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Abstract

Total factor productivity is used to explore the input–output efficiency of the econ-

omy and the driving factors behind economic growth. Although scholars have

researched the total factor productivity approach, comparisons among different

models in empirical research are rare and few scholars have focused on worldwide

total factor productivity gains. Using convex and nonconvex technologies, this contri-

bution investigates green productivity gains of 129 worldwide countries during

2000–2019 based on three popular productivity measures, namely, Luenberger–

Hicks–Moorsteen indicator, Luenberger productivity indicator, and Malmquist–

Luenberger index, respectively. Inspired by a metafrontier approach, we compare

their productivity evolutions with the energy structure among 121 economies. A neg-

ative relationship is expected between the change in the proportion of fossil fuel

energy consumption and green productivity. Our results show that the Luenberger–

Hicks–Moorsteen productivity indicator under nonconvex technologies is a more

convincing productivity measure when considering undesirable outputs in production

technology.

1 | INTRODUCTION

Productivity, a crucial factor in economic growth, is a major concern.

There is tremendous income inequality among countries. For instance,

based on World Bank statistics, in 2020, Burundi had the lowest gross

domestic product (GDP) per capita (237$), while Luxembourg had the

highest (135,683$), which was about 573 times higher than the for-

mer. The lagging economy and poverty are largely the result of back-

ward production. In turn, they may affect production, creating a

vicious cycle whereby low productivity and poverty are exacerbated.

Nowadays, many people are still experiencing extreme poverty, and

the COVID-19 pandemic further slows productivity growth rates and

exacerbates poverty worldwide (Deaton, 2021). With increasing pro-

ductivity, a country can get more outputs from the same inputs and

achieve more efficient use of resources. Additionally, productivity

growth can contribute to sustained per capita income growth and

poverty reduction (Dieppe, 2021). Productivity growth is a key

concern of many countries, and inspires them to strive for greater

economic efficiency and higher income. To explore the input–output

efficiency of the economy and the driving factor behind economic

growth (Bauer, 1990), the total factor productivity (TFP) notion is

introduced and used to achieve high-quality and long-term economic

development.

Green productivity has become a major concern in research in

the last decade. Environmental issues have garnered a lot of attention

recently, since climate change, acid rain, the decline in biodiversity,

and so forth have become increasingly serious problems (Wang

et al., 2020). As reported by the IPCC, global annual average green-

house gas emissions increased by 12% between 2010 and 2019 (from

52.5 to 59 billion tons). Many international conferences are organized

to discuss the climate change issue and to set up plans for reducing

global emissions. The public's awareness of environmental issues is

promoted. Environmentally friendly and sustainable development

models are pursued by a wide range of countries (Yuan et al., 2021).
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Traditional economic models focusing exclusively on economic factors

when assessing productivity are insufficient. The productivity concept

need be enlarged to face the challenges of sustainable development.

More and more researchers integrate environmental issues into the

framework of productivity by measuring environmental performance

under economic growth (Feng & Serletis, 2014). Some undesirable

outputs (like carbon dioxide, sulfur dioxide, and nitrous oxide) are

used to evaluate the green productivity development of the economy.

While fossil energy is crucial for the economic development of

countries, it is also extremely harmful to the environment. Fossil

energy has promoted the development of industrial industries, greatly

improved productivity levels, and contributed significantly to eco-

nomic growth (Ivanovski et al., 2021; Sasana & Ghozali, 2017;

Shahbaz et al., 2020). It performs an essential function in the produc-

tion of each country and provides a crucial material foundation for the

survival and development of the country (Ellabban et al., 2014). With

over 80% of all energy consumption still from fossil fuels, they remain

the primary source of energy. Without investment in fossil fuels, many

industries are unable to grow, hampering economic growth. However,

it also pollutes the environment and consumes large amounts of

resources and energy. Higher productivity growth fueled by fossil

fuels may be unsustainable in the long run, since they cause climate

change and global warming, which have negative environmental

effects on humans as well as other creatures (Rath et al., 2019).

Therefore, the consumption of fossil energy cannot reconcile econ-

omy and ecology, affecting the development of a green economy (Cao

et al., 2020; Danish & Ulucak, 2020; Rath et al., 2019; Yan

et al., 2020). Clean energy is getting more and more attention as the

transformation of the energy structure becomes the current develop-

ment direction (Xie et al., 2021). However, for many countries, the

share of fossil fuels is still growing, dominating energy consumption

(Sasana & Ghozali, 2017). The economy is still predominantly powered

by fossil fuels due to the rising dependence on fossil fuel usage. Thus,

it is difficult to achieve a green economy.

Investigating how energy consumption affects green productivity

is critical to the future of the economy. Energy is an important

resource endowment. Energy structure evolution and its resource

misallocation may lead to unbalanced development among economies.

We look for a robust approach to modeling green productivity indices,

which is consistent with the energy structure. This study assumes an

inverse connection between the share of fossil fuel consumption and

green productivity. It believes that fossil fuel energy is a good indica-

tor to test whether the economy has achieved green growth. Studying

the correlation between fossil energy and the green economy can pro-

vide empirical evidence for energy transition and economic growth

that better supports sustainable development.

Whether different approaches to measure TFP provide an empiri-

cally good estimation remains uncertain. There are multiple indicators

and indices to estimate TFP that transform the static efficiency prob-

lem into a productivity measurement problem. Most existing literature

has adopted ratio-based Malmquist (Krüger, 2003; Li & Liu, 2010) or

Malmquist–Luenberger (ML) indices (Cao et al., 2020; Oh, 2010). Also,

a difference-based Luenberger productivity indicator (LPI)

(Fukuyama & Weber, 2017) or extensions of these methods to assess

productivity change are commonly used. However, a lot of problems

exist in these approaches, making it difficult to give a perfect TFP esti-

mation. The Luenberger–Hicks–Moorsteen (LHM) indicator (Briec &

Kerstens, 2004; Shen et al., 2019), a complete additive approach, is

not so widely used. Although some studies have compared the differ-

ence between some of these approaches (Kerstens et al., 2018), it is

still hard to tell which model is the best and more realistic and has

more accurate calculation results in empirical analysis.

The main objectives of this contribution are two-fold. First, this

contribution evaluates and compares the green TFP (GTFP) of

129 countries under different models. Second, to compare the robust-

ness of different approaches, it constructs a two-way fixed model to

test the correlation between the energy consumption share and green

TFP growth. There are several ways in which this contribution

advances the literature in the field. First, it investigates worldwide

green productivity gains, which deepens understanding of green pro-

ductivity across countries and can contribute to improving green

growth in different countries. Second, it adopts a by-production

(BP) model under a metafrontier approach, which is consistent with

the material balance principles (MBPs) and better solves the problem

of heterogeneity. Third, it compares the LHM, Luenberger indicators,

and Malmquist–Luenberger index under both convex and nonconvex

models and determines which one is more robust. This provides some

reference for selecting productivity indicators in future research.

The remainder of this study is structured as shown below.

Section 2 summarizes the research on the TFP about its calculation,

research scope, and relationship with energy structure. Section 3 dis-

cusses the approaches to calculating GTFP, the regression model, the

description and selection of variables, and the data sources. Section 4

analyzes the fossil energy consumption in different regions, green pro-

ductivity under different models, and regression results. Finally,

Section 5 draws conclusions and provides further discussions.

2 | LITERATURE REVIEW ON GREEN
PRODUCTIVITY AND ENERGY STRUCTURE

TFP can be measured by different approaches, which mainly contain

two categories. The first category is ratio-based indices. Caves et al.

