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Abstract

Total factor productivity is used to explore the input-output efficiency of the econ-
omy and the driving factors behind economic growth. Although scholars have
researched the total factor productivity approach, comparisons among different
models in empirical research are rare and few scholars have focused on worldwide
total factor productivity gains. Using convex and nonconvex technologies, this contri-
bution investigates green productivity gains of 129 worldwide countries during
2000-2019 based on three popular productivity measures, namely, Luenberger-
Hicks-Moorsteen indicator, Luenberger productivity indicator, and Malmquist-
Luenberger index, respectively. Inspired by a metafrontier approach, we compare
their productivity evolutions with the energy structure among 121 economies. A neg-
ative relationship is expected between the change in the proportion of fossil fuel
energy consumption and green productivity. Our results show that the Luenberger-
Hicks-Moorsteen productivity indicator under nonconvex technologies is a more

convincing productivity measure when considering undesirable outputs in production

technology.

1 | INTRODUCTION

Productivity, a crucial factor in economic growth, is a major concern.
There is tremendous income inequality among countries. For instance,
based on World Bank statistics, in 2020, Burundi had the lowest gross
domestic product (GDP) per capita (237$), while Luxembourg had the
highest (135,683$), which was about 573 times higher than the for-
mer. The lagging economy and poverty are largely the result of back-
ward production. In turn, they may affect production, creating a
vicious cycle whereby low productivity and poverty are exacerbated.
Nowadays, many people are still experiencing extreme poverty, and
the COVID-19 pandemic further slows productivity growth rates and
exacerbates poverty worldwide (Deaton, 2021). With increasing pro-
ductivity, a country can get more outputs from the same inputs and
achieve more efficient use of resources. Additionally, productivity
growth can contribute to sustained per capita income growth and
poverty reduction (Dieppe, 2021). Productivity growth is a key

concern of many countries, and inspires them to strive for greater
economic efficiency and higher income. To explore the input-output
efficiency of the economy and the driving factor behind economic
growth (Bauer, 1990), the total factor productivity (TFP) notion is
introduced and used to achieve high-quality and long-term economic
development.

Green productivity has become a major concern in research in
the last decade. Environmental issues have garnered a lot of attention
recently, since climate change, acid rain, the decline in biodiversity,
and so forth have become increasingly serious problems (Wang
et al., 2020). As reported by the IPCC, global annual average green-
house gas emissions increased by 12% between 2010 and 2019 (from
52.5 to 59 billion tons). Many international conferences are organized
to discuss the climate change issue and to set up plans for reducing
global emissions. The public's awareness of environmental issues is
promoted. Environmentally friendly and sustainable development

models are pursued by a wide range of countries (Yuan et al., 2021).
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Traditional economic models focusing exclusively on economic factors
when assessing productivity are insufficient. The productivity concept
need be enlarged to face the challenges of sustainable development.
More and more researchers integrate environmental issues into the
framework of productivity by measuring environmental performance
under economic growth (Feng & Serletis, 2014). Some undesirable
outputs (like carbon dioxide, sulfur dioxide, and nitrous oxide) are
used to evaluate the green productivity development of the economy.

While fossil energy is crucial for the economic development of
countries, it is also extremely harmful to the environment. Fossil
energy has promoted the development of industrial industries, greatly
improved productivity levels, and contributed significantly to eco-
nomic growth (lvanovski et al, 2021; Sasana & Ghozali, 2017;
Shahbaz et al., 2020). It performs an essential function in the produc-
tion of each country and provides a crucial material foundation for the
survival and development of the country (Ellabban et al., 2014). With
over 80% of all energy consumption still from fossil fuels, they remain
the primary source of energy. Without investment in fossil fuels, many
industries are unable to grow, hampering economic growth. However,
it also pollutes the environment and consumes large amounts of
resources and energy. Higher productivity growth fueled by fossil
fuels may be unsustainable in the long run, since they cause climate
change and global warming, which have negative environmental
effects on humans as well as other creatures (Rath et al., 2019).
Therefore, the consumption of fossil energy cannot reconcile econ-
omy and ecology, affecting the development of a green economy (Cao
et al., 2020; Danish & Ulucak, 2020; Rath et al., 2019; Yan
et al., 2020). Clean energy is getting more and more attention as the
transformation of the energy structure becomes the current develop-
ment direction (Xie et al., 2021). However, for many countries, the
share of fossil fuels is still growing, dominating energy consumption
(Sasana & Ghozali, 2017). The economy is still predominantly powered
by fossil fuels due to the rising dependence on fossil fuel usage. Thus,
it is difficult to achieve a green economy.

Investigating how energy consumption affects green productivity
is critical to the future of the economy. Energy is an important
resource endowment. Energy structure evolution and its resource
misallocation may lead to unbalanced development among economies.
We look for a robust approach to modeling green productivity indices,
which is consistent with the energy structure. This study assumes an
inverse connection between the share of fossil fuel consumption and
green productivity. It believes that fossil fuel energy is a good indica-
tor to test whether the economy has achieved green growth. Studying
the correlation between fossil energy and the green economy can pro-
vide empirical evidence for energy transition and economic growth
that better supports sustainable development.

Whether different approaches to measure TFP provide an empiri-
cally good estimation remains uncertain. There are multiple indicators
and indices to estimate TFP that transform the static efficiency prob-
lem into a productivity measurement problem. Most existing literature
has adopted ratio-based Malmquist (Krtiger, 2003; Li & Liu, 2010) or
Malmquist-Luenberger (ML) indices (Cao et al., 2020; Oh, 2010). Also,
a difference-based Luenberger productivity indicator (LPI)

(Fukuyama & Weber, 2017) or extensions of these methods to assess
productivity change are commonly used. However, a lot of problems
exist in these approaches, making it difficult to give a perfect TFP esti-
mation. The Luenberger-Hicks-Moorsteen (LHM) indicator (Briec &
Kerstens, 2004; Shen et al., 2019), a complete additive approach, is
not so widely used. Although some studies have compared the differ-
ence between some of these approaches (Kerstens et al., 2018), it is
still hard to tell which model is the best and more realistic and has
more accurate calculation results in empirical analysis.

The main objectives of this contribution are two-fold. First, this
contribution evaluates and compares the green TFP (GTFP) of
129 countries under different models. Second, to compare the robust-
ness of different approaches, it constructs a two-way fixed model to
test the correlation between the energy consumption share and green
TFP growth. There are several ways in which this contribution
advances the literature in the field. First, it investigates worldwide
green productivity gains, which deepens understanding of green pro-
ductivity across countries and can contribute to improving green
growth in different countries. Second, it adopts a by-production
(BP) model under a metafrontier approach, which is consistent with
the material balance principles (MBPs) and better solves the problem
of heterogeneity. Third, it compares the LHM, Luenberger indicators,
and Malmquist-Luenberger index under both convex and nonconvex
models and determines which one is more robust. This provides some
reference for selecting productivity indicators in future research.

The remainder of this study is structured as shown below.
Section 2 summarizes the research on the TFP about its calculation,
research scope, and relationship with energy structure. Section 3 dis-
cusses the approaches to calculating GTFP, the regression model, the
description and selection of variables, and the data sources. Section 4
analyzes the fossil energy consumption in different regions, green pro-
ductivity under different models, and regression results. Finally,

Section 5 draws conclusions and provides further discussions.

