y).

To clarify the relationship between convex and nonconvex decompositions (4), we start from
the observation that nonconvex technologies are nested in the convex counterparts. As a
consequence, nonconvex OT E�

i (x, y) and T E�
i (x, y) components are larger or equal than

their convex counterparts. However, there is no a priori ordering between nonconvex and
convex SCE�

i (x, y) components: while the underlying efficiency measures can be ordered,
it is impossible to order the ratios between these efficiency measures.

In the literature, several methods are available to obtain qualitative information char-
acterising returns to scale (see the Seiford and Zhu (1999) review).4 Since none of these
existing methods are suitable for nonconvex technologies, Kerstens and Vanden Eeckaut
(1999, Proposition 2) generalize the existing convex goodness-of-fit method of Färe et al.
(1983) such that it becomes perfectly general. Obviously, this qualitative information holds
for efficient points only: these are either efficient observations, or projection points in case of
inefficient observations. Formally, it is possible to infer for any single observation whether
it satisfies globally constant (CRS), increasing (IRS), or decreasing (DRS) returns to scale
by simply identifying the technology yielding the maximal input efficiency score.

Proposition 3.2 (Kerstens and Vanden Eeckaut (1999, Proposition 2)) Using E�,�
i (x, y :

S�,�) and conditional on an efficient point, technology S�,V RS is characterized by:

(a) CRS ⇔ E�,NIRS
i (x, y : S�,N I RS) = E�,NDRS

i (x, y : S�,NDRS);

(b) IRS ⇔ E�,NIRS
i (x, y : S�,N I RS) < E�,NDRS

i (x, y : S�,NDRS);

(c) DRS ⇔ E�,NIRS
i (x, y : S�,N I RS) > E�,NDRS

i (x, y : S�,NDRS).

Note that all two input efficiency measures coincide for observations subject to constant
returns to scale. Themaximal input efficiencymeasure simply reflects the best fit of a specific
technology for the given observation and therefore serves to indicate the most appropriate
returns to scale assumption. In fact, it is applicable to any specification of technology and it
is simply more general.5

4 Quantitative scale information would, e.g., be scale elasticities: these are not trivial to obtain given the lack
of continuity in the convex case, and these are impossible to obtain in the nonconvex case in the current state
of knowledge.
5 One can also distinguish a fourth case of sub-constant returns to scale that is only relevant for nonconvex
technologies: see Cesaroni et al. (2017) for more details and a first empirical exploration.
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3.3 Statistical testing

These efficiency measures in Definition 3.1 are compared by means of a nonparametric test
comparing two entire distributions as initially developed by Li (1996) and refined by Fan
and Ullah (1999) and most recently by Li et al. (2009). The Li-test statistic tests for the
eventual significance of differences between two kernel-based estimates of density functions
f and g of a random variable x . The null hypothesis states that both density functions are
almost everywhere equal (H0 : f (x) = g(x) for all x). The alternative hypothesis negates
this equality of both density functions (H1 : f (x) �= g(x) for some x). In order to get around
the issue of spurious mass at the boundary, Simar and Zelenyuk (2006) further refine this
Li-test statistic for nonparametric frontier estimators. Their Algorithm I ignores the boundary
estimates, and their Algorithm II smooths the boundary estimates by adding uniform noise
that is one order of magnitude less than the noise added by the specific estimator. According
to Monte Carlo evidence, algorithm II appears to perform somewhat better overall, despite
the fact that the test statistic’s strength diminishes as the production specification includes
more dimensions. To put it briefly, we use the Li et al. (2009) version of this test that has
been modified using Simar and Zelenyuk (2006) Algorithm II.6

In addition to this Li-test, following recent studies (e.g., O’Loughlin and Wilson (2021)
andWilson and Zhao (2023)) we report two further tests developed byKneip et al. (2016) and
Simar andWilson (2020) to specifically test the convexity of the production possibility set in
Swedish district courts against its nonconvex alternative.More specifically,Kneip et al. (2016)
utilize the central limit theorems for the means of efficiency estimates to develop statistical
tests of various model features (here convexity). These tests of convexity involve comparing
the mean of the nonconvex input-oriented efficiency measure T ENC

i (x, y) (denoted μNC
i )

and the mean of the convex input-oriented efficiency measure T EC
i (x, y) (denotedμC

i ). The
null hypothesis states that these two means are equal (H0 : μNC

i = μC
i ). The alternative

hypothesis negates this equality of the two means and regards the mean of T ENC
i (x, y) to

be larger than the mean of T EC
i (x, y) (H1 : μNC

i > μC
i ).

