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This paper explores a selection of recently proposed bootstrapping techniques to estimate non-para-
metric convex (DEA) cost frontiers and efficiency scores for transit firms. Using a sample of Norwegian
bus operators, the key results can be summarized as follows: (i) the bias implied by uncorrected cost
efficiency measures is numerically important (close to 25%), (ii) the bootstrapped-based test rejects the
constant returns to scale hypothesis, and (iii) explaining patterns of efficiency scores using a two-stage
bootstrapping approach detects only one significant covariate, in contrast to earlier results highlighting,
e.g., the positive impact of high-powered contract types. Finally, comparing the average inefficiency
obtained for the Norwegian data set with an analogous estimate for a smaller French sample illustrates
how the estimated differences in average efficiency almost disappear once sample size differences are
accounted for.
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1. Introduction

Estimates of the cost structure and the cost efficiency of transit
operators provide highly useful information for transport policy-
makers. Whatever the ownership status and the regulatory envi-
ronment in which transit firms work, proper knowledge of the cost
structure (minimal costs, economies of density, economies of scale,
input flexibility, network characteristics, services characteristics,
etc.) and its determinants (contract type, regulatory environment,
subsidies, etc.) is crucial for guiding decisions with respect to
pricing, investment, supply adjustments, etc. Moreover, the search
for potential efficiency improvements of transit firms has been
a constant interest both from a policy and an academic viewpoint. It
has become especially relevant over the past decades because, in
most western economies, the demand for transit has been almost
everywhere declining due to suburbanization tendencies and
modal shifts towards private-car transport. Finally, proper cost and
efficiency information add useful insights on the desirability of
regulatory reforms, it provides information on how to limit cost and
subsidy levels, and it contributes to the discussion on the relative
merits of private versus public provision.

Several approaches exist to the estimation of the costs and
efficiency of transit firms. The parametric frontiers require func-
tional form specifications: flexible functional forms such as the
translog or generalized Leontief have been quite popular in
empirical applications (for surveys of parametric approaches to
orger).
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cost estimation, see Pels & Rietveld, 2008; Small & Verhoef, 2007:
Ch. 3). Non-parametric methods instead determine the cost frontier
without assuming a functional form. These methods envelop the
data by piecewise linear hyperplanes using mathematical
programming methods. Data Envelopment Analysis (DEA) and the
Free Disposal Hull (FDH) are the most popular techniques: the
former imposes convexity, the latter does not. Both parametric and
non-parametric models determine inefficiencies as deviations from
the estimated frontier and thereby offer a ‘‘benchmarking’’
perspective. Moreover, depending on the nature of the data, fron-
tier analyses also potentially yield information on productivity
changes over time, calculated by considering shifts in the frontier
over time. Recent surveys of studies analyzing transit costs,
productivity and efficiency include De Borger, Kerstens, and Costa
(2002), De Borger and Kerstens (2008), and Waters (2008).1

In recent decades, substantial progress has been made in the
specification and estimation of parametric cost models for transit
firms. For example, problems associated with the heterogeneity of
outputs provided by transit firms and the intrinsic spatial nature of
the network they operate have been carefully dealt with. This has
induced important innovations in output measurement and in
modelling economies of scale and scope (see, e.g., Basso & Jara-Dı́az,
2005; Spady & Friedlander, 1978, for a survey, see De Borger &
Kerstens 2008). Moreover, a variety of econometric studies now
Following up on De Borger, Kerstens, and Costa (2002) with a meta-analysis,
Brons et al. (2005) list 33 studies: 15 parametric and 18 non-parametric. This could
reveal a close to even popularity of both families of methods in urban transit
studies.
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exists that analyze the impact of contractual arrangements and
regulatory policies on the cost structure and on the relative efficiency
of transit systems (Dalen & Gómez-Lobo, 2003; Gagnepain & Ivaldi,
2002a, 2002b; Kerstens, 1996; Roy & Yvrande-Billon, 2007).2 In
addition, there is now overwhelming evidence of a negative rela-
tionship between the levels of subsidies and operating cost efficiency
(Kerstens, 1996; Matas & Raymond, 1998; Sakano & Obeng, 1995).

This paper focuses on recent developments in non-parametric
estimation of cost frontiers, and on the use of these techniques to
study transit costs and cost efficiency. Starting with the seminal
article of Chu, Fielding, and Lamar (1992), empirical applications of
these techniques to transit firms have become quite popular. For
instance, Cowie and Asenova (1999) have studied British urban
transit, while Kerstens (1996) and Odeck and Alkadi (2001) have
analyzed, respectively, French and Norwegian bus transport (see De
Borger & Kerstens, 2008 for a more complete overview). Although it
has been argued that non-parametric methods have substantial
advantages over parametric techniques (e.g., because no a priori
functional form is specified), one potential reason why this meth-
odology is sometimes met with skepticism is that the statistical
properties of these non-parametric cost models have remained
unexplored in the early literature. Essentially, only point estimates of
efficiency are obtained from these estimators. For a long time, the
lack of statistical tests on essential properties of the cost structure
made it difficult to test relevant economic hypotheses with respect
to, for example, returns to scale, input substitution, or the signifi-
cance of inefficiency scores.

Fortunately, however, a recent specialized literature has devel-
oped statistical inference tools for non-parametric frontier models
(see the Simar & Wilson, 2008 survey). It has been forcefully argued
that efficiency estimators derived from such frontiers are intrinsi-
cally biased and that the bias depends, among others, on the sample
size and on the number of dimensions (outputs and input prices)
captured by the model (see, e.g., Simar & Wilson, 2000; Zhang &
Bartels, 1998). To correct for these shortcomings, the use of boot-
strapping techniques is suggested. Moreover, Simar and Wilson
(2007) recently expanded this methodology to the typical semi-
parametric two-stage models. These determine non-parametric
efficiency scores in a first stage, and then econometrically explain
inefficiency patterns using available structural and environmental
characteristics of firms. Finally, bootstrapping also seems to offer an
elegant solution to the difficulty of comparing efficiency estimates
obtained on the basis of widely different sample sizes and specifi-
cations (Zhang & Bartels, 1998).

The purpose of this paper is, therefore, to explore a selection of
these most recently developed techniques for estimating non-
parametric convex (DEA) cost frontiers for transit firms and to show
their usefulness to test characteristics of the cost structure and to
derive cost efficiency scores.3 Of course, the specific focus of the
paper implies that some other important issues are not dealt with.
For instance, transit agencies recently devote substantial resources
to curb emissions or to promote other social goals, which may well
distract from the production of vehicle kilometers. For example,
2 Among these, the study by Gagnepain and Ivaldi (2002b) is most firmly
grounded in economic theory. They allow for an inefficiency term consisting of two
components: an exogenous ‘‘pure’’ inefficiency and an endogenous component,
which depends on the optimal effort for cost reduction that the firm exercises. This
effort level follows from optimizing behaviour, taking account of both the cost of
effort and the productivity of effort. This leads to a cost function incorporating the
optimal effort level. The results show that ignoring effort adjustments has fairly
limited effects for the cost structure, but it does lead to distorted estimates of
efficiency.