2 | LITERATURE REVIEW ON GREEN
PRODUCTIVITY AND ENERGY STRUCTURE

TFP can be measured by different approaches, which mainly contain
two categories. The first category is ratio-based indices. Caves et al.
(1982) propose Malmquist input, output, and productivity indices that
do not rely on a continuous time assumption, but that need informa-
tion on parameters to estimate. By calculating the geometric average
of the two Malmquist or Malmquist productivity indices, the
Tornqvist or Tornqvist productivity indices can be obtained, which
can be calculated if prices and quantities are known. Bjurek (1996)
proposes the Hicks-Moorsteen index, as a ratio between Malmquist
output and input quantity indices, which can accommodate variable
returns to scale technologies. Since the Hicks-Moorsteen index is
characterized by input and output efficiency measures and the Malm-
quist productivity index is expressed by distance functions, both these
methods ignore byproducts in production. Thus, these indices are

insufficient to measure green productivity. Chung et al. (1997) define
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the ML index based on the directional distance function (DDF) to bet-
ter treat pollution that inevitably accompanies the production of good
outputs. This index is further discussed and developed at the theoreti-
cal and empirical levels (see, e.g., Cao et al., 2020; Fare et al., 2001;
Kumar, 2006; Oh, 2010).

The second category is difference-based indicators. The first cat-
egory of indices has some inevitable defects, like zero observations
are hard to deal with, as these indices are independent of change in
origin (Chambers, 2002). Chambers (2002) proposes the LPI based on
DDF, a translation measure rather than a radial presentation. Many
scholars have further discussed and improved this indicator. For
instance, Briec and Kerstens (2009) use this indicator to explore the
infeasibilities of the DDF and their solution is to report any infeasibil-
ity that occurs. Balk et al. (2008) show how to convert the LPI to the
Malmquist productivity index by selecting a particular directional vec-
tor for the DDF. Additionally, the LPI has been extensively employed
in various areas of empirical study, like manufacturing (Cao
et al, 2020), banking (Fukuyama & Weber, 2017), healthcare
(Boussemart et al., 2020), and so forth. However, it does not consist
entirely of the difference between total output and input which is
not “additively complete” and it cannot be disaggregated into the
parts of output and input growth (Ang & Kerstens, 2017). Briec and
Kerstens (2004) define an additively complete LHM indicator. Unlike
the ratio-based indices, this difference-based indicator can overcome
the problem of uncertainty of indices. Besides, it is an additively
complete method that can capture the changes in inputs and outputs,
better than those incomplete measures as these may cause biased
results (Shen et al., 2019).

Compared to other indicators and indices, there is less literature
studying the LHM productivity indicator and employing it to measure
efficiency changes. Additionally, the majority of these LHM articles
are all of recent date. Shen et al. (2019) employ a decomposable LHM
productivity indicator to explore the productivity change in China's
agriculture. These authors find that the rise in agricultural productivity
in China is mostly the result of technological progress. Furthermore,
these authors come to the conclusion that both productivity growth
rates and the relative significance of their constituent parts vary over
time and across provinces. Ang and Kerstens (2017) explore produc-
tivity growth in U.S. agriculture by adopting the LHM indicator. The
findings indicate that productivity has significantly increased over
time, and this growth is attributable to a rise in output rather than a
drop in input, with technical change serving as the primary motivating
factor. Abad and Ravelojaona (2022) define the environmental disag-
gregated Hicks-Moorsteen index and LHM productivity indicator.
Note that the application of these TFP indices does not require main-
taining the traditional convexity assumption.

Although there are many ways to calculate TFP, few studies are
comparing LHM indicators with other productivity indicators and indi-
ces, which deserves further exploration. Briec and Kerstens (2004)
analyze the relationship between the Hicks-Moorsteen productivity
index and the LHM indicator and discover that the logarithm of the
former one is approximately equal to the latter. Kerstens et al. (2018)

discuss the difference between the LHM and LPIs. These authors

suggest that these two indicators can be used to study TFP and mea-
sure local technical change, respectively.

The relation between production inputs and outputs can be calcu-
lated using production technology. In recent years, there have been
several pollution-generating technologies, including the weak
G-disposability, the by-production model, and the natural and mana-
gerial disposability concepts (Dakpo et al., 2016). The first technology
cannot describe how pollution is generated, so it is hard to make
trade-offs between different types of outputs. Dakpo et al. (2016)
point out that natural and managerial disposability cannot present
pollution-generating technologies properly. Compared to other
methods, the by-production model is consistent with the MBPs
(Fersund, 2018; Shen et al, 2021), which can better model the
pollution-generating technologies and capture the relation between
various types of inputs and outputs. It is superior to other approaches
from this perspective.

Distance functions are widely used to obtain production technol-
ogies. Shephard (1970) distinguishes between input- and output-
oriented distance functions. Bad outputs are considered by Fare et al.
(1993) within the context of the Shepherdian distance function. This
kind of distance function has been further deepened and developed in
subsequent studies (Coggins & Swinton, 1996; Hailu &
Veeman, 2000). It posits that outputs change in the same ratio for
both good and bad outputs, inconsistent with the purpose of green
growth, which is to improve good outputs and decrease bad ones.
Directional distance functions allow good outputs to expand while
reducing bad outputs and inputs: this is getting more attention gradu-
ally (Chambers et al., 1996). For example, Watanabe and Tanaka
(2007) adopt DDF to explore and compare the efficiency of Chinese
industry. They assert that the research will produce biased conclu-
sions if the bad outputs are not taken into account. Therefore, the
efficiency analysis should take into account both good outputs and
their byproducts. Zhang and Wei (2015) use non-radial DDF to gauge
the environmental performance of China's transportation industry.
They discover that the total factor carbon emissions grew by 6.2%
between 2000 and 2012, primarily due to technological innovation.
Feng and Serletis (2014) develop a primal Divisia-type productivity
index based on DDF to estimate the efficiency change in some OECD
countries. They assert that if bad outputs are not taken into account,
the efficiency assessment may be skewed, which is consistent with
the viewpoint of Watanabe and Tanaka (2007).

Two kinds of methods, parametric and nonparametric ones, are
often employed to calculate the distance functions. The parametric
method uses translog, quadratic, and other pre-defined functional
forms. The specific functional form depends on the selection of dis-
tance functions. For instance, the Shepard distance function is fre-
quently expressed using the translog functional form, whereas the
DDF can be described using the quadratic. Then, the distance func-
tions can be calculated using stochastic frontier analysis (SFA) (Zhou
et al., 2014). For example, Safiullah (2021) examines the financial sta-
bility efficiency of Islamic and conventional banks using the stochastic
meta-frontier stability function. Wu et al. (2022) use SFA to calculate
each region's TFP levels in China. The nonparametric method is more
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flexible than the parametric method since it does not require pre-
defined functional forms. Charnes et al. (1978) develop a typical non-
parametric method, which is referred to as data envelopment analysis
(DEA). In comparison to some methods, it makes fewer assumptions
and can handle the relationship between multiple inputs and outputs
better. This approach has been widely employed in subsequent stud-
ies measuring TFP (see, e.g., Wang et al., 2013; Balezentis et al., 2021;
Shen et al., 2019). The literature using nonconvex production technol-
ogy, also known as the free disposal hull (FDH) model, to study pro-
ductivity is much less widespread than DEA.

Nonconvex technologies can occur for a wide variety of reasons
(see Mas-Colell (1987) for an overview). First, inputs and outputs can
be indivisible and cannot be varied continuously. Second, setup times
and setup costs due to indivisibilities in initiating production may be
substantial depending on the nature of technologies. Third, increasing
returns to scale, due to indivisibilities, learning, or organizational
advantages in the internal structure of production, lead to nonconvex-
ities in production. Fourth, negative externalities can also induce non-
convexities. Fifth, economies of specialization (e.g., Romer, 1990, on
nonrival inputs in the new growth theory) are another source of non-
convexity. Other sources for nonconvexities exist.