(1982) propose Malmquist input, output, and productivity indices that

do not rely on a continuous time assumption, but that need informa-

tion on parameters to estimate. By calculating the geometric average

of the two Malmquist or Malmquist productivity indices, the

T€ornqvist or T€ornqvist productivity indices can be obtained, which

can be calculated if prices and quantities are known. Bjurek (1996)

proposes the Hicks–Moorsteen index, as a ratio between Malmquist

output and input quantity indices, which can accommodate variable

returns to scale technologies. Since the Hicks–Moorsteen index is

characterized by input and output efficiency measures and the Malm-

quist productivity index is expressed by distance functions, both these

methods ignore byproducts in production. Thus, these indices are

insufficient to measure green productivity. Chung et al. (1997) define
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the ML index based on the directional distance function (DDF) to bet-

ter treat pollution that inevitably accompanies the production of good

outputs. This index is further discussed and developed at the theoreti-

cal and empirical levels (see, e.g., Cao et al., 2020; Färe et al., 2001;

Kumar, 2006; Oh, 2010).

The second category is difference-based indicators. The first cat-

egory of indices has some inevitable defects, like zero observations

are hard to deal with, as these indices are independent of change in

origin (Chambers, 2002). Chambers (2002) proposes the LPI based on

DDF, a translation measure rather than a radial presentation. Many

scholars have further discussed and improved this indicator. For

instance, Briec and Kerstens (2009) use this indicator to explore the

infeasibilities of the DDF and their solution is to report any infeasibil-

ity that occurs. Balk et al. (2008) show how to convert the LPI to the

Malmquist productivity index by selecting a particular directional vec-

tor for the DDF. Additionally, the LPI has been extensively employed

in various areas of empirical study, like manufacturing (Cao

et al., 2020), banking (Fukuyama & Weber, 2017), healthcare

(Boussemart et al., 2020), and so forth. However, it does not consist

entirely of the difference between total output and input which is

not “additively complete” and it cannot be disaggregated into the

parts of output and input growth (Ang & Kerstens, 2017). Briec and

Kerstens (2004) define an additively complete LHM indicator. Unlike

the ratio-based indices, this difference-based indicator can overcome

the problem of uncertainty of indices. Besides, it is an additively

complete method that can capture the changes in inputs and outputs,

better than those incomplete measures as these may cause biased

results (Shen et al., 2019).

Compared to other indicators and indices, there is less literature

studying the LHM productivity indicator and employing it to measure

efficiency changes. Additionally, the majority of these LHM articles

are all of recent date. Shen et al. (2019) employ a decomposable LHM

productivity indicator to explore the productivity change in China's

agriculture. These authors find that the rise in agricultural productivity

in China is mostly the result of technological progress. Furthermore,

these authors come to the conclusion that both productivity growth

rates and the relative significance of their constituent parts vary over

time and across provinces. Ang and Kerstens (2017) explore produc-

tivity growth in U.S. agriculture by adopting the LHM indicator. The

findings indicate that productivity has significantly increased over

time, and this growth is attributable to a rise in output rather than a

drop in input, with technical change serving as the primary motivating

factor. Abad and Ravelojaona (2022) define the environmental disag-

gregated Hicks–Moorsteen index and LHM productivity indicator.

Note that the application of these TFP indices does not require main-

taining the traditional convexity assumption.

Although there are many ways to calculate TFP, few studies are

comparing LHM indicators with other productivity indicators and indi-

ces, which deserves further exploration. Briec and Kerstens (2004)

analyze the relationship between the Hicks–Moorsteen productivity

index and the LHM indicator and discover that the logarithm of the

former one is approximately equal to the latter. Kerstens et al. (2018)

discuss the difference between the LHM and LPIs. These authors

suggest that these two indicators can be used to study TFP and mea-

sure local technical change, respectively.

The relation between production inputs and outputs can be calcu-

lated using production technology. In recent years, there have been

several pollution-generating technologies, including the weak

G-disposability, the by-production model, and the natural and mana-

gerial disposability concepts (Dakpo et al., 2016). The first technology

cannot describe how pollution is generated, so it is hard to make

trade-offs between different types of outputs. Dakpo et al. (2016)

point out that natural and managerial disposability cannot present

pollution-generating technologies properly. Compared to other

methods, the by-production model is consistent with the MBPs

(Førsund, 2018; Shen et al., 2021), which can better model the

pollution-generating technologies and capture the relation between

various types of inputs and outputs. It is superior to other approaches

from this perspective.

Distance functions are widely used to obtain production technol-

ogies. Shephard (1970) distinguishes between input- and output-

oriented distance functions. Bad outputs are considered by Färe et al.

(1993) within the context of the Shepherdian distance function. This

kind of distance function has been further deepened and developed in

subsequent studies (Coggins & Swinton, 1996; Hailu &

Veeman, 2000). It posits that outputs change in the same ratio for

both good and bad outputs, inconsistent with the purpose of green

growth, which is to improve good outputs and decrease bad ones.

Directional distance functions allow good outputs to expand while

reducing bad outputs and inputs: this is getting more attention gradu-

ally (Chambers et al., 1996). For example, Watanabe and Tanaka

(2007) adopt DDF to explore and compare the efficiency of Chinese

industry. They assert that the research will produce biased conclu-

sions if the bad outputs are not taken into account. Therefore, the

efficiency analysis should take into account both good outputs and

their byproducts. Zhang and Wei (2015) use non-radial DDF to gauge

the environmental performance of China's transportation industry.

They discover that the total factor carbon emissions grew by 6.2%

between 2000 and 2012, primarily due to technological innovation.

Feng and Serletis (2014) develop a primal Divisia-type productivity

index based on DDF to estimate the efficiency change in some OECD

countries. They assert that if bad outputs are not taken into account,

the efficiency assessment may be skewed, which is consistent with

the viewpoint of Watanabe and Tanaka (2007).

Two kinds of methods, parametric and nonparametric ones, are

often employed to calculate the distance functions. The parametric

method uses translog, quadratic, and other pre-defined functional

forms. The specific functional form depends on the selection of dis-

tance functions. For instance, the Shepard distance function is fre-

quently expressed using the translog functional form, whereas the

DDF can be described using the quadratic. Then, the distance func-

tions can be calculated using stochastic frontier analysis (SFA) (Zhou

et al., 2014). For example, Safiullah (2021) examines the financial sta-

bility efficiency of Islamic and conventional banks using the stochastic

meta-frontier stability function. Wu et al. (2022) use SFA to calculate

each region's TFP levels in China. The nonparametric method is more

DENG ET AL. 4379
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flexible than the parametric method since it does not require pre-

defined functional forms. Charnes et al. (1978) develop a typical non-

parametric method, which is referred to as data envelopment analysis

(DEA). In comparison to some methods, it makes fewer assumptions

and can handle the relationship between multiple inputs and outputs

better. This approach has been widely employed in subsequent stud-

ies measuring TFP (see, e.g., Wang et al., 2013; Baležentis et al., 2021;

Shen et al., 2019). The literature using nonconvex production technol-

ogy, also known as the free disposal hull (FDH) model, to study pro-

ductivity is much less widespread than DEA.

Nonconvex technologies can occur for a wide variety of reasons

(see Mas-Colell (1987) for an overview). First, inputs and outputs can

be indivisible and cannot be varied continuously. Second, setup times

and setup costs due to indivisibilities in initiating production may be

substantial depending on the nature of technologies. Third, increasing

returns to scale, due to indivisibilities, learning, or organizational

advantages in the internal structure of production, lead to nonconvex-

ities in production. Fourth, negative externalities can also induce non-

convexities. Fifth, economies of specialization (e.g., Romer, 1990, on

nonrival inputs in the new growth theory) are another source of non-

convexity. Other sources for nonconvexities exist.

Convexity is maintained in economics and part of operations

research because of the assumption of perfect time divisibility. For

instance, Shephard (1970, p. 15) states clearly that convexity is “valid
for time divisibly-operable technologies”. But, if time is only imper-

fectly divisible, then nonconvexities may well substantially matter for

the analysis of production and, for example, cost functions alike. Yuan

et al. (2021) analyze the environmental and economic efficiency of

the Belt and Road countries using DEA and FDH models, discovering

the outliers have a more significant effect on the former than the lat-

ter. Balezentis et al. (2023) implement an additive LHM productivity

indicator and report even opposite signs between convex and non-

convex technologies for a substantial part of the sample in each of the

years in their panel. Thus, nonconvexity may matter substantially for

empirical analysis, and therefore, we explicitly test between convex

and nonconvex technologies.