3 Two recent papers applying bootstrapping to efficiency in the transport sector
are Boame (2004) and Odeck (2006). Neither of these covers the wide range of
methodologies analyzed in this paper.
Nolan, Ritchie, and Rowcroft (2002) attempt to capture urban
transit efficiency as well as wider social goals (mobility, energy
savings and pollution reduction, among others) and illustrate that
the pursuit of these goals affects traditional transit efficiency scores.
For the specific goal of emission reduction, McMullen and Noh
(2007) use a directional distance function approach to model the
joint production of good (vehicle kilometers) and bad (emissions)
outputs; they nicely illustrate how different efficiency rankings
emerge once bad outputs are included.4

This paper sets four precise goals. First, we apply bootstrapping
methods to correct for the inherent bias in non-parametric cost
efficiency estimates of transit firms. In doing so, we adapt the
bootstrap algorithm, originally developed for technical efficiency
measures, to the case of overall cost efficiency ratios. The proposed
methodology is illustrated exploiting a well-known Norwegian
database that has been used several times before in the literature
(see, e.g., Jørgensen, Pedersen, & Volden, 1997). We find the bias
implied by standard non-parametric cost efficiency measures to be
numerically important. It amounts to close to 25%, both for a model
that imposes constant returns to scale and for a model allowing for
variable returns. Second, we use bootstrapping to test for constant
returns to scale of the cost frontier and its underlying technology.
Third, we attempt to explain observed cost efficiency patterns by
a variety of operating environment and regulatory characteristics,
using the recent Simar and Wilson (2007) two-step bootstrapping
procedure. Fourth, we illustrate the use of a Monte-Carlo-technique
to compare transit cost inefficiencies in two samples of different
size. To do so, we study a second sample, previously analyzed by
Gagnepain and Ivaldi (2002a, 2002b), providing information on
French transit firms. We then empirically compare inefficiencies of
Norwegian and French transit firms, correcting for differences in
sample size along the lines suggested by Zhang and Bartels (1998).
We find that correcting for sample size differences has important
implications for estimated average inefficiencies.

The structure of this paper is as follows. To set the stage, in
Section 2 we first develop the basic microeconomic framework for
estimating cost functions and cost efficiency. We then summarize
some of the recent methodological contributions to non-para-
metric cost frontier estimation. In particular, we intuitively explain
the role of bootstrapping in resolving problems of statistical infer-
ence on the basis of estimated non-parametric cost frontiers. The
techniques employed in the empirical analysis are formally
explained in some detail in Section 3. Empirical results are reported
in Section 4. Finally, Section 5 concludes.

2. Estimating cost functions: theory and developments in
empirical methodologies

In this section, we first briefly review the microeconomic
foundations of production and cost functions, and show how
technical and cost efficiency follow naturally. We then study recent
methodological advances in non-parametric efficiency estimation.

2.1. Microeconomic foundations of production, cost and efficiency

Technology transforms inputs x ¼ ðx1;.; xnÞ˛Rn
þ into

outputs y ¼ ðy1;.; ymÞ˛Rm
þ . The production possibility set T

is the set of all feasible input and output vectors:
T ¼ fðx; yÞ˛Rnþm

þ ; x can produce y :g It is standard to impose
the following assumptions on technology (e.g., Färe & Primont,
1995):
4 The directional distance function generalises existing distance functions (being
dual to a profit function) and can be extended to model the joint production of good
and bad outputs (Chung, Färe, & Grosskopf, 1997).
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(T.1) ð0;0Þ˛T ; ð0; yÞ˛T0y ¼ 0, i.e., inaction and no outputs
without inputs;

(T.2) T is a bounded set, i.e., infinite outputs are not allowed with
a finite input vector;

(T.3) T is a closed set;
(T.4) cðx; yÞ˛T ; ðx;�yÞ � ðu;�vÞ0ðu; vÞ˛T , i.e., fewer outputs can

always be produced with more inputs, and inversely;
(T.5) T is a convex set.

The input set associated with the production possibility set T
denotes all input vectors x˛Rn

þ capable of producing a given output
vector y˛Rm

þ : L(y)¼ {xj(x,y) ˛ T}.
The input distance function offers a complete characterization of

technology; it is defined as

Diðx; yÞ ¼
�

maxfl : l � 0; x=l˛LðyÞg if ys0;
þN if y ¼ 0:

(1)

We next define the radial input efficiency measure as:

DFiðx; yÞ ¼ minfqjq � 0; ðq xÞ˛LðyÞg: (2)

This radial measure of input technical efficiency (DFi(x,y)) is simply
the inverse of this input distance function ðDFiðx; yÞ ¼ ½Diðx; yÞ��1Þ. It
denotes the proportional reduction in inputs that are feasible while
maintaining production of a given output vector. Its most important
properties are: (i) 0<DFi(x,y)� 1, with efficient production on the
boundary (isoquant) of L(y) represented by unity; (ii) it has a cost
interpretation (see Färe, Grosskopf, & Lovell, 1985 for details).5

The cost function, as a dual representation of technology,
indicates the minimum expenditures needed to produce an
output vector y given a vector of positive input prices
w ¼ ðw1;.;wnÞ˛Rn

þþ: C(y,w)¼min {wxjx ˛ L(y)}. The same cost
function can also be written in terms of the input distance
function. This is the basis for the dual relations that establish the
foundations for efficiency measurement (e.g., Färe & Primont,
1995). Formally, the duality between the input distance function
and the cost function can be written as follows:

Cðy;wÞ ¼ min
x
fwx : Diðx; yÞ � 1g w > 0 (3)

Diðx; yÞ ¼ min
w
fwx : Cðy;wÞ � 1g x˛LðyÞ (4)

These two expressions clearly show the close relation between the
cost function and the input distance function. While the cost
function can be obtained from the input distance function by
optimizing with respect to input quantities, the input distance
function can be resolved from the cost function by minimizing with
respect to input prices.

The properties of the cost function in prices and outputs are well
known. Under minimal regularity conditions, the cost function
C(y,w) has the following properties (see Luenberger, 1995):

(a) Homogeneous of degree one in prices w: C(y,aw)¼ aC(y,w) for
a> 0.

(b) Non-decreasing in prices w: if w0 �w, then C(y,w0)� C(y,w).
(c) Concave in prices w: C(y,aw1þ (1� a)w2)� aC(y,w1)þ (1� a)

C(y,w2) for 0� a� 1.
(d) Non-decreasing in outputs y: if y0 � y, then C(y0,w)� C(y,w).
5 For reasons of convenience, we stick to the traditional radial input efficiency
measure, i.e., the inverse of the input distance function. Recently, more general
directional distance functions have been introduced to measure profit efficiency
(see Chambers, Chung, & Färe, 1998). Apart from the fact that these new measures
lead to additive rather than multiplicative decompositions, they can be exactly
related to the traditional radial efficiency measures employed in this contribution.
To establish a framework for efficiency measurement, we
discuss a few points in more detail. It is clear that for each element
of the input set ðx˛LðyÞÞ, the following inequality holds:

Cðw; yÞ � w
�

x
Diðx; yÞ

�
: (5)

Thus, the minimal costs are smaller or equal to the observed cost
measured at the isoquant of the input set (i.e., after eliminating any
eventual technical inefficiency). This inequality (5) can be rewritten
as follows:

Cðw; yÞDiðx; yÞ � wx: (6)

In this form, inequality (6) is known as Mahler’s inequality (see Färe
& Grosskopf, 2000).

The transformation of this inequality into equality by adding an
allocative efficiency component AEðw; x; yÞ forms the theoretical
foundation for the multiplicative Farrell (1957) decomposition for
measuring input efficiency:

Cðw; yÞ
wx

¼ 1
Diðx; yÞ

AEðw; x; yÞ: (7)

The first ratio of mimimal to observed costs Cðw; yÞ=wx defines
a cost efficiency component. This is also in general labeled an
overall efficiency component. The second ratio 1=Diðx; yÞ coincides
simply to the radial measure of input technical efficiency (DFi(x,y)),
as already alluded to above. Finally, the component AEðw; x; yÞ
indicates the allocative efficiency, defined in a residual way. This is
formally written in the following definition:

Definition 1. Under the assumptions (T.1)–(T.5) on the input set L(y),
the following input-oriented efficiency notions can be distinguished:

(1) Overall Efficiency is the quantity: OEi(x,y,w)¼ C(y,w)/wx.
(2) Technical Efficiency is the quantity: TEi(x,y)¼DFi(x,y).
(3) Allocative Efficiency is the quantity: AEi(x,y,w)¼OEi(x,y,w)/

TEi(x,y).