Convexity is maintained in economics and part of operations
research because of the assumption of perfect time divisibility. For
instance, Shephard (1970, p. 15) states clearly that convexity is “valid
for time divisibly-operable technologies”. But, if time is only imper-
fectly divisible, then nonconvexities may well substantially matter for
the analysis of production and, for example, cost functions alike. Yuan
et al. (2021) analyze the environmental and economic efficiency of
the Belt and Road countries using DEA and FDH models, discovering
the outliers have a more significant effect on the former than the lat-
ter. Balezentis et al. (2023) implement an additive LHM productivity
indicator and report even opposite signs between convex and non-
convex technologies for a substantial part of the sample in each of the
years in their panel. Thus, nonconvexity may matter substantially for
empirical analysis, and therefore, we explicitly test between convex
and nonconvex technologies.

Much literature discusses TFP growth in different countries or
regions. The research range in the literature includes Europe
(Balezentis et al., 2021), OECD (Cui et al., 2022), the Belt and Road
(Yuan et al., 2021), and some individual countries, like China (Shen
et al., 2019), United States (Ang & Kerstens, 2017), and Australia (Li &
Liu, 2010). The research estimating TFP globally is more limited than
the regional and national studies. Krtiger (2003) adopts the Malmquist
index to explore the TFP of 87 countries from 1960 to 1990 and dis-
covers that the pace of capital accumulation influences productivity
significantly in different regions worldwide. Espoir and Ngepah (2021)
investigate the correlation between income inequality and TFP in
88 countries, concluding that compared to developed nations, income
disparity presents a higher and more significant influence on the TFP
in developing nations.

Some literature explores the correlation between the energy
structure and TFP, and the results present differences. Rath et al.

(2019) reveal that renewable energy consumption and fossil fuel have

an opposite impact on TFP growth. The effect of the former one is
positive, while the latter one is negative. Xie et al. (2021) claim that
the percentage of renewable energy consumption, which represents
the energy transition, exhibits an inverse “N” nonlinear relationship
with green TFP. The connection between the energy transition and
TFP has been discussed in some literature, but the relationship
between the consumption of fossil fuels and green growth has
received less attention. Since the green economy is the key direction
of future development, greater focus should be given to the impact of
the energy revolution.

To sum up, a lot of literature discusses the measurement of TFP
theoretically. Besides, there are some empirical studies corresponding
to each method. However, comparisons among different models in
empirical research are rare and few scholars have considered the
worldwide TFP gains. The correlation between the transformation of
energy structure and green TFP deserves further consideration. Given
that the green economy is gaining more and more attention, this con-
tribution measures and compares the GTFP using the Malmquist-
Luenberger index, LHM, and Malmquist indicators under convex and
nonconvex by-production technologies based on a metafrontier
approach. Then, it tests the correlation between the share of fossil
fuel energy consumption and GTFP and determines which model is

the most robust.

3 | MATERIALS AND METHODS

3.1 | The calculation of GTFP growth

3.1.1 | Production technology and DDF

Production technology, also referred to as benchmark performance, is
often expressed by a production function, which specifies the highest
output that a certain vector of inputs can achieve. The by-production
model, proposed by Murty and Russell (2002) and Murty et al. (2012),
can introduce the set of production possibilities constraints by eco-
nomic axioms. In this model, there are two different types of inputs,
nonpolluting inputs x¢ and polluting inputs x?, and two kinds of out-
puts, desirable outputs y and undesirable outputs z. Polluting inputs
result in externalities during production while nonpolluting inputs do
not contaminate the environment. As a result, undesirable outputs,
also known as by-products, are always produced alongside desirable
outputs during the production process. Among different inputs and
outputs, there is a relationship that polluting inputs and nonpolluting
inputs that can contribute to desirable outputs, while only polluting
inputs produce undesirable outputs. Two sub-technologies T, and T,
simulate the above relationship as T, describes the process in that all
inputs are transformed into desirable outputs and T, reflects how pol-
luting inputs produce undesirable outputs. The BP model, which com-
bines these two sub-technologies, solves the limitation of traditional
efficiency analysis in which only the desirable output is taken into
account by including externalities in the production. The specific form

of the BP technology is as follows:
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TBP = T1 n T2
_ {(XC,Xd,y,Z) c R$+D+M+J . (chxd) can producey;x9 can generatez}
To={(x%y) e REPMIF (x,x,y) <0}
T, = {(4.2) € R g(zx) <0}
(1)

where f(-) and g(-) are two continuously differentiable functions of
inputs and outputs. The dimensions C, D, M, and J represent the quan-
tity of nonpolluting inputs, polluting inputs, desirable outputs, and
undesirable outputs, which equal 2, 1, 1, and 1 in the empirical part of
this contribution, respectively. T, set satisfies the free-disposability
properties, while the costly disposability property is imposed on T,
(Murty et al., 2012), which needs the substitution of inputs from the
production of desirable outputs to reduce the amount of already-
produced byproducts (Ray et al., 2018). There is joint disposability
between polluting inputs and bad outputs (Balezentis et al., 2021).
Without reducing polluting inputs, undesirable outputs cannot be
reduced (Shen et al., 2021).

Conventional literature asserts that good and bad outputs are
positively correlated. To model this positive relationship, these stud-
ies treat by-products as inputs on a free disposability basis or outputs
based on the weak disposability and null-jointness properties (Murty
et al, 2012). According to the weak disposability assumption, bad
outputs can only be decreased by raising inputs or lowering good
outputs (Ray et al., 2018). Besides, under the null-jointness condition,
two kinds of outputs must be decreased proportionally. Thus, good
output is inseparable from the generation of by-products. Desirable
outputs are also O if the undesirable outputs are, reflecting that by-
products are difficult to dispose off completely (Balezentis
et al,, 2021). Under the methodologies mentioned above, some errors
in the trade-offs of inputs and outputs could happen that are incon-
sistent with the MBPs. BP technology assumes costly disposability in
polluting inputs and pollution, allowing inefficiencies in the produc-
tion process, which is congruent with the MBP. Based on the above
discussion, the BP method is selected to introduce bad outputs into
our study.

Besides, convex and nonconvex production technologies are
adopted in this contribution. The point in the production frontier must
be a real country for the FDH technology, a nonconvex technology
introduced by Deprins et al. (1984), whereas it is not necessarily real
under the convex DEA approach. Due to the additivity and divisibility
of the DEA method, the FDH method is a more general model drop-
ping the convexity assumption with estimators consistent with convex
and nonconvex production sets. In some cases, some decision-making
units (DMUs) are in the frontier under nonconvex technology, but
there is still some room for improvement in the convex technology.
Thus, the inefficiency scores in the FDH are usually lower than those
in the DEA method.

The production technology can be expressed by the DDF and this
DDF can also be understood as an inefficiency score (Chambers
et al., 1996), which can quantify the discrepancy between observed
values and the production frontier. The points on the production fron-

tier can be regarded as a “model” for other DMUs. Therefore, the

calculated distance can indicate a particular path for improvement for
the points that are not on the production frontier. The DDF is flexible
and it contains several types, like input-oriented, output-oriented, and
input/output-oriented DDFs. These generalized DDFs, which are in
the period p € {t,t + 1} while the production technology exists in the
period q € {t,t+ 1}, are defined as follows, respectively:

DI(x,y",2°;92,0,0) = max{s € R: (x—5g2,y",2°) € T(a)},  (2)

oo
D7 (x”,y",z”;O,g"y’,g’Z’) = max{é)e R: (xp,y+9g’y’,zfegf) c T(q)}, (3)

D? (x",y",z";gﬁ,gﬁ,gf) = max{&,(S €ER: (x” — g,y +0g),72° — Hg’z’) € T(q)},
(4)

where gy, g,, and g, describe the directional vectors of inputs, good,
and bad outputs, respectively. § and 6 measure the maximum
optimization of inputs and outputs. (p,q) € {t,t+1} x {t,t+1} allows
the estimation of productivity change in mixed periods. In practice,
we choose the evaluated observations as the directional vectors. This
not only guarantees a proportional interpretation of the DDF: see
Briec (1997). Furthermore, this proportional distance function (PDF)
also guarantees that productivity measurement satisfies a generalized
commensurability property, which is not the case under a DDF with
some general direction vector: see Briec et al. (2022) for details.