Much literature discusses TFP growth in different countries or

regions. The research range in the literature includes Europe

(Baležentis et al., 2021), OECD (Cui et al., 2022), the Belt and Road

(Yuan et al., 2021), and some individual countries, like China (Shen

et al., 2019), United States (Ang & Kerstens, 2017), and Australia (Li &

Liu, 2010). The research estimating TFP globally is more limited than

the regional and national studies. Krüger (2003) adopts the Malmquist

index to explore the TFP of 87 countries from 1960 to 1990 and dis-

covers that the pace of capital accumulation influences productivity

significantly in different regions worldwide. Espoir and Ngepah (2021)

investigate the correlation between income inequality and TFP in

88 countries, concluding that compared to developed nations, income

disparity presents a higher and more significant influence on the TFP

in developing nations.

Some literature explores the correlation between the energy

structure and TFP, and the results present differences. Rath et al.

(2019) reveal that renewable energy consumption and fossil fuel have

an opposite impact on TFP growth. The effect of the former one is

positive, while the latter one is negative. Xie et al. (2021) claim that

the percentage of renewable energy consumption, which represents

the energy transition, exhibits an inverse “N” nonlinear relationship

with green TFP. The connection between the energy transition and

TFP has been discussed in some literature, but the relationship

between the consumption of fossil fuels and green growth has

received less attention. Since the green economy is the key direction

of future development, greater focus should be given to the impact of

the energy revolution.

To sum up, a lot of literature discusses the measurement of TFP

theoretically. Besides, there are some empirical studies corresponding

to each method. However, comparisons among different models in

empirical research are rare and few scholars have considered the

worldwide TFP gains. The correlation between the transformation of

energy structure and green TFP deserves further consideration. Given

that the green economy is gaining more and more attention, this con-

tribution measures and compares the GTFP using the Malmquist–

Luenberger index, LHM, and Malmquist indicators under convex and

nonconvex by-production technologies based on a metafrontier

approach. Then, it tests the correlation between the share of fossil

fuel energy consumption and GTFP and determines which model is

the most robust.

3 | MATERIALS AND METHODS

3.1 | The calculation of GTFP growth

3.1.1 | Production technology and DDF

Production technology, also referred to as benchmark performance, is

often expressed by a production function, which specifies the highest

output that a certain vector of inputs can achieve. The by-production

model, proposed by Murty and Russell (2002) and Murty et al. (2012),

can introduce the set of production possibilities constraints by eco-

nomic axioms. In this model, there are two different types of inputs,

nonpolluting inputs xc and polluting inputs xd, and two kinds of out-

puts, desirable outputs y and undesirable outputs z. Polluting inputs

result in externalities during production while nonpolluting inputs do

not contaminate the environment. As a result, undesirable outputs,

also known as by-products, are always produced alongside desirable

outputs during the production process. Among different inputs and

outputs, there is a relationship that polluting inputs and nonpolluting

inputs that can contribute to desirable outputs, while only polluting

inputs produce undesirable outputs. Two sub-technologies T1 and T2

simulate the above relationship as T1 describes the process in that all

inputs are transformed into desirable outputs and T2 reflects how pol-

luting inputs produce undesirable outputs. The BP model, which com-

bines these two sub-technologies, solves the limitation of traditional

efficiency analysis in which only the desirable output is taken into

account by including externalities in the production. The specific form

of the BP technology is as follows:

4380 DENG ET AL.
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TBP ¼ T1\T2

¼ xc,xd,y,z
� ��

�ℝCþDþMþJ
þ : xc,xd

� �
canproducey;xd cangenerate z

�

T1 ¼ xc,xd ,y
� �

�ℝCþDþM
þ jf xc,xd,y

� �
≤ 0

��

T2 ¼ xd,z
� �

�ℝDþJ
þ j�

g z,xd
� �

≤0
�

ð1Þ

where f �ð Þ and g �ð Þ are two continuously differentiable functions of

inputs and outputs. The dimensions C, D, M, and J represent the quan-

tity of nonpolluting inputs, polluting inputs, desirable outputs, and

undesirable outputs, which equal 2, 1, 1, and 1 in the empirical part of

this contribution, respectively. T1 set satisfies the free-disposability

properties, while the costly disposability property is imposed on T2

(Murty et al., 2012), which needs the substitution of inputs from the

production of desirable outputs to reduce the amount of already-

produced byproducts (Ray et al., 2018). There is joint disposability

between polluting inputs and bad outputs (Baležentis et al., 2021).

Without reducing polluting inputs, undesirable outputs cannot be

reduced (Shen et al., 2021).

Conventional literature asserts that good and bad outputs are

positively correlated. To model this positive relationship, these stud-

ies treat by-products as inputs on a free disposability basis or outputs

based on the weak disposability and null-jointness properties (Murty

et al., 2012). According to the weak disposability assumption, bad

outputs can only be decreased by raising inputs or lowering good

outputs (Ray et al., 2018). Besides, under the null-jointness condition,

two kinds of outputs must be decreased proportionally. Thus, good

output is inseparable from the generation of by-products. Desirable

outputs are also 0 if the undesirable outputs are, reflecting that by-

products are difficult to dispose off completely (Baležentis

et al., 2021). Under the methodologies mentioned above, some errors

in the trade-offs of inputs and outputs could happen that are incon-

sistent with the MBPs. BP technology assumes costly disposability in

polluting inputs and pollution, allowing inefficiencies in the produc-

tion process, which is congruent with the MBP. Based on the above

discussion, the BP method is selected to introduce bad outputs into

our study.

Besides, convex and nonconvex production technologies are

adopted in this contribution. The point in the production frontier must

be a real country for the FDH technology, a nonconvex technology

introduced by Deprins et al. (1984), whereas it is not necessarily real

under the convex DEA approach. Due to the additivity and divisibility

of the DEA method, the FDH method is a more general model drop-

ping the convexity assumption with estimators consistent with convex

and nonconvex production sets. In some cases, some decision-making

units (DMUs) are in the frontier under nonconvex technology, but

there is still some room for improvement in the convex technology.

Thus, the inefficiency scores in the FDH are usually lower than those

in the DEA method.

The production technology can be expressed by the DDF and this

DDF can also be understood as an inefficiency score (Chambers

et al., 1996), which can quantify the discrepancy between observed

values and the production frontier. The points on the production fron-

tier can be regarded as a “model” for other DMUs. Therefore, the

calculated distance can indicate a particular path for improvement for

the points that are not on the production frontier. The DDF is flexible

and it contains several types, like input-oriented, output-oriented, and

input/output-oriented DDFs. These generalized DDFs, which are in

the period p� t,tþ1f g while the production technology exists in the

period q� t,tþ1f g, are defined as follows, respectively:

Dq xp,yp,zp;gpx ,0,0
� �¼ max δ�ℝ : x�δgpx ,y

p,zp
� �

� T qð Þ� �
, ð2Þ

Dq xp,yp ,zp;0,gpy ,g
p
z

� �
¼ max θ�ℝ : xp,yþθgpy ,z�θgpz

� �
� T qð Þ

n o
, ð3Þ

Dq xp,yp,zp;gpx ,g
p
y ,g

p
z

� �
¼ max θ,δ�ℝ : xp�δgpx ,y

pþθgpy ,z
p�θgpz

� �
�T qð Þ

n o
,

ð4Þ

where gx, gy , and gz describe the directional vectors of inputs, good,

and bad outputs, respectively. δ and θ measure the maximum

optimization of inputs and outputs. p,qð Þ� t,tþ1f g� t,tþ1f g allows

the estimation of productivity change in mixed periods. In practice,

we choose the evaluated observations as the directional vectors. This

not only guarantees a proportional interpretation of the DDF: see

Briec (1997). Furthermore, this proportional distance function (PDF)

also guarantees that productivity measurement satisfies a generalized

commensurability property, which is not the case under a DDF with

some general direction vector: see Briec et al. (2022) for details.