This analysis immediately makes clear that cost efficiency is
a more severe criterion than technical efficiency when bench-
marking firms (OEi(x,y,w)� TEi(x,y)� 1). Notice that Färe, Grosskopf,
and Lovell (1983, 1985: pp. 3–5) offer an even more extended effi-
ciency taxonomy (by splitting up technical efficiency into conges-
tion, scale efficiency and pure technical efficiency).

The above basic microeconomic theory of cost functions and
their dual relation to the input distance function as a representation
of technology has clearly established that efficiency measurement
is firmly grounded on microeconomics.

2.2. Recent methodological advances in non-parametric
estimation methods

The recent literature has generated a wide variety of develop-
ments in non-parametric estimation of production and cost fron-
tiers.6 Many of these efforts have concentrated on the statistical
properties of the efficiency estimators, which were often naively
depicted as deterministic in nature. For surveys on these issues, we
refer to Cherchye and Post (2003), Daraio and Simar (2007),
6 Of course, innovations in parametric estimation have been introduced as well.
For example, substantial progress has been made in estimating distance functions
that represent multi-input multi-output production processes, in integrating the
explanation of efficiency patterns into the one-sided inefficiency error component,
in the inclusion of efficiency changes in models decomposing productivity change,
etc. The interested reader is referred to Kumbhakar and Lovell (2000) for
a summary of the current state of the art in this domain and to Sickles (2005) for
a comparison among recent parametric and other estimators.
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Fig. 1. Bootstrap the frontier isoquant: some intuitions.
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Grosskopf (1996), and Simar and Wilson (2000, 2008). In what
follows, we focus on three recent advances.

The first one is related to small sample bias. Indeed, a crucial
result that has been established is that both the convex (DEA) and
non-convex (FDH) estimators are consistent, but –unfortunately–
they also have very slow rates of convergence. This implies that,
when only small samples are available, these cannot generate an
adequate representation of technology, and the resulting efficiency
estimates are biased. Then, inefficient firms can be wrongly clas-
sified as efficient, or the ‘‘true inefficiency’’ of an inefficient obser-
vation can be substantially underestimated. This follows from the
fact that non-parametric production analysis provides a local and
inner bound approximation to the true, unknown and possibly
larger production possibility set. This small sample bias depends on
specific properties of the underlying data in a given model. In
particular, it is related to (i) the number of observations in the
sample, (ii) the number of inputs and outputs, and (iii) the density
of observations around the relevant segment of the frontier. Since
non-parametric estimators only provide an inner approximation of
the true frontier, adding more observations can only improve the
approximation of the true frontier, hence reducing the eventual gap
between efficiency estimates and the true efficiency. Similarly, the
more input and output dimensions are included in a given model,
the more serious the bias becomes for a given sample size.

The small sample bias can easily be remedied if knowledge of
the sampling distribution was available. This would allow con-
structing confidence intervals, and it is the basis for developing any
test statistics. In principle, two approaches exist to obtain sampling
distributions of the frontier estimates: (i) theoretical results based
on asymptotics, and (ii) bootstrapping techniques. Analytic deri-
vation of the asymptotic sampling distribution has so far yielded
a limited number of general results, at least for the more popular
convex (DEA) estimators (see, e.g., Gijbels, Mammen, Park, & Simar,
1999). Alternatively, the approximation of the sampling distribu-
tion using the bootstrap, a common statistical re-sampling tech-
nique, has led to important breakthroughs. Given the linear
programming nature of the frontier efficiency estimators, boot-
strapping makes it possible to employ brute computer force to
overcome analytical intractability. The first bootstrapping proce-
dure tailored to the needs of frontier estimation has been devel-
oped in Simar and Wilson (1998).

Given a consistent description of the data generating process, the
principle of bootstrapping involves the repeated simulation of this
process, and the application of the original estimator to each simu-
lated sample such that the resulting estimators mimic the sampling
distribution of the original estimator. Applying this technique to DEA
cost efficiency measures can be understood intuitively as follows.
First, a standard cost efficiency measure is computed relative to
a non-parametric DEA technology. Then, the density f() of the effi-
ciency scores is estimated by a kernel density.7 Second, this density
allows drawing pseudo-scores that follow the same distribution as
the scores obtained with the original sample. Third, these simulated
scores make it possible to generate a number of B pseudo-data sets,
which are then used to obtain B new sets of efficiency scores. Finally,
these new efficiency scores enable us to estimate and correct for the
bias. Technical details are developed in more detail below.

The intuition is illustrated in Fig. 1. The observations (denoted a to
i; they are represented by squares) support a non-parametric iso-
quant. The bootstrapping from pseudo-data sets (represented by
circles) allows reconstructing each time a new isoquant that can be
situated slightly outside (but also in intersection, etc.) the initial non-
parametric isoquant. Repeating this process a large number of times
7 Since the input-oriented scores are bounded from above by unity, a reflection
technique (Silverman, 1986) needs to be applied to obtain a proper kernel density.
provides a clue about the unknown true efficiency relative to the true
frontier somewhere below the original non-parametric isoquant. We
apply the same method to estimating cost efficiency ratios below.

A second innovation is the application of the bootstrapping
methodology to remedy problems related to explaining efficiency
patterns in a second stage analysis (see Simar & Wilson, 2007). A
standard approach in the transport cost literature is to use ‘‘envi-
ronmental’’ variables (such as subsidy regulations, contract types,
etc.), over which the evaluated transit firm is assumed to have no
control, to explain estimated inefficiencies. Although widely used,
there are three potential problems with this approach. First, any
two-stage approach uses an estimate of the efficiency score as
a dependent variable in the second stage. But since the frontier
efficiency scores are biased, it is useful to construct bias-corrected
estimates, as explained above. Second, most applications of two-
stage approaches have relied on Tobit regression to estimate the
impact of environmental variables (contract type, etc.) on efficiency
at the second stage. However, because of the intrinsic bias in the
non-parametric frontier estimates, we can be quite confident that
transit operators that are estimated to be inefficient are indeed
inefficient, but we can have much less confidence in the status of
operators that are estimated to be on the frontier (and hence
pronounced efficient). The Tobit approach does value these efficient
observations as such, setting their efficiency score equal to one.
Truncated regression may therefore be more appropriate, since it
concentrates on the inefficient observations solely. Third, since the
individual efficiency scores depend on other observations on the
frontier, the dependent variable is serially correlated in an
unknown way. The efficiency scores are not independent and, since
inputs and outputs are correlated with the environmental vari-
ables, the error term of a second stage regression of efficiency
scores on environmental variables is correlated with the environ-
mental variables as well. While both correlations disappear
asymptotically, the slow rate of convergence makes conventional
inference invalid in small samples.

Simar and Wilson (2007) suggest a bias-correction and a boot-
strap on the second stage to arrive at consistent parameter esti-
mates. The first algorithm is a bootstrap variant of the truncated
regression on the efficiency scores obtained at the first stage; the
second algorithm comprises an intermediate bias-correction before
a final bootstrapped truncated regression is executed. Though they
are theoretically equivalent in large samples, the second algorithm
is more reliable in small samples.

Finally, a third innovation is related to the difficulty of
comparing efficiency estimates resulting from different studies. For
example, imagine one compares average cost efficiency estimates
from two countries with identical non-parametric specifications of



B. de Borger et al. / Research in Transportation Economics 23 (2008) 53–64 57
the cost frontier that differ only in sample size, and assume one
country using competitive tendering procedures while the other
does not. Suppose one finds that the country with the smaller
sample enjoys higher cost efficiency and employs competitive
tendering, this does not tell us anything about the potential impact
of such a policy because the bias of the non-parametric frontier
estimates depends, among others, on sample size.