3.1.2 | Luenberger-Hicks-Moorsteen, LPIs, and
Malmquist-Luenberger index

While the above distance functions can calculate the inefficiency
scores, some productivity indicators or indices can help us change
efficiency problems into productivity analysis. This contribution
adopts the LHM, LPI, and ML index to study productivity growth.
We explore the difference between the three ways to express
productivity to have a better understanding of productivity
measurement.

The LHM productivity indicator is considered firstly, described as
the difference between the input and output indicators. To prevent
picking a base period at random, t and t+1 periods are selected.
There are S DMUs. The following expression is an LHM indicator for
the base period t:

e {Dt (Xﬁ,y§,22;0,g§,g§) _pt (xg,yg“,zg“;0,g§“,g§+1)]
—[D"(x*v5 24 8,71,0,0) — D (x4, 24:85,0,0)
(3)

where the first and second production technologies in the brackets
indicate the distance along the output direction to the frontier, while
the third and fourth terms denote the distances from the production
frontier along the input direction. Similarly, for the base period t+1,

the LHM indicator is expressed as follows:

35USD17 SUOWIWIOD SAIER.D (D! ddke 33 Ag pauseA0B ae s3I YO 88N JO S3IN. 0} Aeiq 1 3Ul|UO A3]IA UO (SUOIPUOD-PUE-SLLBIW0D A3 1M Afe.ql1 U1 |UO//SdNY) SUOIIPUOD PUe Swiid L a1 39S *[£202/TT/E0] U0 Akeiqiauliuo 3|1 ‘3111718p anbijoyed 91seAIuN AQ GS6€9PW/Z00T 0T/I0P/LI0d A8 | 1M ALeld 1[BUI|UO//SUNY WO1) papeojumoq ‘g ‘€202 ‘897 T660T



2 | WILEY

DENG ET AL

L [Dt+1 <x§*1,y§,z§;0,g‘y,g§> _pt+t (XEH,YEH,ZEH;O, g;ﬂ,g;ﬂ)}
—[D (Lt 2t g ,0,0) — DY (xt vt 2t g, 0,0)]

(6)

To avoid an arbitrary base period, it is custom to take the arith-

metic average value of LHM indicators for periods t and t + 1:

LHMH = % (LHM! + LHM®*1)

[0'(x.v: 20,88 ) —DF (vi 2 20050, 811 )
1| —[D (x*vi 25:8,,0,0) — D' (xt.v4,24: 1. 0,0)]
4 [Dzn (X§+1,Y§,Z§:0,g‘y,g§) _pt+t (xﬁ“,y§+1,z§“;0,g‘y“,g§“)}

[0y 2 1,0,0) - D (K yE 2t L 0,0)]

2

7)

The change in productivity from the previous year can be shown
in the rise or fall of TFP. Productivity increases when the TFP growth
rate exceeds O; it decreases when it is less than O. For the LPI based
on differences, this interpretation likewise holds. The LPI allows
inputs and outputs to be optimized simultaneously and it is widely

used. It is defined as follows:

t(yt yt #t-ot of of t (g t+1 yt+1 St+1l.gt+1 Gt+1 ot+1

1 D(xs,ys,zs,gx,gy,gz)—D(xs DA a4 )

i t+1 (ot yt st.ot ot of t+1 t+1 yt+1 Ht+1l. gt+1 gt+1 ot+1
+D (X ve 2558808, ) — D (vt zt g el g

(8)

LP’t,t+1 —

Chung et al. (1997) propose an ML productivity index that asym-
metrically treats good and bad outputs (Kumar, 2006). However, it is
noncircular and may have infeasible issues with linear programming
when calculating the cross-period DDF (Fare et al., 2001; Oh, 2010).
Different from LHM and LPIs, for this index, if the value is larger
than 1, then there are gains in productivity. If it is less than 1, then
productivity declines. The ML productivity index has the following

form:

14D (xﬁ,yﬁ,zﬁ;gﬁ,g;gﬁ)

ML tt+1
t + +1. gt+ + +
1 D <Xt+1,yt 1,Zt 1’gt 1'g§/ 1’gt 1)

1 Dt+1 t yt stegt ot of 12
+ Xyt 2t gt gl

t+1 .
14D (Xﬁﬂ, y§“,Z§+1,gﬁ“,gﬁ“,gﬁl)

The details on the calculation of the PDFs are presented in

Appendix A.

3.1.3 | Estimation strategy: Inspired by the
metafrontier method

Productivity varies significantly between 129 nations due to varia-

tions in the economies, environments, institutional settings, and other

factors. If only one production technology is used, some deviations
may occur. For instance, it is difficult to gauge efficiency in some
nations because they are too far from the production frontier. Thus,
this contribution adopts the metafrontier method which is an unrest-
ricted technology set following O'Donnell et al., 2008. The samples
are divided into three groups, each containing 43 countries, based on
average GDP levels during 2000-2019. The production technologies
are estimated using three group frontiers. The contemporaneous
production frontier of the group h in the period t is described as
Th= {(x,x4,yt,2t) : (x°,x?) can produce y';x4 can generate z'},where
t=1,..,T. The intertemporal production technology of the group h is
expressed as T, =T+ UT2U...UT]. The global production technology
set is described as T =T} UT,U...UT},, which is an envelope curve
of group frontiers and consists of all observations made across all
groups and periods (O'Donnell et al. (2008)). The union operator does
not preserve convexity results (Kerstens et al., 2019). Thus, the meta-
frontier of convex group technologies is nonconvex, and also the
metafrontier of nonconvex group technologies is nonconvex (in a
different way from the preceding one).

Figure 1 presents the metafrontier method under both DEA and
FDH models. In the nonconvex group technologies, the technologies
T4, T5, and T, are represented by the horizontal axis and the polyline
A1B1C1D1E1F1G1, A;BoCoDoEoF2Gy, and A3B3zC3D3E3F3Ga, respec-
tively. The metafrontier of three group technologies is the union of
three group technologies and consists of all points between the poly-
line A1B1HB3IB3C3D3JD,E,F,KF3G3 and the horizontal axis. Convex
group frontiers T4, T5, and T5 are shown by the horizontal axis and
the polyline A1B1C1D1E1, A2BoC,D5E5, and A3B3C3D3E3, respectively.
According to Jin et al. (2020), some points can only be reached under
the convexification strategy, like the projection point R’i of Rq. If we
do not assume the convexity of metafrontier, the point R’i is
infeasible. In general, the convexification method of assuming a
convex metaset yields erroneous results (see Jin et al., 2020; Kerstens
et al, 2019). Thus, the metafrontier of Tj, T, and T5 should be
the region between the polyline A1B1FB;C,GB3C3D3E3 and the
horizontal axis.

In line with our research interest, in the remainder, we estimate
separate group technologies using convex and nonconvex specifica-
tions. But, we are not interested as such in the estimation of the
nonconvex metatechnology. This simply serves as a conceptual
framework underscoring the importance of testing for convexity and
nonconvexity at the group technology level.