3.1.2 | Luenberger–Hicks–Moorsteen, LPIs, and
Malmquist–Luenberger index

While the above distance functions can calculate the inefficiency

scores, some productivity indicators or indices can help us change

efficiency problems into productivity analysis. This contribution

adopts the LHM, LPI, and ML index to study productivity growth.

We explore the difference between the three ways to express

productivity to have a better understanding of productivity

measurement.

The LHM productivity indicator is considered firstly, described as

the difference between the input and output indicators. To prevent

picking a base period at random, t and tþ1 periods are selected.

There are S DMUs. The following expression is an LHM indicator for

the base period t:

LHMt ¼ Dt xts,y
t
s,z

t
s;0,g

t
y ,g

t
z

� �
�Dt xts,y

tþ1
s ,ztþ1

s ;0,gtþ1
y ,gtþ1

z

� �h i

� Dt xtþ1
s ,yts,z

t
s;g

tþ1
x ,0,0

� ��Dt xts,y
t
s,z

t
s;g

t
x,0,0

� �� 	

0
@

1
A,

ð5Þ

where the first and second production technologies in the brackets

indicate the distance along the output direction to the frontier, while

the third and fourth terms denote the distances from the production

frontier along the input direction. Similarly, for the base period tþ1,

the LHM indicator is expressed as follows:
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LHMtþ1 ¼ Dtþ1 xtþ1
s ,yts ,z

t
s;0,g

t
y ,g

t
z

� �
�Dtþ1 xtþ1
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� �� 	

0
@

1
A:

ð6Þ

To avoid an arbitrary base period, it is custom to take the arith-

metic average value of LHM indicators for periods t and tþ1:

LHMt,tþ1 ¼1
2

LHMtþLHMtþ1� �

¼1
2
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z
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x ,0,0
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t
x,0,0

� �� 	
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ð7Þ

The change in productivity from the previous year can be shown

in the rise or fall of TFP. Productivity increases when the TFP growth

rate exceeds 0; it decreases when it is less than 0. For the LPI based

on differences, this interpretation likewise holds. The LPI allows

inputs and outputs to be optimized simultaneously and it is widely

used. It is defined as follows:

LPIt,tþ1 ¼1
2

Dt xts ,y
t
s,z

t
s;g

t
x,g

t
y ,g

t
z

� �
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z
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0
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ð8Þ

Chung et al. (1997) propose an ML productivity index that asym-

metrically treats good and bad outputs (Kumar, 2006). However, it is

noncircular and may have infeasible issues with linear programming

when calculating the cross-period DDF (Färe et al., 2001; Oh, 2010).

Different from LHM and LPIs, for this index, if the value is larger

than 1, then there are gains in productivity. If it is less than 1, then

productivity declines. The ML productivity index has the following

form:

MLt,tþ1 ¼
1þDt xts,y

t
s,z

t
s;g

t
x,g

t
y ,g

t
z

� �

1þDt xtþ1
s ,ytþ1

s ,ztþ1
s ;gtþ1

x ,gtþ1
y ,gtþ1

z

� �
2
4

�
1þDtþ1 xts,y

t
s,z

t
s;g

t
x,g

t
y ,g

t
z

� �

1þDtþ1 xtþ1
s ,ytþ1

s ,ztþ1
s ;gtþ1

x ,gtþ1
y ,gtþ1

z

� �
3
5
1=2

ð9Þ

The details on the calculation of the PDFs are presented in

Appendix A.

3.1.3 | Estimation strategy: Inspired by the
metafrontier method

Productivity varies significantly between 129 nations due to varia-

tions in the economies, environments, institutional settings, and other

factors. If only one production technology is used, some deviations

may occur. For instance, it is difficult to gauge efficiency in some

nations because they are too far from the production frontier. Thus,

this contribution adopts the metafrontier method which is an unrest-

ricted technology set following O'Donnell et al., 2008. The samples

are divided into three groups, each containing 43 countries, based on

average GDP levels during 2000–2019. The production technologies

are estimated using three group frontiers. The contemporaneous

production frontier of the group h in the period t is described as

Tt
h ¼ xc,xd,yt,zt

� ��
: xc,xd
� �

can produce yt;xd can generate zt
�
,where

t¼1,…,T. The intertemporal production technology of the group h is

expressed as TI
h ¼ T1

h [T2
h […[TT

h . The global production technology

set is described as TG ¼ TI
1[TI

2[…[TI
H, which is an envelope curve

of group frontiers and consists of all observations made across all

groups and periods (O'Donnell et al. (2008)). The union operator does

not preserve convexity results (Kerstens et al., 2019). Thus, the meta-

frontier of convex group technologies is nonconvex, and also the

metafrontier of nonconvex group technologies is nonconvex (in a

different way from the preceding one).

Figure 1 presents the metafrontier method under both DEA and

FDH models. In the nonconvex group technologies, the technologies

Tt
1, T

t
2, and Tt

3 are represented by the horizontal axis and the polyline

A1B1C1D1E1F1G1, A2B2C2D2E2F2G2, and A3B3C3D3E3F3G3, respec-

tively. The metafrontier of three group technologies is the union of

three group technologies and consists of all points between the poly-

line A1B1HB2IB3C3D3JD2E2F2KF3G3 and the horizontal axis. Convex

group frontiers Tt
1, T

t
2, and Tt

3 are shown by the horizontal axis and

the polyline A1B1C1D1E1, A2B2C2D2E2, and A3B3C3D3E3, respectively.

According to Jin et al. (2020), some points can only be reached under

the convexification strategy, like the projection point R
00
1 of R1. If we

do not assume the convexity of metafrontier, the point R
00
1 is

infeasible. In general, the convexification method of assuming a

convex metaset yields erroneous results (see Jin et al., 2020; Kerstens

et al., 2019). Thus, the metafrontier of Tt
1, T

t
2, and Tt

3 should be

the region between the polyline A1B1FB2C2GB3C3D3E3 and the

horizontal axis.

In line with our research interest, in the remainder, we estimate

separate group technologies using convex and nonconvex specifica-

tions. But, we are not interested as such in the estimation of the

nonconvex metatechnology. This simply serves as a conceptual

framework underscoring the importance of testing for convexity and

nonconvexity at the group technology level.

3.2 | Regression model

Given that the fixed-effect regression model is more robust because it

is always consistent no matter whether invariant omitted estimators

are correlated with error terms, this contribution uses a fixed-effect

model to explore the correlation between the share of fossil fuel

energy consumption and green TFP. To control individual and time

heterogeneity, this contribution chooses a two-way fixed effect

model. The regression model is specified as follows:
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ln CGTFPitð Þ¼ α ln fossilitð Þþ χ ln Xitð Þþ τiþ γtþεit, ð10Þ

where CGTFPit is the cumulative green productivity. The cumulative

green TFP has some small values that are sometimes negative. Thus,

we add two to each GTFP value and then take the logarithm. The

coefficient α represents the impact of the fossil fuel energy consump-

tion share on the cumulative GTFP, and χ is the effect of control vari-

ables on the cumulative GTFP. fossilit is the share of fossil fuel energy

consumption. Xit consists of a set of control variables, containing GDP

per capita pgdpit, industrial structure sec indit, trade openness tradeit ,

population density denit, foreign direct investment fdiit , and govern-

ment intervention govit. τi is the country fixed effect, γt is the year

fixed effect, and εit is a random error term. To avoid problems when

taking logarithms, we add two to all variables before taking

logarithms.