These tests require the two sample means under comparison to be independent of each
other: this requires randomly splitting the original sample into two independent parts. The
resulting test statistic is asymptotically normally distributed, and this test is one-sided.Though
this Kneip et al. (2016) test is valid for a single split of the original sample, different results
can be obtained from different splits of the sample. Therefore, Simar and Wilson (2020)
suggest splitting multiple times and then using bootstrap methods to implement tests based
on sample means of the test statistics from each split, or based on the p-values obtained on
each split. This results in two tests: one based on the mean of test statistics over multiple
sample-splits (denoted KSW-test#1), and the other based on a Kolmogorov-Smirnov test of
uniformity of the p-values (denoted KSW-test#2). Moreover, the critical values for these two
tests are determined from the bootstrap as the sample splits are not independent. We use 100
multiple sample-splits and 1000 bootstrap replications. The reader is referred to Kneip et al.
(2016) and Simar and Wilson (2020) for additional discussion and technical details.7

6 Matlab code developed by P.J. Kerstens based on Li et al. (2009) and Simar and Zelenyuk (2006) is found
at: https://github.com/kepiej/DEAUtils.
7 Computations are done using the FEAR package in the software R.
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4 Data sample: unbalanced panel of Swedish courts

The sample is an unbalanced panel of 18 years (2000–2017) of Swedish district courts based
on annual statistics adopted from five existing studies (in particular, Mattsson et al. (2018),
Mattsson and Tidanå (2019), Agrell et al. (2020), Chen and Kerstens (2023), and Chen et al.
(2024)).8 Chen and Kerstens (2023, Section 2) review in rather detail what is known so far
on the gains and efficiency of horizontal mergers in Swedish district courts.

In these articles, there are four inputs, including three labor inputs andone capital input, and
three outputs as a production specification. More specifically, among the three labor inputs,
there are judges, law clerks, and administrative employees (other personnel) measured in full-
time equivalents. In addition, the court area is adopted as a proxy variable for capital, under the
assumption that the size of the premises is proportional to other capital variables (for example,
the number of computers and other equipment, as well as the operational expenditures such
as heating, maintenance, and insurance). Moreover, these articles state that the incorporation
of capital is important because, to some extent, it is possible to substitute capital for labor
in the production of court decisions. The three outputs are decided criminal cases, decided
civil cases, and decided petitionary matters.

Agrell et al. (2020, p. 662) discuss how these three output categories result from an
aggregation procedure using self-reported time consumption starting from fourteen output
categories. Bogetoft andWittrup (2021) recently investigate thewhole issue of caseweighting
to assess the workload in a court system. In this contribution, we use the same four inputs
and three outputs as used in the five existing studies to perform our own analysis.9 For more
institutional details on the Swedish court system and the role of district courts, the reader is
referred to these five existing studies. Voigt (2016) and more recently Aiello et al. (2024)
survey the literature on court performance.

The descriptive statistics of the average level and standard deviations of outputs and inputs
over the 18 years are reported in Table 1.10 As can be seen, the differences in outputs and
inputs over time are, on average, quite large. More specifically, each of the outputs and the
inputs increases in size over time. For example, the number of civil cases goes on average up
from 538.67 to 1395.79 (2.59 times). Moreover, the number of full-time equivalent judges
expands from about 6.88 to about 15.56 on average (2.26 times). Also note that the standard
deviations of civil cases, criminal cases, and law clerks are almost as large as their means.
However, the standard deviations of the output matters, as well as the inputs judges, other

8 We are grateful to Pontus Mattsson for making these data available for our research contribution.
9 One referee has suggested the use of weight restrictions on the inputs and/or the outputs. While convex
models with weight restrictions are quite common, this comes close to putting input (output) prices on the
inputs (outputs). We see two practical objections to this suggestion. First, to our knowledge no court frontier
performance study has so far incorporated weight restrictions (see the surveys of Voigt (2016) or Aiello et
al. (2024)): thus, articulating these weight restrictions may not be that trivial in a court context and there is
no evidence at all that ignoring weight restrictions would somehow jeopardize our focus on testing convexity
of the court technology. Second, apart from the problem of the non-uniqueness of multipliers in a convex
technology, theweights in the basic nonconvexmodel are either zero or infinity and thus cannot bemeaningfully
compared. Therefore, we are unaware of meaningful nonconvex production models with weight restrictions
and this would somehow undermine the purpose of comparing convex and nonconvex approaches. This is
certainly a promising avenue for future work.
10 We impose the following regularity conditions on the data for inputs and outputs (see Färe, Grosskopf,
and Lovell (1994, p. 44–45)): (1) each unit uses nonnegative amounts of each input to produce nonnegative
amounts of each output; (2) there is an aggregate production of positive amounts of every output, and an
aggregate utilisation of positive amounts of every input; and (3) each unit employs a positive amount of at
least one input to produce a positive amount of at least one output. Hence, we eliminate in total two units for
which all input dimensions are zero.
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personnel, and court area remain rather stable with very little variation. The number of courts
monotonously decreases over time: at the end we retain about half of the starting number of
courts.

Moreover, to determine whether there are fixed inputs that do not change, we exclude the
initial post-merger observations (that automatically imply a change in inputs and outputs)
and count the number of changes among the observations for each input and each output over
all years: we report the average number and standard deviation of changes for all inputs and
outputs over all years in the first two lines of the lower part of Table 1. For example, when
the number of judges changes in adjacent years for a particular court, then the number of
input changes is recorded as 1. If there are 90 courts with changes in the number of judges
in adjacent years, then we count the number of changes as 90, and so on, until the number
of changes in all adjacent years is obtained. Then, we compute the arithmetic average and
standard deviation to get the result of “# Changes” in the third horizontal part of Table 1.
Among the inputs judges, law clerks, other personnel and court area, there is a change of
55.18, 55.06, 56.94 and 17.53 observations on average. Thus, all inputs seem to change and
thus can be treated as variable inputs.11 Remark that this tendency of all inputs changing
need not imply that courts themselves implement input changes: it may well be that their
administrative authority continuously adds and/or subtracts (re-shuffles) resources. More
details on these computations are provided in Table A.1 in Appendix A. We also provide an
empirical example regarding the court in Stockholm in Table A.2 in Appendix A.