3.2 | Regression model

Given that the fixed-effect regression model is more robust because it
is always consistent no matter whether invariant omitted estimators
are correlated with error terms, this contribution uses a fixed-effect
model to explore the correlation between the share of fossil fuel
energy consumption and green TFP. To control individual and time
heterogeneity, this contribution chooses a two-way fixed effect

model. The regression model is specified as follows:
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FIGURE 1 (a) Nonconvex and (b) convex group technologies and nonconvex metatechnologies.

In(CGTFP;t) = aIn(fossilit) + ¥ In(Xit) + 7i + ¢ + €it (10)

where CGTFP;; is the cumulative green productivity. The cumulative
green TFP has some small values that are sometimes negative. Thus,
we add two to each GTFP value and then take the logarithm. The
coefficient a represents the impact of the fossil fuel energy consump-
tion share on the cumulative GTFP, and y is the effect of control vari-
ables on the cumulative GTFP. fossil; is the share of fossil fuel energy
consumption. X;; consists of a set of control variables, containing GDP
per capita pgdp;;, industrial structure secind;, trade openness trade;,
population density deny;, foreign direct investment fdi;, and govern-
ment intervention gov;. 7; is the country fixed effect, y; is the year
fixed effect, and it is a random error term. To avoid problems when

taking logarithms, we add two to all variables before taking

logarithms.
3.3 | Variables
3.3.1 | Explained variable

The calculation of GTFP consists of four parts—nonpolluting input,
polluting input, desirable output, and undesirable output. In this study,
the nonpolluting inputs contain capital stock and labor force. Energy
consumption is considered a type of polluting input. They all contrib-
ute to the creation of GDP, which is a type of good output. The
emission of carbon dioxide is regarded as an undesirable output. The

detailed definition and descriptive statistics are presented in Table 1.

3.3.2 | The core explanatory variable

The core explanatory variable is the use of fossil fuel energy, mea-

sured as the share of fossil fuel energy consumption. Currently, the

energy structure is accelerating to diversify, clean, and low-carbon,
and developing toward high efficiency and integration. In this transi-
tion process, the share of renewable energy will increase progres-
sively, gradually replacing fossil energy in the energy source.
However, fossil energy has been the main energy source for many
years, and the prospects for achieving the transition are grim. It is
essential for us to study the specific effect between the use of fossil

energy and green growth.

3.3.3 | Control variables

Following Xie et al. (2021), Yan et al. (2020), and Rath et al. (2019),
this contribution selects several control variables. The first control
variable is GDP per capita (PGDP), measured as constant 2015 US$. A
country can afford to pursue a green transition more when PGDP
rises in the area. The second control variable is industrial structure
(SECIND), with the definition being as the share of industry value
added including construction to GDP. Although the development of
the industry can drive economic growth, it also consumes a lot of
resources and causes environmental pollution, influencing green
growth. The third control variable is trade openness (TRADE), the sum
of imports and exports of goods and services divided by the GDP. On
the one hand, the “Pollution haven” argument claims that trade open-
ness and pollution are positively correlated because enterprises with
major pollution problems frequently invest in regions with lax environ-
mental regulations. This lowers costs but worsens pollution levels. On
the other hand, the development of green trade will also promote
green growth, reducing environmental pollution and improving eco-
nomic efficiency. The fourth factor is population density (DEN), mea-
sured as the number of people per square kilometer of land area.
More human capital can help the economy thrive; however, when
population density increases, resource waste and environmental dete-
rioration problems worsen. The fifth control variable is foreign direct
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investment (FDI), defined as the total foreign investment inflows as a
percentage of GDP. The country's opening to the outside can improve
economic efficiency and facilitate financial inflows, but it also inexora-
bly results in pollution issues (Cao et al., 2020). The final control vari-
able is government intervention (GOV), which is expressed as the
ratio of government fiscal expenditure to GDP. Government interven-
tion can compensate for the market failure that exists in the area of
green development. Government investment can not only promote
the transformation of highly polluting and energy-consuming enter-
prises, but it also provides policy support for the development of envi-
ronmentally friendly enterprises. Consequently, the government is
crucial in advancing green development (Xie et al., 2020, 2021).

3.4 | Datasources

This study uses panel data of global 129 countries from 2000 to
2019. Countries are categorized into high, middle, and low GDP
groups based on their average GDP levels during the sample
period. There are 43 high-GDP countries, such as Canada,
China,
there are 43 middle-income countries like Denmark, Finland,

Germany, Australia, France, and India. Furthermore,
New Zealand, Sudan, Syria, and Ireland. Finally, low GDP countries
contain 43 countries, including Mongolia, Nepal, Bolivia, Zambia,
and Zimbabwe. Detailed information on these three groups is pre-

sented in Table 2.

TABLE 1 Descriptive statistics for inputs and outputs.
Indicator Variable  Definition N Mean SD Min Max
Nonpolluting K Capital stock at current PPPs (in mil. 2017US$) 2580 293249 8270.45 16.42 101,544.20
input L Number of persons engaged (in millions) 2580 22.34 80.38 014 79931
Polluting input E Energy use (100 tons of oil equivalent) 2580 926.13 3078.84 6.76 33,691.07
Desirable output GDP Output-side real GDP at current PPPs (in mil. 2017US$) 2580 714.32 2096.14 7.02 20,566.03
Undesirable CO, Total CO, emissions (thousand metric tons of CO, 2580 225.60 864.68 0.66 10,416.59
output excluding land-use change and forestry)
TABLE 2 High, middle, and low GDP groups of 129 countries.
Low GDP Middle GDP High GDP
Costa Rica Mozambique Chile Sudan United States Egypt
Cameroon Nicaragua Kazakhstan Slovakia China Argentina
Paraguay Albania Czech Dominican India Pakistan
Nepal Armenia Greece Kenya Japan Nigeria
Slovenia Gabon Venezuela Oman Germany South Africa
Bolivia North Macedonia Portugal Ethiopia Russia United Arab Emirates
Uruguay Cyprus Ireland Bulgaria France Philippines
Democratic Republic of Congo Mongolia Peru Tunisia Brazil Malaysia
Latvia Kyrgyzstan Denmark Ghana United Kingdom Colombia
Cambodia Mauritius Israel Azerbaijan Italy Switzerland
Senegal Moldova Uzbekistan Guatemala Mexico Algeria
Zambia Benin Finland Serbia Indonesia Belgium
Georgia Tajikistan Hungary Syrian South Korea Sweden
Honduras Jamaica Qatar Tanzania Canada Ukraine
Luxembourg Congo Morocco Croatia Spain Viet Nam
Trinidad and Tobago Haiti Kuwait Lebanon Turkey Bangladesh
Bosnia and Herzegovina Niger Sri Lanka Panama Saudi Arabia Austria
El Salvador Namibia Myanmar Ivory Coast Iran Norway
Zimbabwe Iceland Belarus Jordan Australia Romania
Estonia Malta New Zealand Yemen Thailand Singapore
Brunei Darussalam Togo Angola Lithuania Poland Iraq
Botswana Ecuador Netherlands

Note: Considering the huge differences in national input and output at different levels of GDP, countries in the high, middle, and low GDP groups are
ranked according to the average GDP level during 2000-2019 from the highest to the bottom.
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The data on labor force, capital stock, and GDP are collected from
Penn World Table 10.0. The data relevant to energy use, total CO,
emissions, the share of fossil fuel energy consumption, industry value
added, trade, PGDP, population density, and government intervention
are collected from the World Development Indicators of the World
Bank. Foreign direct investment is collected from the UNCTAD data-
base. Due to data availability issues, this contribution excludes eight
countries from the regression analysis (Ivory Coast, Ethiopia, Kuwait,

Myanmar, Trinidad and Tobago, Venezuela, Yemen, and Zambia).