3.3 | Variables

3.3.1 | Explained variable

The calculation of GTFP consists of four parts—nonpolluting input,

polluting input, desirable output, and undesirable output. In this study,

the nonpolluting inputs contain capital stock and labor force. Energy

consumption is considered a type of polluting input. They all contrib-

ute to the creation of GDP, which is a type of good output. The

emission of carbon dioxide is regarded as an undesirable output. The

detailed definition and descriptive statistics are presented in Table 1.

3.3.2 | The core explanatory variable

The core explanatory variable is the use of fossil fuel energy, mea-

sured as the share of fossil fuel energy consumption. Currently, the

energy structure is accelerating to diversify, clean, and low-carbon,

and developing toward high efficiency and integration. In this transi-

tion process, the share of renewable energy will increase progres-

sively, gradually replacing fossil energy in the energy source.

However, fossil energy has been the main energy source for many

years, and the prospects for achieving the transition are grim. It is

essential for us to study the specific effect between the use of fossil

energy and green growth.

3.3.3 | Control variables

Following Xie et al. (2021), Yan et al. (2020), and Rath et al. (2019),

this contribution selects several control variables. The first control

variable is GDP per capita (PGDP), measured as constant 2015 US$. A

country can afford to pursue a green transition more when PGDP

rises in the area. The second control variable is industrial structure

(SECIND), with the definition being as the share of industry value

added including construction to GDP. Although the development of

the industry can drive economic growth, it also consumes a lot of

resources and causes environmental pollution, influencing green

growth. The third control variable is trade openness (TRADE), the sum

of imports and exports of goods and services divided by the GDP. On

the one hand, the “Pollution haven” argument claims that trade open-

ness and pollution are positively correlated because enterprises with

major pollution problems frequently invest in regions with lax environ-

mental regulations. This lowers costs but worsens pollution levels. On

the other hand, the development of green trade will also promote

green growth, reducing environmental pollution and improving eco-

nomic efficiency. The fourth factor is population density (DEN), mea-

sured as the number of people per square kilometer of land area.

More human capital can help the economy thrive; however, when

population density increases, resource waste and environmental dete-

rioration problems worsen. The fifth control variable is foreign direct

F IGURE 1 (a) Nonconvex and (b) convex group technologies and nonconvex metatechnologies.
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investment (FDI), defined as the total foreign investment inflows as a

percentage of GDP. The country's opening to the outside can improve

economic efficiency and facilitate financial inflows, but it also inexora-

bly results in pollution issues (Cao et al., 2020). The final control vari-

able is government intervention (GOV), which is expressed as the

ratio of government fiscal expenditure to GDP. Government interven-

tion can compensate for the market failure that exists in the area of

green development. Government investment can not only promote

the transformation of highly polluting and energy-consuming enter-

prises, but it also provides policy support for the development of envi-

ronmentally friendly enterprises. Consequently, the government is

crucial in advancing green development (Xie et al., 2020, 2021).

3.4 | Data sources

This study uses panel data of global 129 countries from 2000 to

2019. Countries are categorized into high, middle, and low GDP

groups based on their average GDP levels during the sample

period. There are 43 high-GDP countries, such as Canada,

Germany, China, Australia, France, and India. Furthermore,

there are 43 middle-income countries like Denmark, Finland,

New Zealand, Sudan, Syria, and Ireland. Finally, low GDP countries

contain 43 countries, including Mongolia, Nepal, Bolivia, Zambia,

and Zimbabwe. Detailed information on these three groups is pre-

sented in Table 2.

TABLE 1 Descriptive statistics for inputs and outputs.

Indicator Variable Definition N Mean SD Min Max

Nonpolluting

input

K Capital stock at current PPPs (in mil. 2017US$) 2580 2932.49 8270.45 16.42 101,544.20

L Number of persons engaged (in millions) 2580 22.34 80.38 0.14 799.31

Polluting input E Energy use (100 tons of oil equivalent) 2580 926.13 3078.84 6.76 33,691.07

Desirable output GDP Output-side real GDP at current PPPs (in mil. 2017US$) 2580 714.32 2096.14 7.02 20,566.03

Undesirable

output

CO2 Total CO2 emissions (thousand metric tons of CO2

excluding land-use change and forestry)

2580 225.60 864.68 0.66 10,416.59

TABLE 2 High, middle, and low GDP groups of 129 countries.

Low GDP Middle GDP High GDP

Costa Rica Mozambique Chile Sudan United States Egypt

Cameroon Nicaragua Kazakhstan Slovakia China Argentina

Paraguay Albania Czech Dominican India Pakistan

Nepal Armenia Greece Kenya Japan Nigeria

Slovenia Gabon Venezuela Oman Germany South Africa

Bolivia North Macedonia Portugal Ethiopia Russia United Arab Emirates

Uruguay Cyprus Ireland Bulgaria France Philippines

Democratic Republic of Congo Mongolia Peru Tunisia Brazil Malaysia

Latvia Kyrgyzstan Denmark Ghana United Kingdom Colombia

Cambodia Mauritius Israel Azerbaijan Italy Switzerland

Senegal Moldova Uzbekistan Guatemala Mexico Algeria

Zambia Benin Finland Serbia Indonesia Belgium

Georgia Tajikistan Hungary Syrian South Korea Sweden

Honduras Jamaica Qatar Tanzania Canada Ukraine

Luxembourg Congo Morocco Croatia Spain Viet Nam

Trinidad and Tobago Haiti Kuwait Lebanon Turkey Bangladesh

Bosnia and Herzegovina Niger Sri Lanka Panama Saudi Arabia Austria

El Salvador Namibia Myanmar Ivory Coast Iran Norway

Zimbabwe Iceland Belarus Jordan Australia Romania

Estonia Malta New Zealand Yemen Thailand Singapore

Brunei Darussalam Togo Angola Lithuania Poland Iraq

Botswana Ecuador Netherlands

Note: Considering the huge differences in national input and output at different levels of GDP, countries in the high, middle, and low GDP groups are

ranked according to the average GDP level during 2000–2019 from the highest to the bottom.
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The data on labor force, capital stock, and GDP are collected from

Penn World Table 10.0. The data relevant to energy use, total CO2

emissions, the share of fossil fuel energy consumption, industry value

added, trade, PGDP, population density, and government intervention

are collected from the World Development Indicators of the World

Bank. Foreign direct investment is collected from the UNCTAD data-

base. Due to data availability issues, this contribution excludes eight

countries from the regression analysis (Ivory Coast, Ethiopia, Kuwait,

Myanmar, Trinidad and Tobago, Venezuela, Yemen, and Zambia).

4 | RESULTS

4.1 | Ratio of fossil fuel energy consumption in
different regions

Figure 2 represents the ratio of fossil fuel energy consumption in total

energy use in different regions from 2000 to 2019. It can be seen that

the proportion and trend of fossil energy among different regions are

quite different. In terms of proportion, the proportion of fossil energy

in the Middle East and North Africa is the highest (exceeding 90%).

This is followed by North America, East Asia and Pacific, Europe and

Central Asia, and Latin America and the Caribbean. There is little dif-

ference in the proportion of fossil energy in these areas, which is all

situated in the range of 65%–85%. There is a certain gap between

South Asia and Sub-Saharan Africa and other regions in the propor-

tion of fossil energy. Sub-Saharan Africa has the lowest proportion of

fossil energy, which is situated below 40%. The share of fossil energy

in South Asia increases slowly before 2013 (it is below 54%). After

2013, it increases rapidly, reaching the highest point of 66% in 2019.

The proportion of fossil energy in all countries together has not

changed much. It has even grown a bit from 67% in 2000 to 71% in

2019.

These results reflect a large gap between the relatively high pro-

portion of fossil energy in economically developed regions or major

producers of fossil energy and the relatively low proportion of fossil

fuels in economically backward regions. Economically backward coun-

tries still urgently need to address the issue of economic develop-

ment, and the proportion of fossil energy still may have a lot of room

for growth. Regarding the trend, the proportion of fossil energy shows

a downward trend in the Middle East and North Africa, North

America, and Europe and Central Asia, and an upward trend in the

other regions, especially in South Asia and Sub-Saharan Africa. The

proportion of fossil energy in all countries is on the rise.