Table 2 reports the structure of the unbalanced panel over the sample period in the first
two columns, and it summarizes the number of courts involved in a merger, the resulting
mergers, and the newly emerging courts from the third to the fifth columns. In particular,
the second column presents the number of courts in each year. The third column shows
the number of courts in which mergers are occurring in each year, and the fourth column
shows the number of new courts acquired as a result of the mergers. Mergers occur when
the location of the merged court coincides with the location of one of its constituent merging
courts. Finally, the fifth column indicates the number of newly emerging courts not resulting
from the previously described merger operations: here we have courts that are situated in a
new location distinct from the constituent parts. For instance, in the year 2000 there are 95
courts in total: four courts are merged, resulting in two new courts. Furthermore, two new
courts have been created: Blekinge and Västmanland. In brief, 95 courts minus 4 merging,
plus 2 resulting from the merger operation, and plus 2 new courts yield again 95 courts in
2001. For lack of space, more details on these merger operations on a year by year basis are
provided in Appendix C. In particular, a summary of the detailed information on the mergers
of Swedish district courts is found in Table C.1 in Appendix C. In addition, there are only
48 courts in each of the years 2010–2017: there are no mergers between courts. All changes
that do not produce a change in the number of courts have been grouped into one row for
recording purposes. Finally, we sum the number of courts, the number of courts in which
mergers occurred, the number of courts after mergers per year, and the number of newly
emerging courts, respectively: these results are shown in the last row.

In total we have 1085 observations. There are initially 95 district courts in 2000. Then,
a court reorganization through mergers is implemented with 36 mergers in total occurring
between 2000 and 2009 and 83 courts being involved in a merger (see Agrell et al. (2020)
for details). In total 7 newly emerging courts appear. Observe that most mergers have taken
place in the two years 2001 and 2005 with no less than 42 (=24+18) merged courts resulting

11 Mattsson et al. (2018, p. 116) mention that inputs are not easily changed in the short term. This may explain
why these authors use an output-oriented Malmquist productivity index.
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in 16 (=9+7) courts. Between 2000 and 2009, the number of district courts decreases from
95 to 48 and it remains the same thereafter until the end of the sample period. In 2017, the
original amount of courts (95) has almost been halved (48).

Moreover, while in general a horizontal merger is the takeover of one or more smaller
adjacent district courts by a relatively large district court, during this period some of the new
courts consist of parts of the original courts rather than just two or more other courts.12 For
instance, as mentioned in Agrell et al. (2020, p. 673), there were five such merger scenarios
in 2007: (1) Sollentuna and parts of Södra Roslagen are merged into Attunda; (2) parts of
Handen, Huddinge, and parts of Stockholm are merged into Södertrön; (3) Nacka, parts of
Handen, and parts of Stockholm aremerged into a new court in Nacka; (4) parts of Stockholm
and parts of Södra Roslagen are merged into Solna; and (5) Solna and parts of Stockholm are
merged into Stockholm. In addition, given that Stockholm is a very large court that merged
in 2007, we have added two rows at the end of Table 1 to capture the differences in means and
variances of the inputs and outputs for Stockholm versus the other courts. These results show
that the mean and standard deviation of each input and output for the Stockholm court before
the merger are greater than the corresponding values for the other courts. Furthermore, the
means of three labor inputs and all outputs after the Stockholm court merger remain larger
than their counterparts in the other courts, while the mean value of the court area input is
smaller than the counterpart in the other courts. Furthermore, for all inputs, civil cases and
matters outputs after the Stockholm court merger, the standard deviations are smaller than
their counterparts in the other courts, while the standard deviations of criminal cases are
larger than their counterparts in the other courts.

Mattsson et al. (2018, p. 110) describe how the Swedish government implemented several
reforms for the district courts during the last 20 years, with the major objective of increasing
efficiency and productivity, while simultaneously maintaining a high degree of law and order.
One such reform targeted the size of the district courts, based on the simple presumption that
scale advantages exist. There is no knowledge about any study supporting this presumption
at the time of implementation of this merger policy.

Furthermore, the descriptive statistics of the averages and standard deviations of the inputs
and outputs for all the courts, the ones included in a merger and the ones not included in
a merger, as well as the pre-merger observations, hypothetical merger observations (based
on simple addition of observations), and the post-merger observations in the merging years
are all reported in Table 3. In particular, the first two lines present the results for mean and
standard deviation of all inputs and outputs for all courts (n=1085) from 2000 to 2017. The
third and fourth lines list the results for mean and standard deviation of inputs and outputs for
all courts (n=701) during the period in which the merger occurs (2000–2009). The fifth and
sixth lines show results for mean and standard deviation of inputs and outputs for all courts
(n=384) during the period without merger (2010–2017). Furthermore, the seventh and eighth
lines display the results of the means and standard deviations of inputs and outputs for the 83
courts in Table 2 for the year of the merger (here called pre-merger observations). In the ninth
and tenth lines, we sum the values of the inputs and outputs of the merged courts to produce
a hypothetical court after the merger (n=36), and analyse the mean and standard deviation of
the values for these hypothetical courts. Finally, the last two lines report an analysis of the
means and standard deviations of the values of each indicator for the 36 courts in Table 2
that appear after the merger.