4 | RESULTS

4.1 | Ratio of fossil fuel energy consumption in
different regions

Figure 2 represents the ratio of fossil fuel energy consumption in total
energy use in different regions from 2000 to 2019. It can be seen that
the proportion and trend of fossil energy among different regions are
quite different. In terms of proportion, the proportion of fossil energy
in the Middle East and North Africa is the highest (exceeding 90%).
This is followed by North America, East Asia and Pacific, Europe and
Central Asia, and Latin America and the Caribbean. There is little dif-
ference in the proportion of fossil energy in these areas, which is all
situated in the range of 65%-85%. There is a certain gap between
South Asia and Sub-Saharan Africa and other regions in the propor-
tion of fossil energy. Sub-Saharan Africa has the lowest proportion of

fossil energy, which is situated below 40%. The share of fossil energy

100

in South Asia increases slowly before 2013 (it is below 54%). After
2013, it increases rapidly, reaching the highest point of 66% in 2019.
The proportion of fossil energy in all countries together has not
changed much. It has even grown a bit from 67% in 2000 to 71% in
2019.

These results reflect a large gap between the relatively high pro-
portion of fossil energy in economically developed regions or major
producers of fossil energy and the relatively low proportion of fossil
fuels in economically backward regions. Economically backward coun-
tries still urgently need to address the issue of economic develop-
ment, and the proportion of fossil energy still may have a lot of room
for growth. Regarding the trend, the proportion of fossil energy shows
a downward trend in the Middle East and North Africa, North
America, and Europe and Central Asia, and an upward trend in the
other regions, especially in South Asia and Sub-Saharan Africa. The
proportion of fossil energy in all countries is on the rise.

This phenomenon supports the conclusions of Zou et al. (2016).
These authors discover that while demand from emerging economies
in the Asia-Pacific region is growing quickly, it is stable in the
United States, Europe, and other developed nations. Fossil energy
consumption shows a downward trend in North America and Europe.
This reflects that economically developed areas and major fossil
energy-producing areas are increasingly pursuing green development
and gradually replacing fossil energy with renewable energy. How-
ever, economically underdeveloped countries mainly pursue rapid
economic development and cannot adjust their industrial structure
and develop clean energy in the short term. Fossil energy is still the

most important supply for industrial development.
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FIGURE 2 Ratio of fossil fuel
energy consumption in total energy
use in different regions (2000-2019).
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4.2 | GTFP growth using the LHM, LPIs, and ML
index under different production technologies

Table 3 presents the descriptive statistics of green productivity based
on the three group technologies. First, the means of GTFP growth of
all indicators and index under convex and nonconvex technologies
indicate positive GTFP growth, except for the decline in the LHM indi-
cator under nonconvex technology. Therefore, the LHM productivity
indicator under different technologies seems significantly different
from the other indicators. The LHM indicator has a higher absolute
value than its LPI counterpart, which is in line with Kerstens et al.
(2018) and Sala-Garrido et al. (2018). This might be as a result of the
incomplete way in which the Luenberger indicator measures TFP. Sec-
ond, the degree of dispersion of the ML index under FDH technology
is the largest, while the DEA model of the ML index shows the slight-
est fluctuations. The LPI's standard deviation is lower than its LHM
indicator counterpart, which confirms the finding of Kerstens et al.
(2018). Third, in the difference-based indicator, the LHM TFP indica-
tor has minimum values of —0.794 and —0.620 under the DEA and
FDH models, respectively, which are smaller than those in the corre-
sponding models of the LPl. Moreover, the maximum values under
the LHM indicator have a larger difference than that of LPI productiv-
ity under different technologies. In the ratio-based ML index, the dif-
ference in GTFP growth under the FDH model is greater than that of
the DEA model, with larger maximum and smaller minimum values.
Finally, the minimum and maximum values of the LPI indicator under
convex technology and the LHM productivity indicator under both
convex and nonconvex technologies all occur in Venezuela in 2015
and 2017, respectively, showing a significant variation in Venezuela's
productivity throughout time. Under the LPI indicator with nonconvex
technology and ML index with convex and nonconvex technologies,
Yemen has the smallest green growth in 2015, while the maximum
occurs in lIrag in 2006, Venezuela in 2017, and India in 2013,
respectively.

The cumulative GTFP under three group technologies using dif-
ferent productivity models is presented in Figure 3. First, from 2000

TABLE 3 Descriptive statistics of GTFP growth using the
Luenberger-Hicks-Moorsteen, Luenberger productivity indicators,
and Malmquist-Luenberger index under three group technologies and
convexity and nonconvexity.

Variable Obs Mean SD Min Max

LHM_DEA 2,451 0.011 0.085 -0.794 0.544
LHM_FDH 2,451 —-0.021 0.083 —0.620 0.913
LPI_DEA 2,451 0.002 0.047 —0.507 0.539
LPI_FDH 2,451 0.001 0.065 —0.566 0.578
ML_DEA 2,451 1.002 0.044 0.606 1.501
ML-FDH 2,451 1.006 0.106 0.462 3.567

Note: The GTFP of Irag in 2005 using ML index under nonconvex has no
value because the inefficiency score under the production technology of
the t period and the output and output-oriented DDFs in the t + 1 period
is too small. Thus, we take this value to be 1.

to 2019, the cumulative GTFP under nonconvex technology with ML
index shows a significant rise and hits a high of roughly 1.5 in 2019,
which is much higher than other models. There is a steady increase in
the LHM indicator under the DEA model, ML index under DEA tech-
nology, and LPI under convex and nonconvex technologies over time.
On the contrary, the LHM indicator under the FDH model experi-
ences a downward trend. Thus, the cumulative GTFP of the LHM TFP
indicator shows different trends across various technologies. Gener-
ally, the trend of green growth in these countries cannot be clearly
determined. This result is similar to Kerstens et al. (2018). They dis-
cover the only indicator with a downward trend to be the LPI using a
nonconvex-VRS technology. Besides, the cumulative GTFP using the
LHM indicator under different technologies shows the largest differ-
ence, followed by the ML index. The LPI presents a relatively small
difference under DEA and FDH models. In addition, a slight drop of
cumulative GTFP occurs in 2008 in all models, reflecting that the
global economic recession has caused damage to green growth. Wang
and Feng (2021) also find a decline in green growth during the finan-
cial crisis. The macroeconomic fluctuation is closely related to the
green productivity of various countries.

Table 4 displays the average GTFP growth over time for all
nations based on different group technologies. First, the average
GTFP growth rates for the different methods present some similar
results. The years 2004-2005 and 2016-2017 experience positive
GTFP growth under all indicators and index, while the years 2000-
2001, 2008-2009, and 2013-2014 witness significant negative
growth rates of GTFP in all models. All models' estimates of green
productivity over these years are consistent. Second, the signs of dif-
ferent indicators and index under convex and nonconvex production
technologies also display some differences. For example, in 2002-
2003, the LHM indicator under convex technology and the ML index
under nonconvex technology are positive, while the results of the
remaining four models are negative. Only the GTFP growth in the
nonconvex model for the LHM indicator is negative in 2005-2006,
while other models show a positive growth trend. This somewhat sup-
ports the results of Kerstens et al. (2018), as they find that the results
by Luenberger and LHM productivity indicators display considerable
differences, although the cumulative growth paths seem quite similar.
Third, the green TFP growth of the LHM indicator under the noncon-
vex technology is negative in most years but positive in only 2 years.
There are 14, 10, 9, 10, and 14 years of positive GTFP growth with
the LHM indicator under convex technology, LPl under DEA and FDH
models, and ML index under both convex and nonconvex technolo-
gies, respectively. Compared to the LHM indicator and ML index, the
green productivity growth rates determined by the LPI are more simi-
lar. Finally, among the LPI under convex and nonconvex models as
well as the ML index under nonconvex technology, the average GTFP
growth rates in 2004-2005 are the highest, whereas they are the
lowest in 2008-2009 in all models except for the LHM indicator
under nonconvex production technology.