This phenomenon supports the conclusions of Zou et al. (2016).

These authors discover that while demand from emerging economies

in the Asia-Pacific region is growing quickly, it is stable in the

United States, Europe, and other developed nations. Fossil energy

consumption shows a downward trend in North America and Europe.

This reflects that economically developed areas and major fossil

energy-producing areas are increasingly pursuing green development

and gradually replacing fossil energy with renewable energy. How-

ever, economically underdeveloped countries mainly pursue rapid

economic development and cannot adjust their industrial structure

and develop clean energy in the short term. Fossil energy is still the

most important supply for industrial development.

F IGURE 2 Ratio of fossil fuel
energy consumption in total energy
use in different regions (2000–2019).
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4.2 | GTFP growth using the LHM, LPIs, and ML
index under different production technologies

Table 3 presents the descriptive statistics of green productivity based

on the three group technologies. First, the means of GTFP growth of

all indicators and index under convex and nonconvex technologies

indicate positive GTFP growth, except for the decline in the LHM indi-

cator under nonconvex technology. Therefore, the LHM productivity

indicator under different technologies seems significantly different

from the other indicators. The LHM indicator has a higher absolute

value than its LPI counterpart, which is in line with Kerstens et al.

(2018) and Sala-Garrido et al. (2018). This might be as a result of the

incomplete way in which the Luenberger indicator measures TFP. Sec-

ond, the degree of dispersion of the ML index under FDH technology

is the largest, while the DEA model of the ML index shows the slight-

est fluctuations. The LPI's standard deviation is lower than its LHM

indicator counterpart, which confirms the finding of Kerstens et al.

(2018). Third, in the difference-based indicator, the LHM TFP indica-

tor has minimum values of �0.794 and �0.620 under the DEA and

FDH models, respectively, which are smaller than those in the corre-

sponding models of the LPI. Moreover, the maximum values under

the LHM indicator have a larger difference than that of LPI productiv-

ity under different technologies. In the ratio-based ML index, the dif-

ference in GTFP growth under the FDH model is greater than that of

the DEA model, with larger maximum and smaller minimum values.

Finally, the minimum and maximum values of the LPI indicator under

convex technology and the LHM productivity indicator under both

convex and nonconvex technologies all occur in Venezuela in 2015

and 2017, respectively, showing a significant variation in Venezuela's

productivity throughout time. Under the LPI indicator with nonconvex

technology and ML index with convex and nonconvex technologies,

Yemen has the smallest green growth in 2015, while the maximum

occurs in Iraq in 2006, Venezuela in 2017, and India in 2013,

respectively.

The cumulative GTFP under three group technologies using dif-

ferent productivity models is presented in Figure 3. First, from 2000

to 2019, the cumulative GTFP under nonconvex technology with ML

index shows a significant rise and hits a high of roughly 1.5 in 2019,

which is much higher than other models. There is a steady increase in

the LHM indicator under the DEA model, ML index under DEA tech-

nology, and LPI under convex and nonconvex technologies over time.

On the contrary, the LHM indicator under the FDH model experi-

ences a downward trend. Thus, the cumulative GTFP of the LHM TFP

indicator shows different trends across various technologies. Gener-

ally, the trend of green growth in these countries cannot be clearly

determined. This result is similar to Kerstens et al. (2018). They dis-

cover the only indicator with a downward trend to be the LPI using a

nonconvex-VRS technology. Besides, the cumulative GTFP using the

LHM indicator under different technologies shows the largest differ-

ence, followed by the ML index. The LPI presents a relatively small

difference under DEA and FDH models. In addition, a slight drop of

cumulative GTFP occurs in 2008 in all models, reflecting that the

global economic recession has caused damage to green growth. Wang

and Feng (2021) also find a decline in green growth during the finan-

cial crisis. The macroeconomic fluctuation is closely related to the

green productivity of various countries.

Table 4 displays the average GTFP growth over time for all

nations based on different group technologies. First, the average

GTFP growth rates for the different methods present some similar

results. The years 2004–2005 and 2016–2017 experience positive

GTFP growth under all indicators and index, while the years 2000–

2001, 2008–2009, and 2013–2014 witness significant negative

growth rates of GTFP in all models. All models' estimates of green

productivity over these years are consistent. Second, the signs of dif-

ferent indicators and index under convex and nonconvex production

technologies also display some differences. For example, in 2002–

2003, the LHM indicator under convex technology and the ML index

under nonconvex technology are positive, while the results of the

remaining four models are negative. Only the GTFP growth in the

nonconvex model for the LHM indicator is negative in 2005–2006,

while other models show a positive growth trend. This somewhat sup-

ports the results of Kerstens et al. (2018), as they find that the results

by Luenberger and LHM productivity indicators display considerable

differences, although the cumulative growth paths seem quite similar.

Third, the green TFP growth of the LHM indicator under the noncon-

vex technology is negative in most years but positive in only 2 years.

There are 14, 10, 9, 10, and 14 years of positive GTFP growth with

the LHM indicator under convex technology, LPI under DEA and FDH

models, and ML index under both convex and nonconvex technolo-

gies, respectively. Compared to the LHM indicator and ML index, the

green productivity growth rates determined by the LPI are more simi-

lar. Finally, among the LPI under convex and nonconvex models as

well as the ML index under nonconvex technology, the average GTFP

growth rates in 2004–2005 are the highest, whereas they are the

lowest in 2008–2009 in all models except for the LHM indicator

under nonconvex production technology.

Table 5 provides an illustration of the regional annual average

cumulative GTFP growth rates under three group technologies. First,

the overall annual green growth rates range from �2.31% to 2.37%,

TABLE 3 Descriptive statistics of GTFP growth using the
Luenberger–Hicks–Moorsteen, Luenberger productivity indicators,
and Malmquist–Luenberger index under three group technologies and
convexity and nonconvexity.

Variable Obs Mean SD Min Max

LHM_DEA 2,451 0.011 0.085 �0.794 0.544

LHM_FDH 2,451 �0.021 0.083 �0.620 0.913

LPI_DEA 2,451 0.002 0.047 �0.507 0.539

LPI_FDH 2,451 0.001 0.065 �0.566 0.578

ML_DEA 2,451 1.002 0.044 0.606 1.501

ML-FDH 2,451 1.006 0.106 0.462 3.567

Note: The GTFP of Iraq in 2005 using ML index under nonconvex has no

value because the inefficiency score under the production technology of

the t period and the output and output-oriented DDFs in the t + 1 period

is too small. Thus, we take this value to be 1.
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reflecting significant differences between the results of different indi-

cators and index under different technologies. The annual GTFP

growth rates also present similarities. Only the annual growth rates of

the LHM indicator under nonconvex technology are negative, while

other models show positive annual growth. Generally, there is an

upward trend in worldwide green productivity. Second, the annual

green growth rates in Sub-Saharan Africa are all negative, while other

regions experience different degrees of progress in green growth. The

sub-Saharan region has always lagged in terms of green productivity,

and this gap is getting worse with respect to other regions. The most

productive area varies under different approaches. But overall, Europe

and Central Asia are the area with the greatest growth momentum, as

their annual green growth rates are ranked first under most models.

This result partly supports the study of Wang and Feng (2021). These

authors discuss green growth of different income level countries and

conclude that the green productivity performance in the high-income

group and the upper middle-income group is better than that of the

lower middle-income group. This result demonstrates that green pro-

ductivity performs better in economically developed regions than it

does in economically underdeveloped regions. Third, the annual green

productivity growth rates of the LHM indicator under nonconvex

technology are all negative among all regions, while most calculated

by other approaches are positive. The green growth of East Asia and

Pacific (11.78%) and South Asia (19.2%) calculated by the ML index

under the nonconvex approach is far more than those calculated by

different approaches in other regions. The annual GTFP growth rates

determined by the ML index using nonconvex technology in various

regions vary more than those determined by other methods.