12 M&As normally involve the combination of two or more companies or organizations into one. But, in our
sample we are actually looking at more complex restructuring activities. To keep the terminology as simple
as possible, we keep referring to these restructuring activities as basic M&A activities.
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Table 2 Summary of mergers of Swedish district courts

Years # Courts # Merging courts # Merged courts # Newly emerging courts

2000 95 4 2 2 (Blekinge & Västmanland)

2001 95 24 9 1 (Ångermanland)

2002 78 9 3 0

2003 72 0 0 0

2004 72 8 4 1 (Värmland)

2005 68 18 7 0

2006 57 4 2 2 (Attunda & Södertörn)

2007 57 7 5 0

2008 53 0 0 1 (Skaraborg)

2009 54 9 4 0

2010–2017 48 0 0 0

All 1085 83 36 7

In contrast to Table 1, Table 3 reports only the means and standard deviations of the
inputs and outputs for all courts in each year. Moreover, Table 2 simply reports the number
of all courts in each year, the number of courts where mergers occurred in each year, and the
number of courts after mergers in each year. Hence, in Table 3 we make a detailed distinction
between the samples so as to analyse the means and standard deviations of the inputs and
outputs for the courts.

First, based on the average values of the total DMUs for all, merging and non-merging
years in the first six rows, it can be seen that the average values of all input and output
indicators in the merging years are smaller than those under all years and even much smaller
than those under the non-merging years. Thus, themergers that took place during themerging
years have led to an overall scale increase that becomes visible during the non-merging years.

Second, the descriptive statistics of averages and standard deviations of the pre-merger
observations, hypothetical mergers, and post-merger observations in the merging years are
also reported in the final six rows. We observe that the means of the pre-merger observations
are smaller than those of the post-merger observations, and that the means of the hypothetical
mergers are even bigger than those of both the pre-merger and post-merger observations. This
indicates that the hypothetical mergers resulting from just adding merging observations have
in fact been judged as being too big. These hypothetical mergers have never materialised and
the real mergers that took place concern scaled down versions of the hypothetical mergers
resulting in the post-merger observations. Comparisons of standard deviations also yield the
same conclusion. A numerical example clarifying the concept of hypothetical mergers is
developed in Appendix B: this example also serves to illustrate that hypothetical mergers can
lead to computational infeasibilities for which in the literature no solution strategy has been
proposed.

This phenomenon reveals that the Swedish administrators did not just blindly combine
pre-merger observations into hypothetical mergers using addition, but that they carefully
have tried to trim down the scale of operations below the hypothetical mergers. The whole
merger operations thus seems a very careful operation, even though to our knowledge no
formal modeling was involved at any time.
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This at least implicit rejection of additivity by the Swedish administrators can be inter-
preted as casting doubt on convexity of technology.While convexity is sometimes considered
a primitive axiom, it can also be derived from other axioms. Arrow and Hahn (1971, p. 59–
60) prove that both additivity and divisibility imply convexity and constant returns to scale
together. Rejecting additivity then undermines one condition to obtain convexity: technology
may then well be nonconvex.13 Testing the plausibility of convexity is focus in our empirical
analysis developed in the next Sect. 5.

5 Empirical illustration

Our empirical analysis proceeds in two steps. The first step is the determination of convex and
nonconvex technical and scale efficiency scores from the static efficiency decomposition (4).
The second step is the detailed comparisonbetweenpre-merger andpost-merger observations.
In both steps we make use of state of the art statistical tests to assess whether the traditional
convexity assumption can be maintained or not.

5.1 OTE decomposition under C and NC: a first analysis

In the recent study of Chen et al. (2024) a one-sample symmetric Wilcoxon test and a t-test
of the Malmquist and Hicks-Moorsteen productivity indices under various specifications on
exactly the same data set indicate that average productivity changes of these two indices are
negligible. Since no obvious technical change is being generated, this justifies the use of
an intertemporal frontier approach that basically ignores technical change. Hence, we use
a pooled frontier for the whole period as a benchmark when measuring the OT E based
on CRS, T E based on VRS, and SCE as a ratio of both previous concepts under C and
NC technologies. With 1085 observations, this is among the biggest samples analysed in
court efficiency studies (see the Voigt (2016) survey and Peyrache and Zago (2016) use 990
observations).

At the sample level of the Swedish district courts, we first illustrate the differences in the
efficiency estimates for OT E , T E and SCE , as well as the returns to scale (RTS) character-
istics for convex and nonconvex technologies. The descriptive statistics for these efficiency
concepts are shown in Table 4. The first line reports the number of efficient observations.
Thereafter, we report the arithmetic average, standard deviation, andminimum andmaximum
of the efficiency scores. The final lines list the results for two state of the art test statistics: on
the one hand the Li-test, and on the other hand K SW − test#1 and K SW − test#2. Table
4 reports these descriptive statistics for both the nonconvex and convex efficiency estimates
in the columns 3–5 and the columns 6–8, respectively. The final three columns report the
difference in terms of the nonconvex estimates (e.g., T E�

i = (T ENC
i − T EC

i ))/T ENC
i ).

The first horizontal part contains the sample level results that are our focus. The second and
third horizontal parts report results for merging and non-merging years. Finally, the fourth
horizontal part reports the results for the hypothetical mergers during the merging years. All
these results are sequentially commented upon below.