Table 5 provides an illustration of the regional annual average
cumulative GTFP growth rates under three group technologies. First,

the overall annual green growth rates range from —2.31% to 2.37%,
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FIGURE 3 Cumulative GTFP with the Luenberger-Hicks-Moorsteen, Luenberger productivity indicators, and Malmquist-Luenberger index
under three group technologies and convexity and nonconvexity (2000-2019).

reflecting significant differences between the results of different indi-
cators and index under different technologies. The annual GTFP
growth rates also present similarities. Only the annual growth rates of
the LHM indicator under nonconvex technology are negative, while
other models show positive annual growth. Generally, there is an
upward trend in worldwide green productivity. Second, the annual
green growth rates in Sub-Saharan Africa are all negative, while other
regions experience different degrees of progress in green growth. The
sub-Saharan region has always lagged in terms of green productivity,
and this gap is getting worse with respect to other regions. The most
productive area varies under different approaches. But overall, Europe
and Central Asia are the area with the greatest growth momentum, as
their annual green growth rates are ranked first under most models.
This result partly supports the study of Wang and Feng (2021). These
authors discuss green growth of different income level countries and
conclude that the green productivity performance in the high-income
group and the upper middle-income group is better than that of the
lower middle-income group. This result demonstrates that green pro-
ductivity performs better in economically developed regions than it
does in economically underdeveloped regions. Third, the annual green
productivity growth rates of the LHM indicator under nonconvex

technology are all negative among all regions, while most calculated

by other approaches are positive. The green growth of East Asia and
Pacific (11.78%) and South Asia (19.2%) calculated by the ML index
under the nonconvex approach is far more than those calculated by
different approaches in other regions. The annual GTFP growth rates
determined by the ML index using nonconvex technology in various
regions vary more than those determined by other methods.

4.3 | Regression analysis

Table 6 provides the regression results of the LHM, LPIs, and ML
index under FDH and DEA models. The dependent variable is the log-
arithm of the cumulative productivity. The use of fossil energy can
pollute the environment and exacerbate climate change, failing to rec-
oncile the economy and environment well, which inhibits the TFP that
considers the undesirable outputs. Interestingly, different models pre-
sent some insightful results. Strong evidence of a negative correlation
between the fossil fuel energy consumption and productivity of the
LHM indicator under DEA and FDH models is found in the first and
second columns, respectively, which is in line with our assumption. It
also supports the findings of Danish and Ulucak (2020), Yan et al.
(2020), and Rath et al. (2019). Furthermore, the negative effect of the
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TABLE 4 Average GTFP growth for the Luenberger-Hicks-Moorsteen, Luenberger productivity indicators, and Malmquist-Luenberger index

under three group technologies and convexity and nonconvexity.

Luenberger-Hicks-Moorsteen

Year Convex Nonconvex
2000-2001 -0.0116 —0.0202
2001-2002 0.0107 —0.0083
2002-2003 0.0018 —0.0260
2003-2004 0.0200 —0.0174
2004-2005 0.0505 0.0014
2005-2006 0.0228 —0.0323
2006-2007 0.0198 —-0.0289
2007-2008 0.0135 —0.0455
2008-2009 —0.0353 —0.0445
2009-2010 0.0223 —0.0295
2010-2011 0.0538 —-0.0128
2011-2012 0.0093 —0.0165
2012-2013 -0.0131 —-0.0239
2013-2014 —0.0050 —0.0293
2014-2015 -0.0112 —-0.0216
2015-2016 0.0133 —0.0139
2016-2017 0.0315 0.0053
2017-2018 0.0102 —0.0126
2018-2019 0.0039 -0.0214

Luenberger Malmquist-Luenberger
Convex Nonconvex Convex Nonconvex
—0.0089 —-0.0075 0.9909 0.9933
0.0010 0.0029 1.0000 1.0051
—0.0035 —0.0023 0.9963 1.0012
0.0034 0.0110 1.0028 1.0141
0.0219 0.0299 1.0198 1.0519
0.0068 0.0042 1.0058 1.0035
0.0081 —-0.0021 1.0067 1.0030
—0.0033 —0.0128 0.9969 0.9900
—0.0198 —0.0234 0.9815 0.9760
0.0062 —0.0025 1.0058 1.0001
0.0219 0.0110 1.0219 1.0160
—0.0003 —0.0065 1.0000 0.9952
—0.0086 0.0024 0.9928 1.0234
—0.0048 -0.0177 0.9957 0.9813
—0.0092 —0.0023 0.9944 1.0043
0.0055 —0.0004 1.0059 1.0037
0.0128 0.0217 1.0118 1.0313
0.0046 0.0080 1.0045 1.0100
0.0000 0.0106 1.0001 1.0160

TABLE 5 Annual GTFP growth in different regions for the Luenberger-Hicks-Moorsteen, Luenberger productivity indicators, and
Malmgquist-Luenberger index three different group technologies and convexity and nonconvexity (%).

Luenberger-Hicks-Moorsteen

Region Convex Nonconvex
Sub-Saharan Africa —0.93 —4.32
Latin America & Caribbean 0.88 -2.71
East Asia & Pacific 1.12 -3.28
Europe & Central Asia 2.55 -0.15
Middle East & North Africa 1.05 -3.26
North America 0.34 —0.56
South Asia 0.59 —5.65
Overall 1.18 -2.31

consumption of fossil fuel on the LHM indicator under the FDH
model is greater than that under the DEA model. As for the LPI, the
share of fossil fuel energy use and the green growth of the economy
under the nonconvex technology are negatively correlated at a 1%
significance level. However, the contrary results occur under the DEA
model, inconsistent with the assumption. The LPI indicator under dif-
ferent production technologies presents contradictions. To some
extent, the accuracy and robustness of this model are questionable.

Likewise, the ML index shows similar results with the LPI indicator,

Luenberger Malmquist-Luenberger
Convex Nonconvex Convex Nonconvex
-0.94 —-0.52 -0.37 -1.29

0.43 0.83 0.74 -0.31

0.17 2.48 0.18 11.78

1.12 1.98 1.16 1.15
-1.11 1.47 -0.70 0.72

0.38 3.10 0.47 2.25

0.44 3.35 0.78 19.20

0.20 141 0.44 2.37

with positive and negative influences under DEA and FDH models,
respectively. Besides, the correlation between fossil fuel energy con-
sumption and the ML index is not significant. Generally speaking, the
LHM productivity indicator is the best with the most consistent
results, most in line with the actual situation, while the results calcu-
lated by the other two methods under convex and nonconvex models
present contradictory results. From the perspective of convex and
nonconvex technologies, the nonconvex specification consistently

obtains the right negative significant sign for each GTFP. However,
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TABLE 6 Regression results using
the Luenberger-Hicks-Moorsteen,

Regression models

Luenberger productivity indicators, and LHM_DEA
ey 1 000
and nonconvexity. (0.010)
Inpgdp 0.112***
(0.013)
Insecind —0.108***
(0.015)
Intrade —0.048***
(0.008)
Inden —0.180"**
(0.018)
Infdi —0.091***
(0.030)
Ingov 0.004
(0.012)
Constant 1.677***
(0.164)
Time FE Yes