To allow comparability, several methods have been proposed. A
non-exhaustive overview of some of these methods follows.8 The
first method is simply to estimate a common frontier for samples
from several countries. This requires an identical specification and
perfect similarity in data, which are rarely available in practice. This
solution has to the best of our knowledge not been applied in
a transit context. Second, another solution is to use meta-analysis
and to regress the efficiency estimates from a variety of studies to
a set of control variables, including characteristics of the samples
and of the specification used, together with environmental and
policy variables. The trouble is that it is not clear to which extent
a traditional meta-regression can accommodate variations
between estimates resulting from radically different estimators
(e.g., parametric vs. non-parametric frontiers). One example in the
transit setting is the study by Brons, Nijkamp, Pels, and Rietveld
(2005). Finally, a third method to compare results from different
samples is due to Zhang and Bartels (1998). They demonstrated that
average efficiency in a non-parametric model decreases both in the
number of observations and in the number of dimensions included.
They argue in favour of a Monte-Carlo-type approach, limiting the
size of larger samples to the size of the smaller samples, to obtain
average sample efficiencies that are comparable across samples. In
a more or less similar way, it is almost always possible to handle the
fact that different models use different numbers of parameters by
adjusting the number of observations in the samples accordingly.
Notice that this method does not correct for bias, but simply
ensures that results share a similar degree of bias. Again, we are
unaware of any application in a transit context.

To conclude this brief methodological overview, note that addi-
tional innovations have been developed. We mention two of them.
First, some new estimators focus on ‘‘partial’’ rather than traditional
‘‘full’’ frontiers enveloping all data. Instead of trying to estimate the
absolute lowest technically (or allocatively) achievable input for
a given level of output, the goal is just to obtain a robust estimate that
is ‘‘rather close’’ to these optimal quantities by focusing on a local
reconstruction of technology and cost function (see Simar & Wilson,
2008). So far, two families of partial frontiers are available: (i) order-m
frontiers where m functions like a trimming parameter defining the
number of observations for which a local frontier is estimated, and (ii)
order-a quantile frontiers where the a-parameter is analogous to
a quantile regression function. Estimating partial frontiers avoids
many statistical problems plaguing full frontier estimators (e.g., these
enjoy standard parametric rates of convergence). Second, note that
the frontier methodology assumes that observed inputs and outputs
are accurately measured. However, data can be contaminated by
errors-in-variables (e.g., accounting data can generate a flawed view
on economic value because of a questionable depreciation scheme).
Since frontiers rely on comparisons among extreme observations,
efficiency results are very sensitive to such errors: in fact, even
a single outlier can substantially affect the outcomes for any given
sample. This errors-in-variable problem is different from the impact
of small sample bias and has been analyzed in Kneip and Simar (1996)
and Post, Cherchye, and Kuosmanen (2002), among others.

A final remark is in order. It is obvious that the availability of
statistical inference for these non-parametric frontier estimators
8 Indeed, other methodologies have been proposed (see, e.g., Atkinson & Wilson,
1995).
has repercussions for other methods that are also based on these
frontier estimates. For instance, the Malmquist productivity index
uses input and output information solely and allows disentangling
frontier change and technical efficiency change (see Färe, Grosskopf,
Lindgren, & Roos, 1994 for the seminal article and Boame & Obeng,
2005 for a transit study). Thus, it is also possible to employ boot-
strapping when assessing productivity change (see, e.g., Odeck,
2006 for a recent urban transit application). However, these
extensions are not further discussed in this chapter.

3. Non-parametric cost estimation with bootstrapping

Having briefly reviewed recent developments in non-para-
metric approaches to efficiency measurement, we are now ready to
explain in more detail the tools that are used in the empirical
analysis below.

3.1. Basic non-parametric cost frontiers

Assuming there are K observations in the sample, a unified
algebraic representation of the convex technologies with various
returns to scale assumptions is:

LLðyÞ ¼
(

x : x �
XK

k¼1

xkzk; y �
XK

k¼1

ykzk; zk˛L

)
(8)

where L˛fCRS;VRSg, with ðiÞ CRS ¼ fzk˛RK
þ : zk � 0g, and

ðiiÞ VRS ¼ fzk˛RK
þ : zk � 0;

PK
k¼1 zk ¼ 1g, and z is the activity

vector. These technologies basically impose strong input and
output disposability and either constant (CRS) or variable returns to
scale (VRS). Computing a cost function amounts to solving for each
observation in the sample the following optimization program
defined relative to the above technologies:

Cðy;wÞ ¼ min
x;z

XN

n¼1

wnxn

s:t:
XK

k¼1

ykmzk � yo
km m ¼ 1;.;M;

�xn þ
XK

k¼1

xknzk � 0 n ¼ 1;.;N;

zk˛L; xn � 0; k ¼ 1;.;K; (9)

where L˛fCRS;VRSg. These linear programming models have
become common knowledge.

3.2. Bootstrapping efficiency scores and developing test statistics

As argued above, applying the homogeneous bootstrap boils
down to using smoothing techniques to approximate the distri-
bution of the efficiency scores, and repeatedly constructing samples
of pseudo-data to estimate bootstrap efficiency scores. The algo-
rithm to derive bias-corrected efficiency scores is described in
detail in Simar and Wilson (1998). An overview of the algorithm is
in Appendix 1. Here, we only point out the essentials of the
approach.

The technical efficiency estimates bqk, their unknown true values
qk, and the bootstrap estimates bq*

k are related in the following way:�bqk � qk

�
jS w

approx:
�bq*

k � bqk

�����S* (10)

where S and S* indicate the initial sample and the bootstrap sample
of pseudo-data, respectively, and bq*

k is a bootstrap estimate of the
efficiency for observation k. Expression (10) means that the relation
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of the original estimate bqk to the true value qk can be approximated
by the relation between the bootstrapped estimate bq*

k and the orig-
inal estimate bqk. Therefore, the bias of the convex non-parametric
(DEA) estimator in the general setting, biasS;k ¼ ESðbqkÞ � qk, can be

estimated by its bootstrap counterpart dbiasS*;k ¼ ES*ðbq*
kÞ � bqk.

Hence, bias-corrected estimates ~qk can be obtained by applying the

correction ~qk ¼ bqk � dbiask ¼ 2bqk � q*
k, with q*

k ¼ B�1P
B

q*
k.9

Finally, the bootstrap enables researchers to test certain
hypotheses concerning the specification of DEA models. One such
test is the test of CRS vs. VRS introduced in Simar and Wilson
(2002). A test for the hypothesis of VRS against CRS may be carried
out at the level of the individual observation, or globally at the
level of the technology. Results for the individual level may be
interesting for firms themselves, but for purposes of regulation or
optimization of the transit system we prefer testing at the level of
the technology itself. Several test statistics are available. We chose
the average ratio between the means of the overall efficiencies
(cost ratios) computed over all observations as a test statistic:bSCRS ¼ K�1Pn

i¼1
cOECRS

i ðx; y;wÞ=cOEVRS
i ðx; y;wÞ. The hat (^) symbol

indicates an estimate. Critical values for this test at a given
significance level can be obtained from the corresponding
percentile of the bootstrap distribution for this test statistic (using
the bootstrap method described above).

3.3. Bootstrapping a second stage explanatory analysis of efficiency

As previously explained, the standard second stage of an effi-
ciency analysis, in which efficiency differences between observa-
tions are explained on the basis of a set of environmental variables,
suffers from various deficiencies. Simar and Wilson (2007) do
suggest a bias-correction and a bootstrap on the second stage to
arrive at consistent parameter estimates. The method assumes that
the sample observations (xi,yi,zi) are realizations of i.i.d. random
variables (X,Y,Z) with probability density function f(x,y,z) where, as
before, the xi are inputs, the yi are outputs, the zi are environmental
variables, and observations are indexed by i. The probability density
is assumed to have support over T� Rr where T¼ {(x,y)jx can
produce y} is the production possibility set and r is the index for the
environmental variables. The assumption regarding the probability
that (X,Y) ˛ T is Pr((X,Y) ˛ T)¼ 1.