13 If production is divisible, but not additive, then the technology may well be nonconvex. Suppose y1 and
y2 are two activities, then by divisibility λy1 and (1−λ)y2 are activities for 0 ≤ λ ≤ 1. But, λy1 + (1−λ)y2

may not be an activity by the lack of additivity. Recall that production is additive whenever λy1 and (1−λ)y2

are activities, then λy1 + (1 − λ)y2 is an activity. Hence, technology may well be nonconvex by the lack of
additivity.
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This empirical analysis at the sample level generates the following conclusions. First,
among all 1085 observations, the number of efficient observations is 247 under CRS and 722
under VRS under NC, while the number of efficient observations is just 14 under CRS and 53
under VRS under C. Thus, the number of efficient observations is in both cases more than 13
times higher under NC than that under C. Secondly, NC frontier estimates of OT E and T E
are on average substantially higher than their C counterparts, while -as expected- the VRS
estimates are again higher than the CRS ones. More specifically, the average value of OT E
for all observations is 0.872 and for T E it is 0.976 under NC, while the average value of
OT E is 0.622 and T E is 0.749 under C, respectively. Looking at the OT E decomposition,
it is clear that the major source of inefficiency differs under NC and C. Under NC, T E being
close to unity on average, the problem of OT E inefficiency is mainly caused by a low SCE .
Under C, the major source of inefficiency is clearly T E , with SCE being less of a problem.
The last two columns also indicate that the C estimates are on average among 28.7% lower
in the CRS case and 23.2% lower in the VRS case.

Thirdly, the Li-test statistic has a null hypothesis stating that there exists no difference
between the C and NC efficiency distributions for a given returns to scale assumption. The
bottom line reporting the results of this Li-test statistic confirms that OT E , T E and SCE
all differ significantly at the 1% significance level between the NC and C series. Finally,
p-values of the two convexity tests KSW-test#1 and KSW-test#2 are both smaller than 0.05,
implying that the production possibility set is not convex for all observations.14

Furthermore, the above mentioned lack of average productivity change also makes it
possible to empirically analyze between merging and non-merging years: this comparison
generates the following conclusions.15 First, among the 701 merging year observations and
the 384 non-merging year observations, the number of efficient observations is 141 underCRS
and 460 under VRS under NC and just 9 under CRS and 30 under VRS under C in themerging
years, and 106 under CRS and 262 under VRS under NC and just 5 under CRS and 23 under
VRS under C in the non-merging years. Thus, the number of efficient observations is in both
cases more than 15 times higher under NC than that under C in the merging years, and more

14 We ignore the serial correlation that may be present in the pooled data over time: this may potentially affect
our convexity test results in a variety of ways.
15 A referee points out the potential bias when comparing merging and non-merging years in the case of input
and output growth given the many non-merging years at the end of the studied period. The growth of inputs
and outputs observed in Table 1 is indeed likely due to: on the one hand, the addition of resources and an
increasing demand for justice, and on the other hand, the merger operations may somehow have mitigated
or magnified this growth phenomenon. A previous study of Chen et al. (2024) on exactly the same data has
found no evidence at all of any productivity change using a Malmquist productivity index as well as a Hicks-
Moorsteen total factor productivity index under various conditions. Thus, the observed growth in inputs and
outputs seems to imply that on average courts grow bigger and change position with respect to an in essence
almost stationary technology that experiences no significant average shifts of the technological frontier itself.
Our empirical analysis employs technical efficiency, overall technical efficiency, and scale efficiency. The
observed growth in inputs and outputs with regard to an almost stationary technology may or may not have
an effect when we measure technical efficiency with regard to a VRS technology. Similarly, it may or may
not have an effect when we measure overall technical efficiency with regard to a constant returns to scale
technology. Finally, the observed growth in inputs and outputs with regard to an almost stationary technology
may or may not have an effect when wemeasure scale efficiency, since the latter is simply the ratio of the above
two models. Thus, under these circumstances merging and non-merging years can be meaningfully compared
since no productivity growth is at stake during this period. There may potentially be a bias when we measure
technical efficiency with regard to a variable returns to scale technology, with respect to a constant returns to
scale technology, or when measuring scale efficiency as a ratio of the two above efficiencies. In short, we do
not expect any systematic bias in our analysis due to the general tendency of growth in our sample. However, in
our interpretation, the fear of this reviewer for a potential bias when a general tendency of growth is observed
is not borne out in the empirical analysis.
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than 11 to 21 times higher under NC than that under C in the non-merging years. Secondly,
NC frontier estimates of OT E and T E are on average higher than their C counterparts and
the VRS estimates are again higher than the CRS ones. Comparing the OT E decomposition
between merging and non-merging years, we have the following conclusions. Under NC,
T E being nearly efficient, the problem of OT E inefficiency is mainly caused by a relatively
low SCE during the merging years which is substantially improved during the non-merging
years. Under C, the main source of inefficiency being T E , both T E and SCE improve from
the merging years to the non-merging years. Third, the bottom lines reporting the results of
the Li-test statistic confirm that OT E , T E and SCE all differ significantly between the NC
and C series for both the merging years and non-merging years alike. Finally, p-values of the
two convexity tests KSW-test#1 and KSW-test#2 or both merging and non-merging years are
also smaller than 0.05. These results suggest that the production possibility set is unlikely
convex for merging and non-merging years.