4.3 | Regression analysis

Table 6 provides the regression results of the LHM, LPIs, and ML

index under FDH and DEA models. The dependent variable is the log-

arithm of the cumulative productivity. The use of fossil energy can

pollute the environment and exacerbate climate change, failing to rec-

oncile the economy and environment well, which inhibits the TFP that

considers the undesirable outputs. Interestingly, different models pre-

sent some insightful results. Strong evidence of a negative correlation

between the fossil fuel energy consumption and productivity of the

LHM indicator under DEA and FDH models is found in the first and

second columns, respectively, which is in line with our assumption. It

also supports the findings of Danish and Ulucak (2020), Yan et al.

(2020), and Rath et al. (2019). Furthermore, the negative effect of the

F IGURE 3 Cumulative GTFP with the Luenberger–Hicks–Moorsteen, Luenberger productivity indicators, and Malmquist–Luenberger index
under three group technologies and convexity and nonconvexity (2000–2019).
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consumption of fossil fuel on the LHM indicator under the FDH

model is greater than that under the DEA model. As for the LPI, the

share of fossil fuel energy use and the green growth of the economy

under the nonconvex technology are negatively correlated at a 1%

significance level. However, the contrary results occur under the DEA

model, inconsistent with the assumption. The LPI indicator under dif-

ferent production technologies presents contradictions. To some

extent, the accuracy and robustness of this model are questionable.

Likewise, the ML index shows similar results with the LPI indicator,

with positive and negative influences under DEA and FDH models,

respectively. Besides, the correlation between fossil fuel energy con-

sumption and the ML index is not significant. Generally speaking, the

LHM productivity indicator is the best with the most consistent

results, most in line with the actual situation, while the results calcu-

lated by the other two methods under convex and nonconvex models

present contradictory results. From the perspective of convex and

nonconvex technologies, the nonconvex specification consistently

obtains the right negative significant sign for each GTFP. However,

TABLE 4 Average GTFP growth for the Luenberger–Hicks–Moorsteen, Luenberger productivity indicators, and Malmquist–Luenberger index
under three group technologies and convexity and nonconvexity.

Luenberger–Hicks–Moorsteen Luenberger Malmquist–Luenberger

Year Convex Nonconvex Convex Nonconvex Convex Nonconvex

2000–2001 �0.0116 �0.0202 �0.0089 �0.0075 0.9909 0.9933

2001–2002 0.0107 �0.0083 0.0010 0.0029 1.0000 1.0051

2002–2003 0.0018 �0.0260 �0.0035 �0.0023 0.9963 1.0012

2003–2004 0.0200 �0.0174 0.0034 0.0110 1.0028 1.0141

2004–2005 0.0505 0.0014 0.0219 0.0299 1.0198 1.0519

2005–2006 0.0228 �0.0323 0.0068 0.0042 1.0058 1.0035

2006–2007 0.0198 �0.0289 0.0081 �0.0021 1.0067 1.0030

2007–2008 0.0135 �0.0455 �0.0033 �0.0128 0.9969 0.9900

2008–2009 �0.0353 �0.0445 �0.0198 �0.0234 0.9815 0.9760

2009–2010 0.0223 �0.0295 0.0062 �0.0025 1.0058 1.0001

2010–2011 0.0538 �0.0128 0.0219 0.0110 1.0219 1.0160

2011–2012 0.0093 �0.0165 �0.0003 �0.0065 1.0000 0.9952

2012–2013 �0.0131 �0.0239 �0.0086 0.0024 0.9928 1.0234

2013–2014 �0.0050 �0.0293 �0.0048 �0.0177 0.9957 0.9813

2014–2015 �0.0112 �0.0216 �0.0092 �0.0023 0.9944 1.0043

2015–2016 0.0133 �0.0139 0.0055 �0.0004 1.0059 1.0037

2016–2017 0.0315 0.0053 0.0128 0.0217 1.0118 1.0313

2017–2018 0.0102 �0.0126 0.0046 0.0080 1.0045 1.0100

2018–2019 0.0039 �0.0214 0.0000 0.0106 1.0001 1.0160

TABLE 5 Annual GTFP growth in different regions for the Luenberger–Hicks–Moorsteen, Luenberger productivity indicators, and
Malmquist–Luenberger index three different group technologies and convexity and nonconvexity (%).

Luenberger–Hicks–Moorsteen Luenberger Malmquist–Luenberger

Region Convex Nonconvex Convex Nonconvex Convex Nonconvex

Sub-Saharan Africa �0.93 �4.32 �0.94 �0.52 �0.37 �1.29

Latin America & Caribbean 0.88 �2.71 0.43 0.83 0.74 �0.31

East Asia & Pacific 1.12 �3.28 0.17 2.48 0.18 11.78

Europe & Central Asia 2.55 �0.15 1.12 1.98 1.16 1.15

Middle East & North Africa 1.05 �3.26 �1.11 1.47 �0.70 0.72

North America 0.34 �0.56 0.38 3.10 0.47 2.25

South Asia 0.59 �5.65 0.44 3.35 0.78 19.20

Overall 1.18 �2.31 0.20 1.41 0.44 2.37
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also the right effect can be observed from the LHM productivity indi-

cator under a convex technology. The effect of LPI and ML index

under a convex model both show opposite and insignificant effects.

Regarding the other control variables, productivity is found to

positively correlate with per capita GDP under most models. How-

ever, the LHM indicator under the FDH production technology shows

the opposite correlation. This is consistent with Yan et al. (2020), as

they state that low-income regions would have a larger development

potential for green growth. The percentage of value added by indus-

tries to GDP and the economy's green growth are negatively associ-

ated. Moreover, the negative effect of the LHM productivity indicator

under convex technology is larger than that of the LPI and ML index.

This negative effect differs from Yan et al. (2020): the latter find a

positive but insignificant relationship between industrial structure and

green productivity in China. This result illustrates the fact that mod-

ernizing and transforming industrial structures is a common trend that

might support sustainable growth.

The ratio of trade to GDP has a negative impact on productivity

under LHM-DEA, LHM-FDH, LPI-DEA, and ML-DEA methods, while a

positive impact is observed from LPI-FDH and ML-FDH models. This

effect is uncertain as the trade may bring pollution or promote the

transformation of economic structure and increase the region's com-

petitiveness. According to Cui et al. (2022), international trade is posi-

tively correlated with green growth in OECD countries, as it can

contribute more effectively to the flow of goods and the division of

labor. Yan et al. (2020) find that trade has a positive but insignificant

impact on the growth rate of green productivity. Rath et al. (2019)

conclude that trade openness contributes positively to TFP growth as

it can stimulate innovation.

There is an apparent negative relationship between population

density and green growth, with negative coefficients presented in all

models. Among the results, the population density contributes most

to the productivity measured by the LHM-FDH model. An increasing

population can bring adverse effects on the resources and environ-

ment, influencing green growth. This negative effect is supported by

the discovery of Xie et al. (2021).

Green growth and FDI are found to be inversely correlated.

Therefore, even while foreign investment will help the economies of

these countries grow, it is particularly detrimental to the environment

and inhibits overall green development. This finding somewhat con-

firms the study of Cao et al. (2020), which finds that FDI inhibits green

growth in low-pollution industries. However, according to Rath et al.

(2019), FDI is observed to contribute positively to the growth of TFP

with more technology being introduced.

Government intervention has a negative effect only on the GTFP

calculated by the LHM indicator under FDH technology. This may be

due to the fact that if the government gets too involved, it will exacer-

bate the mismatch of resources in the green industry and prevent the

rational flow of resources, thus inhibiting the development of the

green industry. This effect differs from Xie et al. (2020) and Xie et al.

TABLE 6 Regression results using
the Luenberger–Hicks–Moorsteen,
Luenberger productivity indicators, and
Malmquist–Luenberger index under
three group technologies and convexity
and nonconvexity.