The relation between efficiency and environmental variables
is assumed to be linear, di¼ zibþ 3i where 3i is a random i.i.d.
variable independent of zi, b is a parameter vector, and
3i w N(0,s) with right-truncation at 1� zib. A separability
assumption between the space of inputs and outputs on the one
hand and the environmental variables on the other is implied by
these assumptions. To overcome the problems with standard
estimation procedures, the regression parameters are estimated
by truncated regression with a bootstrap method. A prior round
of bootstrapping non-parametric frontier efficiency scores is
applied to arrive at bias-corrected estimates. The algorithm to
be carried out is given in Appendix 2. It is employed to derive
the empirical results presented below in Section 4.4.

3.4. Monte-Carlo simulation to alleviate the effects of different
sample sizes

Zhang and Bartels (1998) demonstrate that average efficiency
decreases as the number of observations in a model increases for
9 For a bias-correction to be an improvement upon the standard estimates, the
bias-corrected estimates should not have a mean square error (MSE) larger than the
standard estimates. For this to be the case, the condition bias2

k=3 > varðq*
kÞ must

hold (see Simar & Wilson, 2000).
a given number of variables used. They argue in favour of a Monte-
Carlo-type approach limiting the size of larger samples to the size of
the smaller samples to derive average sample efficiencies that are
comparable across samples. We use their approach to compare
efficiency scores derived for two samples of transit firms from two
different countries, where the samples differ substantially in size.
We draw random sub-samples (without replacement) from the
larger data set of urban transit companies for, say, country A. The
sub-samples match the size of the smaller samples from country B.
By using a sufficiently large number of replications and averaging
over the results we obtain the expected efficiency for larger
samples if only a smaller data set had been available. In this way, we
are able to separate the sample size effect from efficiency differ-
ences across countries.

Notice that the Zhang and Bartels (1998) method provides no
correction for bias in a technical sense. It simply ensures that the
results share a similar degree of bias. Note also that the application
of this approach artificially limits the precision of the estimates.
Indeed, reducing the number of observations decreases the level of
precision to the one for the sample with the smallest size. Thus, the
gain in one desirable property –increased comparability– comes at
the loss of another desirable property –the overall precision of the
estimates. Furthermore, the Zhang and Bartels (1998) approach only
remedies differences in sample size for models with an identical
number of parameters. Since these non-parametric estimators have
a convergence rate that is inversely related to the number of model
parameters (e.g., Kneip , Park & Simar, 1998), the bias increases with
the number of parameters. To maintain precision of estimates when
parameters are added to a given model, the number of observations
must increase considerably. Simulation results by, e.g., Pedraja-
Chaparro, Salinaz-Jiménez, and Smith (1999) support the theoret-
ical results obtained by Kneip et al. (1998) that the number of
observations must ideally double for each parameter added to
a specific model to retain the same precision level for the estimates.
Thus, to deal with the fact that different models are estimated using
different numbers of parameters, it is always possible to adjust the
number of observations in the samples accordingly.

An alternative for adjusting the number of observations is to
simply drop some parameters from the models containing the
higher number of parameters, or to aggregate some parameters
into a single one. However, Orme and Smith (1996) demonstrate
that dropping a parameter that is highly correlated with another
parameter from the model or dropping a parameter that is basically
uncorrelated with the rest of the parameters may generate quite
different effects on the results. Therefore, it is not obvious how
dropping or aggregating parameters contributes to the solution of
the underlying problem.

4. Empirical application

In this section, we first apply the bootstrapping methodologies
described before to a set of data on Norwegian transit firms. These
data have been repeatedly used before (see Jørgensen, Pedersen, &
Solvoll, 1995; Jørgensen et al., 1997; Holvad, Hougaard, Kronborg, &
Kvist, 2004). This facilitates comparisons with previous results
which, given the methodological nature of our contribution, is
useful in itself. Second, to illustrate how one can compare efficiency
estimates for samples of transit firms from different countries, we
also employ a small sample of French urban transit data, earlier
analyzed in Gagnepain and Ivaldi (2002a, 2002b), and compare it
with the Norwegian results.

4.1. Data description: Norwegian transit operators

The data were derived from official reports from the bus
companies to the county councils for the calendar year 1991. All 175
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subsidized Norwegian bus companies providing local bus services
in that year are contained in the initial database. However, quite
a few companies were discarded due to extreme observations or
missing data for key variables. For instance, four companies seemed
to have reported inaccurate data, while six other companies oper-
ated under special conditions in reference to the other companies
in the database (for instance, one of these is the main bus operator
in Oslo, another is a small company with very low costs because
some routes are served by hired taxi cabs). In the end, 154 obser-
vations were used.

Table 1 shows descriptive statistics for the final data set
comprising 154 Norwegian local bus transport companies for the
year 1991. Several remarks on the data set are in order. First, note
that company size varies considerably. Second, it is clear that,
consistent with much of the earlier literature, several variables
describe the output characteristics of the bus companies. The bus
services provided are captured by different measures, including
vehicle-kilometers, passenger-kilometers and the number of seat
kilometers. The latter correct the kilometers driven by the number
of seats on the individual buses. In other words, seat kilometer
captures differences in bus size capacity. This turns out to be the
preferred output specification in the models estimated below.
Third, the table provides three cost components (adding up to total
cost), namely the outlays for fuel, for bus drivers, and expenditures
on other inputs (the latter including depreciation). All financial
variables are measured in Norwegian Kroner (NOK). Finally, the
data contain a series of operating characteristics and environ-
mental variables for all companies, including variables describing
the rolling stock and the area they operate in. Density pertains to
the population density, which varies by a factor of about 100. The
dummy D1 indicates whether the company engages in sea trans-
port or not, which is the case for about 10% of the companies. The
dummy D2 relates to its operation in a coastal area, which is
a characteristic of nearly half of the companies. The next three
dummies describe contract types and subsidy arrangements: (i) H1
indicates a bus company that is publicly owned and faces a subsidy
policy based on a cost norm or not; (ii) H2 represents a bus
company that is privately owned and has the ability to negotiate
with the county council over the subsidy size or not; and (iii) H3
indicates a bus company that is privately owned and facing
a subsidy policy based on a cost norm or not.

Note that, with the exception of passenger-kilometers, the
outputs available are ‘‘pure supply’’ output indicators (e.g., seat
kilometers, vehicle-kilometers). Some authors have argued that
costs should be related to pure supply indicators, because it is
supply that directly causes transit costs. However, it is now widely
Table 1
Descriptive statistics Norwegian bus operators (1991).

Variable Mean Std. Dev. Min Max

Alternative outputs
Vehicle-kilometers 1,633,445 1,822,368 16,037 8,863,117
Passenger-kilometers 1.74Eþ07 2.65Eþ07 62,210 2.08Eþ08
Seat kilometers 9.31Eþ07 1.17Eþ08 460,800 6.20Eþ08

Cost components
Fuel costs 1,571,908 1,902,667 16,151 9,775,000
Other costs 1.23Eþ07 1.60Eþ07 113,646 9.61Eþ07
Driver costs 9,392,579 1.29Eþ07 64,000 7.21Eþ07

Network characteristics & environmental variables
Population density 37.2857 48.9299 2 194
D1: sea transport 0.0974 0.2975 0 1
D2: coastal area 0.4740 0.5009 0 1
H1: Public & subsidy based on cost-norm 0.0909 0.2884 0 1
H2: Private and subsidy negotiable 0.3377 0.4745 0 1
H3: Private and subsidy based on cost-

norm
0.4286 0.4965 0 1
believed that the complexity of transit firms’ objectives and the
heterogeneity of transport output in terms of temporal, spatial, and
quality attributes imply that supply characteristics should be
accompanied by output attributes. For example, companies may
operate a highly dense or a sparse network, they may differ in
terms of peak-to-base ratios, and their services may differ in quality
(as reflected in, e.g., speed, punctuality, frequencies, travel linkages,
cleanliness of vehicles, drivers’ attitudes). Although the data do not
contain proxies for many of these characteristics, we do have
information on density, several operating characteristics (coastal
area or not, etc.) and the regulatory environment.10 While these
variables will not be used to construct the frontier, they are clearly
relevant in the second stage when explaining variations in
efficiency.