Finally, the empirical analysis of the hypothetical mergers during the merging years pro-
jected onto the intertemporal frontier composed of all years generates the following results.
First, under NC the average values of T E is 1.072, which is larger than unity. However, the
mean value of OT E and SCE are only 0.798 and 0.750, which are both smaller than unity.
Under C, the mean values of OT E , T E and SCE are 0.537, 0.716 and 0.759, which are
all smaller than unity. Thus, the hypothetical mergers are situated in front of the NC VRS
frontier and therefore generate a technological progress, which is absent under C. Second,
the C estimates are on average among 33.2% lower in the VRS case and 32.7% lower in
the CRS case. Third, the Li-test statistic confirms that the OT E , T E and SCE all differ
significantly between the NC and C series. Thus, these results confirm that the hypothetical
mergers would have generated technological change by shifting the frontier under NC: this
would have generated overcapacity and this has led the Swedish administration to downscale
the hypothetical mergers towards the current post-merger observations. Finally, p-values of
the two convexity tests KSW-test#1 and KSW-test#2 are again smaller than 0.05: we can also
reject convexity in favour of nonconvexity for the hypothetical mergers.

A comparison with related literature on courts learns us the following lessons. Castro and
Guccio (2014) analyse 27 out of 29 Italian judicial districts in 2006 and find that T E and SCE
are on average of equal importance. Castro and Guccio (2018) scrutinise 165 Italian judicial
counties for 2011 and find that T E is now the dominant source of poor performance. Gorman
and Ruggiero (2009) analyse US prosecutor offices and find that the average SCE of 0.88 is
larger than the average T E of 0.68. Thus, T E is clearly themain source of under achievement.
Peyrache and Zago (2016) use the directional distance function to evaluate the inefficiency
and the optimal structure of the Italian court system thereby focusing on the aggregation of
results across regional levels. However, this framework is practically incomparable with the
static efficiency decomposition.

Turning to the articles on the Swedish district courts, the work by Agrell et al. (2020)
adopts three complementary frameworks that allow for no comparison: a global frontier
under CRS (results only graphically displayed); a metafrontier approach; and a conditional
difference-in-differences analysis. In a similar vein, Mattsson and Tidanå (2019) adopt an
analysis based on Bogetoft and Wang (2005): therefore, a comparison is not possible.

Next, we analyse the returns to scale (RTS) characterization of all observations, as well
as the observations in the merging and non-merging years. A detailed count of the number
of observations for various RTS under C and NC efficiency measures is shown in Table 5.

For the total sample, we can infer two conclusions. First, the amount of CRS observations
is substantially higher under NC compared to C. Second, under C the overwhelming majority
of observations experiences DRS with very few observations undergoing IRS, while under
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NC a small majority of observations experiences IRS with a slightly smaller amount being
DRS. When comparing the merging years and the non-merging years, one can deduce the
following conclusions. First, the amount of CRS observations increases significantly due
to the merger under NC, while this amount increases slightly under C. Second, the relative
number of both IRS and DRS observations decreases in favour of CRS under NC, while
under C the amount of IRS observations is reduced to one while the relative amount of DRS
observations increases even further.

This markedly different analysis of RTS under NC and C is not unusual: similar results
have earlier been reported in even more detail in Cesaroni et al. (2017). Castro and Guccio
(2018) find that the majority of Italian courts are under IRS under one model specification
and that the majority of courts are under DRS under another model specification. Gorman
and Ruggiero (2009) discover that the majority of prosecution offices havemainly decreasing
returns to scale in their sample.

5.2 OTE decomposition under C and NC: comparing pre- and post-merger
observations

In addition to the empirical analysis at the sample level and at the level of merging years and
non-merging years above, thanks to the level playing field created by the hypothesis of no
technical change and the resulting intertemporal frontier we can now dig deeper in detail by
focusing on the comparison between pre-merger and post-merger observations solely. In this
subsection, we conduct a comparative analysis and statistical tests on the efficiency values
between the pre-merger and post-merger observations.

Descriptive statistics are reported in Table 6. This empirical analysis allows us to infer the
following conclusions. First, the number of efficient observations is zero across the board
under C for pre-merger observations, while only a single observation becomes efficient for
T E due to the mergers. By contrast, the number of efficient observations is 2 for OT E and
SCE , and 22 for T E under NC for pre-merger observations, and this number increases after
the mergers to 7 for OT E and SCE , and 22 for T E : the largest relative increase is clearly in
OT E and SCE . Second, as expected the NC frontier estimates are on average substantially
higher than their C counterparts (about 21% and more) except for the SCE component,
while the VRS results are again higher than the CRS ones in the pre-merger case. This result
is confirmed in the post-merger case: NC frontier estimates are between 21.5% and 29.6%
higher than their C counterparts, and this is now also valid for the SCE component (9.9%).
Looking inmore detail at the OT E decomposition, we find that under NC the T E component
is close to unity and the main source of OT E inefficiency is due to SCE inefficiency, and
that the merger improves the OT E efficiency level substantially because the SCE efficiency
improves. Under C, the T E inefficiency is worse than the SCE inefficiency, and the merger
improves the OT E efficiency level less than in the NC case because the T E efficiency level
improves.