Regression models

LHM_DEA LHM_FDH LPI_DEA LPI_FDH ML_DEA ML_FDH

lnfossil �0.033*** �0.052*** 0.003 �0.044*** 0.007 �0.026

(0.010) (0.011) (0.006) (0.008) (0.005) (0.018)

lnpgdp 0.112*** �0.045*** 0.053*** 0.029*** 0.059*** 0.014

(0.013) (0.014) (0.008) (0.010) (0.006) (0.023)

lnsecind �0.108*** �0.031* �0.025*** �0.047*** �0.021*** �0.006

(0.015) (0.016) (0.009) (0.012) (0.007) (0.026)

lntrade �0.048*** �0.069*** �0.034*** 0.010 �0.028*** 0.031**

(0.008) (0.009) (0.005) (0.007) (0.004) (0.014)

lnden �0.180*** �0.591*** �0.224*** �0.072*** �0.142*** �0.076**

(0.018) (0.021) (0.011) (0.015) (0.009) (0.033)

lnfdi �0.091*** �0.132*** �0.050*** �0.088*** �0.047*** �0.093*

(0.030) (0.033) (0.018) (0.025) (0.015) (0.053)

lngov 0.004 �0.095*** 0.007 �0.012 �0.005 0.012

(0.012) (0.014) (0.007) (0.010) (0.006) (0.022)

Constant 1.677*** 4.919*** 1.832*** 1.544*** 1.401*** 1.355***

(0.164) (0.185) (0.100) (0.137) (0.083) (0.295)

Time FE Yes Yes Yes Yes Yes Yes

Individual FE Yes Yes Yes Yes Yes Yes

Observations 2,420 2,420 2,420 2,420 2,420 2,420

R-squared 0.732 0.820 0.775 0.717 0.771 0.667

Note: Robust standard errors are in parentheses.

*p < .1, **p < .05, and ***p < .01.
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(2021) as these authors find government plays an active role in green

economic development among 27 EU member countries. Government

intervention has no significant effect on the ones calculated by other

models.

Note that the standard errors of the estimated regression coeffi-

cients are robust. In particular, we have been using the procedure

available in Stata to robustify the regression results.

5 | CONCLUSIONS

If an insufficient energy supply appears in an economy, it has to rely on

external energy imports. The stable development of the economy will

be impacted by energy prices. For example, the recent Russo-Ukraine

war has led to volatility in energy prices in Europe. Furthermore,

whether productivity indicators are consistent with the country's

energy structure can affect the measurement of green growth. Inspired

by the metafrontier approach, this contribution measures the green

productivity gains of 129 countries using the LHM, LPIs, and ML index

under both convex and nonconvex by-production models. Then, it tests

the robustness of different indicators and indices through a two-way

fixed effect regression model between the GTFP and the share of fossil

fuel energy consumption for 121 countries. The findings have provided

a deeper insight into the selection of models for measuring GTFP in

empirical analysis. The results gained from this study may assist in facil-

itating energy transition and sustainable development. We are now in a

position to summarize the main findings.

First, the results indicate that there are large differences in the

share and trend of fossil energy in different regions. Generally speak-

ing, the share of fossil energy in economically developed areas, such

as North America, Europe and Central Asia, and major energy-

producing countries, such as the Middle East and North Africa, is high

and is declining. Economically disadvantaged regions, such as South

Asia and Sub-Saharan Africa, have a smaller and rapidly increasing

share of fossil energy compared to other regions. This reflects that

economically developed regions and major fossil energy-producing

regions are increasingly seeking green development. However, eco-

nomically less developed countries are mainly focusing on rapid eco-

nomic development and fossil energy is apparently the most

important energy source for industrial development.

Second, GTFP calculated from various indicators and index pre-

sents significant differences, which is consistent with Kerstens et al.

(2018) and Sala-Garrido et al. (2018). The green productivity using the

LHM indicator under nonconvex group technologies presents oppo-

site results to other models. The annual growth rates of GTFP vary

between regions. There is an upward trend in worldwide green pro-

ductivity, except under LHM-FDH. The annual green growth rates in

Sub-Saharan Africa are all negative. Europe and Central Asia are the

most productive regions according to most models. Productivity

decline is closely related to poverty. Therefore, it is urgent for lagging

countries to increase productivity and escape poverty.

Third, fossil fuel energy inhibits green economic growth. Thus,

there is a need to strengthen and innovate energy regulation and

promote clean energy development. The regression model illustrates

that the LHM indicator is the most robust and consistent in the empir-

ical analysis since the LPI and ML indices results are contradictory

under convexity and nonconvexity. This result confirms the research

of Kerstens et al. (2018) that the LHM indicator is an optimal method

for measuring TFP, while the LPI does not maintain a TFP interpreta-

tion by approximation. Theoretically, the LHM indicator can solve the

problem that the ML index cannot handle values at or near 0 and the

problem that the LPI cannot be separated into output and input

growth (Ang & Kerstens, 2017; Balk et al., 2008; Shen et al., 2019).

Therefore, in theory, the LHM indicator is also the best measure of

TFP among the three methods. The empirical results present

consistent results with the theory. Given our framework that explicitly

tests for convexity, our contribution shows that the LHM productivity

indicator under a nonconvex technology is slightly more convincing

when considering undesirable outputs compared to the convex

alternative.

Despite the great advantages mentioned above, there are some

pitfalls. The first is the selection of methods for measuring TFP. We

just consider a few popular methods containing LHM indicator, LPI,

and ML index, but do not include additional indicators and indices.

There are numerous ways to calculate the TFP. Future researchers

should consider more approaches to gain a more comprehensive

understanding and comparison of TFP measurement. Second, only the

share of fossil fuel energy consumption is selected as the core explan-

atory variable and then regression analysis is performed with GTFP to

explore the robustness of the model. More variables could be incorpo-

rated to test the robustness of different approaches under convexity

and nonconvexity. Choosing the proper methods to measure TFP can

better capture economic growth and drive long-term economic

growth. Third, this contribution is unable to include all countries in the

regression analysis due to missing data on some of the control vari-

ables. Later, if more data become available, then more countries can

be included in the regression analysis to present a more complete and

convincing conclusion.
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APPENDIX A

Through linear programming, the PDFs can be estimated for Expres-

sions (7), (8), and (9). As for the LHM productivity indicator, the

output-oriented PDFs can be obtained from (LP1) and (LP3), respec-

tively. The input-oriented proportional distance functions are calcu-

lated through (LP2) and (LP4).
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The programs (LP1) and (LP2) estimate the convex production

technologies, and the nonconvex technologies can be obtained from

(LP3) and (LP4). The activity or intensity vector λ1s and λ2s are related

to subtechnologies T1 and T2, respectively. The scalars θ and δ repre-

sent the maximum optimizations of outputs and inputs defined by

0,gpy ,g
p
z

� �
and gpx ,0,0

� �
at the period p� t,tþ1f g.

Similarly, the input/output-oriented DDFs of the LPI can be cal-

culated from the (LP5) and (LP6). From the linear programming of

(LP7) and (LP8), the DDFs of the ML productivity index are obtained.
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s¼1

λ1s x
d
s ≤ x

d
s0 �ϕgdx ,d¼1,…,D

XS
s¼1

λ2s z
j
s ≤ z

j
s0 �ϕgjz, j¼1,…,J

XS

s¼1

λ2s x
d
s ¼

XS

s¼1

λ1s x
d
s ,d¼1,…,D

λ1s ¼ 0,1f g,s¼1,…,S

XS

s¼1

λ1s ¼1,T1 under VRS

λ2s ¼ 0,1f g,s¼1,…,S

XS
s¼1

λ2s ¼1,T2 under VRS

ðLP8Þ

The scalars μ and ϕ are the maximum optimizations of inputs and

outputs of DDFs under the LPI and ML index, respectively.
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