Notice that Norway has quite a history in the estimation of cost
and efficiency models for transit firms. For example, Jørgensen et al.
(1995) and Jørgensen et al. (1997) estimate the average cost per
vehicle kilometer, using both the number of vehicle-kilometers and
the number of passengers per vehicle-kilometer as outputs. They
find very mild economies of scale for increases in vehicle kilome-
ters. These authors also provide estimates of efficiency, using the
standard two-stage procedure: it first estimates efficiency scores
based on the cost frontier; next, these scores are explained in
a separate regression analysis, using contract type and ownership
as the main explanatory variables. It is found that the standard cost
norm contract improves cost efficiency over the individually
negotiated contract by between 1.7% and 3.5%, depending on the
distributional assumptions made for the inefficiency term. Holvad
et al. (2004) expand the analysis: they identify two types of vehicle
kilometers as outputs (supply in an urban and in a regional envi-
ronment) and also obtain mild economies of scale. Dalen and
Gómez-Lobo (2003) estimate a cost frontier for an 11-year panel of
Norwegian bus companies (1136 company-year observations)
using the methodology proposed by Battese and Coelli (1995).
Finally, Odeck and Alkadi (2001) apply non-parametric frontier
analysis to examine the performance of Norwegian bus companies
using data from 1994.

Importantly, the database only contains information on the total
expenditures on three inputs: expenditures on drivers, on energy
and on other inputs. Of course, the computation of a cost function
necessitates the availability of information on both outputs and
input prices. However, it has been argued by previous users of this
data set that it is not an unreasonable working hypothesis to
assume that, since all firms have access to the same input markets,
they face the same prices (Jørgensen et al., 1997). Under the
hypothesis that all firms indeed face the same input prices, Färe,
Grosskopf, and Lee (1990) demonstrate that the optimal costs
calculated with prices or without remain identical. Denoting by
Cn¼wnxn the cost of input n, computing a cost function without
input prices now amounts to solving for each observation in the
sample the following optimization program:
10 In parametric applications, the relevance of output quality characteristics and
operating attributes has induced Spady and Friedlander (1978) to suggest the use of
hedonic aggregators to correct the generic output vehicle-kilometers for variations
in spatial, temporal, and quality characteristics. Work by Jara-Dı́az and his collab-
orators (see the seminal paper Jara-Dı́az, 1982; recent developments include,
among many others, Basso & Jara-Dı́az, 2005) focuses on the effect of the network
structure for the proper specification of measures of economies of scale and
(spatial) scope. For non-parametric technologies, similar techniques are in principle
applicable. However, if a large number of additional attributes are thought to be
relevant, the nature of the non-parametric approach implies that a very large
number of observations used in constructing the frontier will be situated on the
frontier. This undermines the discriminatory power of the analysis, and using this
frontier to estimate the cost structure and to determine efficiency of individual
operators may become difficult. We therefore stick to the single output model,
using seat kilometers as the preferred indicator.



Table 2
Basic comparison of cost and production efficiency results.

Variable Mean Std. Dev. Min Max # Efficient Obs.

Cost frontiers OEi(x,y,w)
CRS 0.5712 0.1570 0.2279 1 1
VRS 0.6508 0.1639 0.2882 1 7

Production frontiers TEi(x,y)
CRS 0.6341 0.1530 0.2526 1 3
VRS 0.7235 0.1588 0.3618 1 15
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C ðy;wÞ ¼ min
C;z

PN
n¼1 Cn

subject toPK
k¼1 ykmzk � yo

km m¼ 1;.;M;

�Cn þ
PK

k¼1 Ckn zk � 0 n ¼ 1;.; N;

zk˛ L;Cn � 0; k ¼ 1;.; K;
ð11Þ

where L˛fCRS;VRSg. This leads to some modifications in the
bootstrapping procedures outlined above. These are taken into
account in the empirical analysis below.
4.2. Basic cost efficiency estimates

For purposes of comparison, we not only estimated a cost
frontier, but also a production frontier that measures technical
efficiency in an input-orientation. As argued above, the cost frontier
methodology differs somewhat from the estimation of the standard
cost models, due to the assumption of input prices identical across
observations (see mathematical program (11)). Minimal costs
divided by the observed costs provide a cost ratio as an indicator of
overall efficiency. A value of unity implies full efficiency. The
production frontier uses the cost for fuel, drivers and other
resources as inputs and the seat kilometers as the single output.11

Application of the model implies a search for the minimal radial
reduction of all inputs that is feasible for each company. For effi-
cient companies, the reduction is zero and their efficiency score is
unity. For inefficient companies, the score below unity indicates the
fraction of its current input use that would lead it to be efficient.

Table 2 presents some summary results for two versions of each
model: one resting on the assumption of CRS, the other resting on
VRS. Note that these are the results obtained without any correction
for the bias referred to above. This correction is discussed below.
Before we do so, however, we briefly comment on the results
presented in Table 2. The difference between the CRS and the VRS
versions of the respective models amounts to almost 8% for the cost
efficiency ratio (mean efficiencies are 57% and 65%) and 9% for the
radial efficiency measure based on the production frontier (mean
efficiencies are 63% and 72%, respectively). The cost efficiency ratios
aredas expecteddsomewhat lower, since overall efficiency is
a more demanding criterion. These rather low levels of relative
efficiency indicate considerable heterogeneity with respect to the
efficiency with which individual bus companies provide their
services. Given the heterogeneity of the data presented above, this
is not that surprising.

For the cost efficiency model imposing VRS, we only found seven
observations to be fully efficient. Under CRS, only one firm could
provide a benchmark of excellence. The number of efficient firms is
higher under the technical efficiency criterion. It is important to
check later on to which extent this efficiency status is robust when
correcting for bias.

In Fig. 2, we summarize the efficiency results for the VRS cost
frontier using a Salter diagram. On the vertical axis are the cost
ratios obtained with the VRS specification. They are sorted in
ascending order, from the least efficient operator to the efficient
11 Solving for technical efficiency in this case amounts to:

DFiðx; yÞ ¼ min
q;z

q subject to
XK

k¼1

ykmzk � yo
km m ¼ 1;.;M;

XK

k¼ 1

Cknzk � qCo
kn n ¼ 1;

.;N; zk˛L; q � 0; k ¼ 1;.;K;

where L˛fCRS;VRSg.
ones. On the horizontal axis we represent the cumulative number
of seat kilometers calculated for these sorted operators. The gaps
between the vertical lines are proportional to the seat kilometers of
the respective individual operators. Wide gaps, or wide bars,
therefore represent operators providing a comparatively large
number of seat kilometers.

Close inspection of this Salter diagram in Fig. 2 reveals some
interesting information. First, it is immediately clear that quite
a few of the smaller companies are experiencing low cost efficiency
ratios.12 To see this, note that the left part of the figure, the most
inefficient operators, consists to a very large extent of operators
offering relatively small numbers of seat kilometers (small gaps
between vertical lines). There are exceptions, of course. For
example, efficiency scores of less than 0.6 are observed for several
firms offering high numbers of seat kilometers. Second, although
some of the larger firms in terms of seat kilometers are among the
more efficient ones (many of the wider gaps on the figure are sit-
uated towards the right-hand-side), quite a few small operators
have efficiency scores of 0.8 and more. In fact, the correlation
between inefficiency and firm size is quite low, less than 0.2.