Third, the bottom line containing the results of the Li-test statistic confirms once more
that OT E , T E and SCE differ significantly at the 1% significance level between the NC
and C series. Last but not least, for the pre-merger observations, p-values of two convexity
tests KSW-test#1 and KSW-test#2 both indicate that we can safely reject convexity. For the
post-merger observations, we safely reject convexity under KSW-test#2 and only marginally
reject it under KSW-test#1.

In addition, to further explore whether the performance of the observations involved in
the merger has improved after the merger or not, we establish the following definition.
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Table 7 Number of observations with improved or deteriorated performance

Nonconvexity Convexity

OT ENC
i T ENC

i SCENC
i OT EC

i T EC
i SCEC

i

# Obs. with improved
performance (without
case weights)

29 29 29 22 25 18

# Obs. with decreased
performance (without
case weights)

7 7 7 14 11 18

# Obs. with improved
performance (with case
weights)

26 8 31 23 26 16

# Obs. with decreased
performance (with case
weights)

10 28 5 13 10 20

Definition 5.1 When comparing pre-merger and post-merger observations, we define perfor-
mance as follows:

• If the average efficiency of pre-merger observations is smaller than or equal to the effi-
ciency of post-merger observations, thenwe consider the performance has been improved.

• If the average efficiency of pre-merger observations is bigger than the efficiency of post-
merger observations, then we consider the performance has been deteriorated.

Implementing this Definition 5.1, we simply count the number of different observations
complying with this definition to verify if the merging activity improves performance or not.
Results are reported in Table 7.

Analysing Table 7 we can infer the following conclusions. On the one hand, if we perform
the analysis without case weighted efficiency measures, then the findings are obtained as
follows. First, for the three efficiency results of OT E , T E and SCE the large majority of
the 36 observations improve under NC. Second, for the same three efficiency results under C
only OT E and T E improve in the majority of cases (even though it is less pronounced than
under the NC case), while for SCE performance deteriorates and improves for half of the
cases. On the other hand, if we conduct the analysis with case weighted efficiency measures,
then the findings are generated as follows. First, for the two efficiency results of OT E and
SCE the large majority of the 36 observations improve, while the efficiency result of T E
in the large majority of the 36 observations decrease under NC. Second, for the same three
efficiency results under C only OT E and T E improve in the majority of cases, while for
SCE performance deteriorates and improves in nearly half of the cases, which is similar to
the result without considering case weights.

Next, our analysis tests for the returns to scale (RTS) characterization of these pre-merger
and post-merger courts. A count of the number of observations for various RTS under C and
NC efficiency measures is shown in Table 8.

For the numbers of the pre-merger observations under different returns to scale, we can
make the following conclusions. First, among the 83 pre-merger observations 5 observations
experience CRS under C and 14 observations under NC. Thus, under NC more observations
are able to obtain an optimal size compatible with a long-run zero profit equilibrium. Second,
under C only 6 observations experience IRS, while the largest group of observations (72)
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Table 8 RTS classification between pre- and post-merger observations

Sample #CRS #NDRS (IRS) #NIRS (DRS) Total # observations

Nonconvexity Pre-merger Obs 14(16.87%) 35(42.17%) 34(40.96%) 83

Post-merger Obs 6(16.67%) 11(30.56%) 19(52.78%) 36

Convexity Pre-merger Obs 5(6.02%) 6(7.23%) 72(86.75%) 83

Post-merger Obs 0(0.000%) 0(0.000%) 36(100.0%) 36

is characterised by DRS: thus, few observations can potentially benefit from a merger and
the largest group of observations is actually already too big. Under NC, 35 observations
experience IRS, while a slightly larger group of 34 observations experiences DRS: thus,
substantially more observations can potentially benefit from a merger under NC. Third, both
C and NC methods agree that the largest group of observations experiences DRS.

Switching to the post-merger observations under different returns to scale, the follow-
ing conclusions are justified. First, among the 36 post-merger observations, 0 observation
experiences CRS under C and 6 observations experience CRS under NC. Again, under NC
more observations are able to obtain an optimal size. Second, under C 0 observation expe-
riences IRS, while the remaining group of 36 observations is characterised by DRS: thus,
all observations have actually become too big. Under NC, 11 observations experience IRS,
while a slightly larger group of 19 observations experiences DRS: thus, fewer observations
have actually become too big. Third, both C and NC methods indicate that by far the largest
group of observations experiences DRS.

Hence, under C most pre-merger and almost all post-merger observations are DRS: this
indicates a kind of overshooting of the goals of the merger wave. However, under NC the
number of CRS, IRS, and DRS cases are more balanced: this would have allowed to better
select the IRS observations for the merger, and it signifies there is less overshooting of the
goals of the merger wave.

One remark on the particular case of the Stockholm court. While it is decreasing returns
to scale before the merger under both convexity and nonconvexity, it also remains decreasing
returns to scale after the merger in both cases.

6 Conclusions

Inspired by other contributions utilizing the traditional static input-oriented decomposition of
overall technical efficiency to assess the benefits of horizontal mergers, we have applied this
well-knownmethodology to a large unbalanced panel of Swedish district courts observed over
the years 2000–2017. To the best of our knowledge, we are the first study assessing the benefit
of horizontalmergers under both convex and nonconvex nonparametric, deterministic frontier
specifications. As argued in the introduction, there is a need for conservative estimates of cost
savings, since in general these savings are often overcompensated by a market power effect:
as shown by Definition 3.1, nonconvex estimates of efficiency gains are more conservative
than traditional convex ones. Obviously, in the public sector a market power effect can be
safely ignored, but the need for conservative estimates of cost savings remains.