4.3. Bootstrapped cost efficiency estimates: estimating the
efficiency bias and testing for returns to scale

As outlined above, the results reported in Table 2 and illustrated
in Fig. 2 are potentially biased. To analyze the bias involved in these
estimates, we ran bootstrap routines for the cost efficiency model,
using the techniques outlined above (Section 3.2). To save space, we
only report results on the VRS version of the cost efficiency model.

The importance of correcting for the inherent bias in non-
parametric efficiency scores is best illustrated using Fig. 3. The
distribution on the right of the figure is the density of the uncor-
rected estimates; the corresponding distribution of the bias-cor-
rected estimates is situated on the left part of the figure. Compared
to the original estimates and reflecting the size of the bias, the
density indeed shifts remarkably to the left. We found that the
average bias amounted to 25.20% for the VRS case (and 23.73% for
the CRS model). This suggests that the bias is large. This comes as no
real surprise, given the data heterogeneity.

Since presenting more detailed results on each of the individual
154 observations is not very informative, we restrict the repre-
sentation to a small selection of specific observations. We give
results for the most efficient observations (the seven fully efficient
ones) and for the five most inefficient observations. In addition, we
report the results for the five observations located closest to the
25th, 50th and 75th percentiles. This yields 27 observations all
together. The information for these 27 observations is summarized
in Table 3 and in the box plots in Fig. 4.

Considering Table 3, the observations are sorted on the original
cost efficiency ratio. The table reports the uncorrected estimate,
the magnitude of the bias, and the confidence interval for the
12 This is consistent with the findings of Dalen and Gómez-Lobo (2003) and Odeck
and Alkadi (2001). Notice, though, that Jørgensen et al. (1995) as well as Jørgensen
et al. (1997) obtain almost constant returns to scale in Norwegian transit.



Table 3
Bootstrap results for selected observations.

Cost Ratio Bias 2.5% 97.5%

1st Percentile
64 0.2882 0.1051 0.1444 0.2299
50 0.2913 0.1102 0.1422 0.2311
22 0.2952 0.1050 0.1547 0.2324
103 0.3053 0.1123 0.1517 0.2447
100 0.3167 0.1154 0.1592 0.2550

25th Percentile
86 0.5483 0.2139 0.2311 0.4668
39 0.5532 0.2331 0.2491 0.4183
24 0.5565 0.2234 0.2606 0.4303
56 0.5597 0.1122 0.3628 0.5624
57 0.5611 0.2514 0.2341 0.4169

50th Percentile
110 0.6333 0.1522 0.3973 0.5936
72 0.6383 0.2859 0.2589 0.4819
91 0.6386 0.2857 0.2610 0.4772
79 0.6415 0.2868 0.2667 0.4768
138 0.6474 0.2868 0.2753 0.4810

75th Percentile
126 0.7509 0.3358 0.3075 0.5592
43 0.7577 0.2896 0.3450 0.6339
52 0.7584 0.2443 0.3516 0.7310
12 0.7641 0.3421 0.3107 0.5751
90 0.7643 0.2860 0.3737 0.6350

100th Percentile
8 1.0000 0.3221 0.4636 0.9638
10 1.0000 0.4455 0.3987 0.8001
16 1.0000 0.3684 0.4962 0.8024
54 1.0000 0.1278 0.6950 1.0824
96 1.0000 0.2080 0.8203 1.8481
118 1.0000 0.3505 0.5331 0.7960
149 1.0000 0.4464 0.4147 0.7434

0.
20

00
0.

40
00

0.
60

00
0.

80
00

1.
00

00

C
os

t 
R

at
io

0 5.00e+09 1.00e+10 1.50e+10

Cumulative Number of Seat Kilometres

Fig. 2. Salter diagram of cost efficiency (VRS model).
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bias-corrected estimate. Several observations stand out from the
table. First, it confirms that for most observations the bias is large.
Second, the width of the confidence intervals indicates that the
bias-corrected efficiency estimates are imprecise. Moreover, in
many cases the uncorrected estimate is not within the standard
confidence interval for the bias-corrected estimate. This under-
scores the risk of using uncorrected estimates. Third, it is inter-
esting to specifically look at the results for the seven observations
that were pronounced efficient, based on the uncorrected esti-
mates. We see that for five out of the seven observations, the value
of 1 is outside the confidence interval for the bias-corrected esti-
mates. In other words, bootstrapping techniques suggest that these
transit operators are not fully efficient after all; these just seemed to
be efficient, given the size of the sample available for the analysis.
Two observations are potentially efficient; the unit value is con-
tained in the bias-corrected confidence interval.

Fig. 4 has similar information, but presented in a box plot
diagram. Here the observations are sorted by the 50% value of the
distribution of bootstrap scores. Note that for only two observations
(the two observations on the far right of the box plot) the upper
whisker is above the line for the value 1. This corresponds to the
two above-mentioned observations in Table 3 for which the upper
bound of the confidence interval (97.5%) overlaps the value of one
(observations 54 and 96).
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Finally, we can use the results to test whether the hypothesis of
constant returns to scale is tenable. This can be done along the lines
of several test procedures introduced by Simar and Wilson (2002).
Although tests at the level of the individual operator are also
available, we concentrate on a test at the global level. Specifically,
our test statistic is the ratio of the average efficiency of the CRS
model and the VRS model. The ratio of average CRS efficiency over
average VRS efficiency is 0.8869. Therefore, the null hypothesis that
the average CRS efficiency score does not significantly differ from
the average VRS efficiency measure can be rejected at any
conventional level of significance. The critical 1% (5%, respectively,
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Fig. 4. Box plot of 1st, 25th, 50th, 75th and 100th percentiles of VRS cost efficiency.



Table 4
Two-stage results on network characteristics and environmental variables.

Variable Parameters 2.5% 97.5%

Population density 0.37E�04 �0.0005 0.0009
D1 �0.0703 �0.0979 0.1164
D2 0.1145 0.0820 0.2109
H1 �0.0160 �0.1112 0.1696
H2 �0.0968 �0.1745 0.0238
H3 �0.0202 �0.0992 0.0879
Constant 0.6279 0.6168 0.7838

Table 6
Comparing mean cost efficiency results for Norway and France.

CRS VRS

France 0.6854 0.7186
Norway 0.6027 (0.5712) 0.6954 (0.6508)
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10%) values for this one-sided test are 0.7878 (0.8267, respectively,
0.8416). This result is in line with the previously mentioned liter-
ature on Norwegian transit.
4.4. Bootstrapped cost efficiency estimates: explaining
efficiency patterns

In this section, we turn to the question whether any of the
variables that were not considered in the estimation of efficiency
scores (namely the variables characterizing the area in which the
companies operate, etc.) are significantly related to the level of
relative efficiency. In line with earlier studies (Jørgensen et al.,
1997), the second stage model includes the following variables
into a linear specification: population density, the dummy vari-
ables characterizing the operating environment (operating in sea
transport (D1) or in a coastal area (D2)), and the contract types
(H1–H3).

We applied the methodology outlined in Section 3.3 to obtain
bootstrapped second stage parameter estimates. In Table 4 we
provide the estimates along with their confidence intervals.

Since we are simply testing whether a parameter estimate is
significantly different from zero, we must look in Table 4 for
parameters where the confidence interval does not cover the zero
(i.e., lies on either side of zero). Hence, apart from the intercept, the
only variable that is significantly associated with the variations in
the cost ratio seems to be the dummy variable D2. Thus, operating
in a coastal area (D2¼1) has a positive impact on overall efficiency:
these bus operators have on average a cost ratio that is 11.5% higher
than other operators. No other variable seems to explain the rather
wide dispersion in overall efficiency observed within this hetero-
geneous sample.

Notice that the earlier studies using the same data set and
parametric methods (Jørgensen et al., 1995, 1997) confirm the
positive impact of operating in the coastal area and find
a significant impact of some of the contract type variables
(notably H1 and H3). Dalen and Gómez-Lobo (2003), using
slightly different data, also report a significant coefficient of high-
powered contracts. Interestingly, we do not find such results. The
non-parametric approach, which attempts to minimise the
number of assumptions maintained, implies very large variability
in inefficiency scores. Apparently, the contractual dummy vari-
ables do not systematically contribute to explaining the wide
variations in overall efficiency among the operators. The earlier
results may thus be less robust than previously believed. This
matter merits further investigation.
Table 5
Descriptive statistics for French bus operators (1991).

Variable Min Max

Fuel costs
Driver costs 3000.0000
Other costs 5326.0000
Seat kilometers (in 1000) 1114.2410
4.5. Comparing estimates from different sample sizes: Norway
versus France

We finally illustrate the use of Monte-Carlo bootstrapping
techniques to correct for differences in sample size when
comparing two samples of transit operators from different coun-
tries. We use the Norwegian data described before together with
a small French data set.

In Table 5, the relevant summary data for 55 French bus oper-
ators are reported (also see Gagnepain & Ivaldi, 2002a, 2002b). Note
that the cost data (first three rows) are given in local currency
(French Franc) in 1991 prices. Therefore, the cost figures for the two
data sets cannot be readily compared. We limit ourselves to some
brief observations. While the number of seat kilometers driven
differs substantially between the two data sets, the cost shares are
very similar. The highest share is the cost for drivers in both data
sets, followed by other costs, while fuel costs are by far the smallest
cost component. Precisely, driver cost amounts to 59% of the total
cost in France and to 63% in Norway. Other costs make up almost
exactly one-third of total cost in Norway whereas the corre-
sponding share in France exceeds 35%. Finally, fuel costs amount to
slightly more than 5.5% in the case of France and are close to 4.25%
in Norway.

Table 6 presents results for both the French and the Norwegian
data. Both data sets pertain to the year 1991. The row labeled France
lists results for the standard overall efficiency (cost ratio) model
introduced above. Here, the CRS as well as the VRS results seem
somewhat higher than the corresponding Norwegian results from
the standard model listed in parentheses in the row Norway.
However, as explained above, these two sets of results cannot be
readily compared. Even though both models comprise the same
output, namely seat kilometers, and the same number of inputs
(three cost components: fuel cost, personnel cost, and other costs),
the difference in sample size makes a direct comparison impos-
sible. Recall that the number of observations is 154 for Norway, but
only 55 for France.

To correct for this difference in sample size, we repeatedly
generated results for the Norwegian case based on samples of 55
observations each. This results in a Monte-Carlo analysis, whereby
samples were drawn without replacement. The results are listed in
the row ‘‘Norway’’. They are higher than the standard results listed
in parentheses in the same row and therefore, as expected, closer to
the results for the French data. Indeed, while the standard results
make it appear as though the Norwegian bus operators are
substantially less efficient than the French ones, the results based
on the Monte-Carlo analysis convey a different scenario. Here, the
gap between the French and the Norwegian bus operators is almost
closed (less than 2.5%) for the VRS model, while it remains rather
substantial in the case of CRS. However, note that the VRS
assumption is the relevant one for Norway, as indicated by the test
on returns to scale reported above (we did not test for returns to
scale in the French case).

5. Conclusions

This paper exploits recent advances in statistical inference
applied to non-parametric transit cost frontiers. First, the literature
has convincingly shown that efficiency scores derived from non-
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parametric cost frontiers are inherently biased. We use boot-
strapping techniques on a convex (DEA) cost frontier to correct for
this bias. The proposed methodology is applied to a well-known
Norwegian database that has been employed several times before
in the literature. The model used to illustrate the strength of the
bootstrapping methodology uses seat kilometers as the relevant
output measure and takes account of three inputs (drivers, fuel, and
other inputs). The bias implied by uncorrected non-parametric cost
efficiency measures is found to be numerically important,
amounting to close to 25%. Bootstrapping also allows us to test the
hypothesis of constant returns to scale. We decisively reject
constant returns to scale against an alternative model allowing for
variable returns.

Second, an attempt to explain patterns of efficiency scores
using the Simar and Wilson (2007) two-stage bootstrapping
approach detects only one significant covariate. This contrasts
notably with parametric results that earlier highlighted the
positive impact of high-powered contract types. Third, we illus-
trate the use of bootstrapping techniques to compare inefficien-
cies in two samples of different size. Specifically, we study how to
compare the average inefficiency obtained for the Norwegian
data set with the analogous estimate for a second sample of 55
French transit firms. Using the variable returns to scale model,
we find that the estimated difference in average efficiency almost
disappears once the correction for sample size differences is
accounted for.
Acknowledgements

We are grateful to an anonymous referee and the editors of this
book for useful comments on an earlier version. A special word of
thanks to T. Holvad and D. Kronborg for providing us with the
Norwegian data set, and to Philippe Gagnepain for giving access to
the French data set.
Appendix 1. Algorithm for homogeneous bootstrap

The algorithm for the homogeneous bootstrap of technical
efficiency scores (DFi(x,y)) involves the following steps:

1. Calculate the estimates bdi of the efficiency scores based on
a convex non-parametric model.

2. Use a suitable method to calculate the optimal bandwidth h for
a kernel smoother used for the approximation of the density of
the bdi, using an appropriate method to account for the
boundary problem (at the value of 1 in the input-oriented
case). Based on the estimate of the optimal bandwidth,
generate B draws from the respective density, ~dib.

3. The ~dib from step 2 allows the construction of pseudo data
y*

i ¼ yi;x
*
ib ¼ xi

bdi=
~dib: A large number of pseudo-data sets can

be used to obtain a distribution of efficiency estimates for each
observation i, with the single elements bd*

ib:

4. If appropriate, carry out bias-correction.
5. The distribution obtained in step 3 makes it possible to

construct confidence intervals for the estimates obtained in
step 1 by selecting the appropriate percentiles from the
distributions obtained.

To modify this algorithm for the case of overall cost efficiency
OEi(x,y,w), we simply substitute the estimate of the technical effi-
ciency score bdi by the estimate cOEiðx; y;wÞ in steps 1–3. Notice that
also the generation of pseudo-data employs the estimatecOEiðx; y;wÞ for the perturbation.
Appendix 2. Algorithm for a second stage analysis of
efficiency patterns

The Simar and Wilson (2007) algorithm (algorithm 2, pp. 42–43)
for a second stage analysis of technical efficiency scores (DFi(x,y))
comprises the following steps:

1. Calculate the estimates bdi of the efficiency scores based on
a convex non-parametric model.

2. Use maximum likelihood to estimate a truncated regression of bdi
on the environmental variables to obtain estimates bb as well as bs:

3. Estimates from step 2 permit drawing error terms 3*
i from the

Nð0; bsÞ distribution truncated at ð1� zi
bbÞ; from which one can

obtain d*
i ¼ zi

bb þ 3*
i . These d*

i allow the construction of pseudo
data y*

i ¼ yi;x
*
i ¼ xi

bdi=d*
i . A large number of pseudo-data sets

can be used to obtain efficiency estimates bd*
ib:

4. The bd*
ib obtained in step 3 and the bdi from step 1 are used to

calculate bias-corrected estimates
bbd i:

5. A further truncated regression of the bias-corrected scores
bbd i

on the environmental variables gives ðbbb ; bbsÞ:
6. The parameter estimates from step 5 are used to draw 3**

i from
the Nð0; bbsÞ distribution truncated at ð1� zi

bbbÞ; from which
d**

i ¼ zi
bbb þ 3*

i can be computed. A final truncated regression of
the d**

i on the environmental variables gives ðbbb*
; bbs*Þ. Drawing

3**
i ;d

**
i and carrying out the regression is repeated a large

number of times, which makes it possible to derive confidence
intervals for the parameters of interest.

It is straightforward to modify this algorithm for the case of
OEi(x,y,w) along the lines presented for algorithm 1.
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