The recent, most comprehensive court productivity study of Chen et al. (2024) known to us
finds no productivity growth in Swedish district courts. In particular, using an input-oriented
Malmquist productivity index and a Hicks-Moorsteen total factor productivity index Chen
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et al. (2024) find that there is no significant productivity growth at all. This finding is robust
to variations in specifications both under variable and constant returns to scale, and under
convexity and nonconvexity. This serves to justify the use of an intertemporal or pooled
frontier approach over all years that basically ignores any technical change in our sample.

The OT E decomposition under C and NC at the sample level yields the following con-
clusions. First, there are much more efficient observations under NC compared to C. Second,
the major source of OT E inefficiency is SCE under NC and T E under C. Third, according
to the Li-test OT E , T E and SCE all differ significantly between the NC and C series. When
comparing merging years and non-merging years, about the same conclusions emerge: SCE
improves over time under NC, and especially T E improves over time under C. Our results
are consistent with, e.g., Gorman and Ruggiero (2009) and Frantz (2015) in that mergers
improve efficiency mainly via SCE , and that there is no evidence of a facilitating role of T E
in this merger process.

Turning to the characterization of RTS at the sample level, there are far more CRS obser-
vations under NC than under C, and most observations are DRS under C and IRS under
NC. Comparing merging years and non-merging years, the amount of CRS observations
increases obviously due to the merger under NC, while it increases slightly under C. Further-
more, the relative number of IRS and DRS observations decreases in favour of CRS under
NC, while under C the amount of IRS observations is only one while the relative amount of
DRS observations increases further.

Focusing on the analysis of pre- and post-merger observations solely, the following con-
clusions are supported by the data. First, the number of efficient observations increases
under NC, and does only marginally so under C. Second, under NC the OT E decompo-
sition improves because SCE improves, while under C the OT E decomposition improves
because T E improves and SCE even slightly deteriorates. Implementing Definition 5.1 con-
firms improvement across the board under NC, and improvements in OT E and T E jointly
with a deterioration of SCE under C. Turning to the characterization of RTS among these pre-
and post-merger observations, under C most pre-merger and all post-merger observations are
DRS, while under NC the number of CRS, IRS, and DRS cases are more balanced.

Therefore, our main contributions can be summarized as follows. First, contrasting the
traditional C with the less popular NC methodology, it is fair to state that the former has
much more difficulty compared to the latter to make sense of the administrative decision to
merge Swedish district courts. Under C, only T E tends to improve and most observations
are DRS, while under NC one could have selected among IRS observations for the merger.
Under C, there is a kind of overshooting of the traditional goals of the merger wave. Second,
these empirical results make the NC methods a worthwhile alternative when one aims at
a conservative estimate of the savings associated with horizontal mergers. Furthermore, we
have in all these steps conducted a battery ofmodern statistical tests: the Li-test and the KSW-
test#1 and KSW-test#2 of convexity. The relevant results indicate the massive rejection of
convexity of technology (a marginal rejection occurs in just one instance). Third, our results
are complementary to the three existing studies analysing this merger wave among Swedish
district courts. In short, it is clear that the traditional convexity assumption cannot make sense
of this historical horizontal merger wave of Swedish district courts, while its nonconvex
counterpart can make sense of it.

Several questions for future research arise. First, it is obviously highly desirable to study
horizontal M&As in other countries and sectors using the basic efficiency decomposition
of overall technical efficiency, technical efficiency and scale efficiency as we have done
to see whether convexity has a similar impact. Second, since Saastamoinen et al. (2017)
illustrate that merger gains can depend on whether the production frontier is estimated in a
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deterministic (e.g., DEA) or stochastic (e.g., StoNED) way, it may be important to duplicate
our research efforts with also a stochastic frontier estimation method (e.g., StoNED may
be a good candidate). Third, another aspect of this robustness question is related to the
orientation of measurement. Since some articles opt for it, it is useful to also use an output-
orientedmeasurement to see whether the basic efficiency decomposition results reported here
remain true. Fourth, as suggested by a referee, one could compare the hypothetical merger
observations with the post-merger observations and check whether convex or nonconvex
efficiency estimates provide a better prediction. Some recent work suggest that nonconvex
estimators provide a better job at predicting (see, e.g., Jin et al. (2024) or Delnava et al.
(2024)). Fifth, we are unaware of meaningful nonconvex production models with weight
restrictions in the current state of the literature and a comparison of convex and nonconvex
approaches with weight restrictions is certainly a promising avenue for research.

However, it is important that for replication purposes and for robustness sake more hori-
zontal mergers are investigated and wider topics in economics and in the DEA literature in
operations research are being investigated for the impact of the convexity axiom. Only if mas-
sive and robust evidence can be assembled as to the theoretical redundancy of convexity and
its empirical impact on the most important research questions in economics and operations
research alike, then the research community may consider it time to ditch convexity. Fur-
thermore, it should be remembered that nonconvex production frontier methods are always
based on some scaled vector dominance that allows to compare some inefficient observation
with an observation that actually dominates it (see Kerstens and Van de Woestyne (2014)):
this makes validation easy and greatly facilitates learning.
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