Individual FE ~ Yes
Observations 2,420
R-squared 0.732

LHM_FDH LPI_DEA LPI_FDH ML_DEA ML_FDH
—0.052*** 0.003 —0.044*** 0.007 —-0.026
(0.011) (0.006) (0.008) (0.005) (0.018)
—0.045*** 0.053*** 0.029*** 0.059*** 0.014
(0.014) (0.008) (0.010) (0.006) (0.023)
—0.031* —0.025***  —-0.047***  -0.021***  —0.006
(0.016) (0.009) (0.012) (0.007) (0.026)
—0.069***  —0.034*** 0.010 —0.028*** 0.031**
(0.009) (0.005) (0.007) (0.004) (0.014)
-0.591**  -0.224**  -0.072**  -0.142***  —-0.076**
(0.021) (0.011) (0.015) (0.009) (0.033)
-0.132***  —0.050***  —0.088***  —0.047***  —0.093*
(0.033) (0.018) (0.025) (0.015) (0.053)
—0.095*** 0.007 —-0.012 —0.005 0.012
(0.014) (0.007) (0.010) (0.006) (0.022)
4.919*** 1.832*** 1.544** 1.401*** 1.355***
(0.185) (0.100) (0.137) (0.083) (0.295)
Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes
2,420 2,420 2,420 2,420 2,420
0.820 0.775 0.717 0.771 0.667

Note: Robust standard errors are in parentheses.
*p < .1, **p < .05, and ***p < .01.

also the right effect can be observed from the LHM productivity indi-
cator under a convex technology. The effect of LPlI and ML index
under a convex model both show opposite and insignificant effects.

Regarding the other control variables, productivity is found to
positively correlate with per capita GDP under most models. How-
ever, the LHM indicator under the FDH production technology shows
the opposite correlation. This is consistent with Yan et al. (2020), as
they state that low-income regions would have a larger development
potential for green growth. The percentage of value added by indus-
tries to GDP and the economy's green growth are negatively associ-
ated. Moreover, the negative effect of the LHM productivity indicator
under convex technology is larger than that of the LPI and ML index.
This negative effect differs from Yan et al. (2020): the latter find a
positive but insignificant relationship between industrial structure and
green productivity in China. This result illustrates the fact that mod-
ernizing and transforming industrial structures is a common trend that
might support sustainable growth.

The ratio of trade to GDP has a negative impact on productivity
under LHM-DEA, LHM-FDH, LPI-DEA, and ML-DEA methods, while a
positive impact is observed from LPI-FDH and ML-FDH models. This
effect is uncertain as the trade may bring pollution or promote the
transformation of economic structure and increase the region's com-
petitiveness. According to Cui et al. (2022), international trade is posi-
tively correlated with green growth in OECD countries, as it can

contribute more effectively to the flow of goods and the division of

labor. Yan et al. (2020) find that trade has a positive but insignificant
impact on the growth rate of green productivity. Rath et al. (2019)
conclude that trade openness contributes positively to TFP growth as
it can stimulate innovation.

There is an apparent negative relationship between population
density and green growth, with negative coefficients presented in all
models. Among the results, the population density contributes most
to the productivity measured by the LHM-FDH model. An increasing
population can bring adverse effects on the resources and environ-
ment, influencing green growth. This negative effect is supported by
the discovery of Xie et al. (2021).

Green growth and FDI are found to be inversely correlated.
Therefore, even while foreign investment will help the economies of
these countries grow, it is particularly detrimental to the environment
and inhibits overall green development. This finding somewhat con-
firms the study of Cao et al. (2020), which finds that FDI inhibits green
growth in low-pollution industries. However, according to Rath et al.
(2019), FDI is observed to contribute positively to the growth of TFP
with more technology being introduced.

Government intervention has a negative effect only on the GTFP
calculated by the LHM indicator under FDH technology. This may be
due to the fact that if the government gets too involved, it will exacer-
bate the mismatch of resources in the green industry and prevent the
rational flow of resources, thus inhibiting the development of the

green industry. This effect differs from Xie et al. (2020) and Xie et al.
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(2021) as these authors find government plays an active role in green
economic development among 27 EU member countries. Government
intervention has no significant effect on the ones calculated by other
models.

Note that the standard errors of the estimated regression coeffi-
cients are robust. In particular, we have been using the procedure

available in Stata to robustify the regression results.

5 | CONCLUSIONS

If an insufficient energy supply appears in an economy, it has to rely on
external energy imports. The stable development of the economy will
be impacted by energy prices. For example, the recent Russo-Ukraine
war has led to volatility in energy prices in Europe. Furthermore,
whether productivity indicators are consistent with the country's
energy structure can affect the measurement of green growth. Inspired
by the metafrontier approach, this contribution measures the green
productivity gains of 129 countries using the LHM, LPIs, and ML index
under both convex and nonconvex by-production models. Then, it tests
the robustness of different indicators and indices through a two-way
fixed effect regression model between the GTFP and the share of fossil
fuel energy consumption for 121 countries. The findings have provided
a deeper insight into the selection of models for measuring GTFP in
empirical analysis. The results gained from this study may assist in facil-
itating energy transition and sustainable development. We are now in a
position to summarize the main findings.

First, the results indicate that there are large differences in the
share and trend of fossil energy in different regions. Generally speak-
ing, the share of fossil energy in economically developed areas, such
as North America, Europe and Central Asia, and major energy-
producing countries, such as the Middle East and North Africa, is high
and is declining. Economically disadvantaged regions, such as South
Asia and Sub-Saharan Africa, have a smaller and rapidly increasing
share of fossil energy compared to other regions. This reflects that
economically developed regions and major fossil energy-producing
regions are increasingly seeking green development. However, eco-
nomically less developed countries are mainly focusing on rapid eco-
nomic development and fossil energy is apparently the most
important energy source for industrial development.

Second, GTFP calculated from various indicators and index pre-
sents significant differences, which is consistent with Kerstens et al.
(2018) and Sala-Garrido et al. (2018). The green productivity using the
LHM indicator under nonconvex group technologies presents oppo-
site results to other models. The annual growth rates of GTFP vary
between regions. There is an upward trend in worldwide green pro-
ductivity, except under LHM-FDH. The annual green growth rates in
Sub-Saharan Africa are all negative. Europe and Central Asia are the
most productive regions according to most models. Productivity
decline is closely related to poverty. Therefore, it is urgent for lagging
countries to increase productivity and escape poverty.

Third, fossil fuel energy inhibits green economic growth. Thus,

there is a need to strengthen and innovate energy regulation and

promote clean energy development. The regression model illustrates
that the LHM indicator is the most robust and consistent in the empir-
ical analysis since the LPI and ML indices results are contradictory
under convexity and nonconvexity. This result confirms the research
of Kerstens et al. (2018) that the LHM indicator is an optimal method
for measuring TFP, while the LPI does not maintain a TFP interpreta-
tion by approximation. Theoretically, the LHM indicator can solve the
problem that the ML index cannot handle values at or near O and the
problem that the LPI cannot be separated into output and input
growth (Ang & Kerstens, 2017; Balk et al., 2008; Shen et al., 2019).
Therefore, in theory, the LHM indicator is also the best measure of
TFP among the three methods. The empirical results present
consistent results with the theory. Given our framework that explicitly
tests for convexity, our contribution shows that the LHM productivity
indicator under a nonconvex technology is slightly more convincing
when considering undesirable outputs compared to the convex
alternative.

Despite the great advantages mentioned above, there are some
pitfalls. The first is the selection of methods for measuring TFP. We
just consider a few popular methods containing LHM indicator, LPI,
and ML index, but do not include additional indicators and indices.
There are numerous ways to calculate the TFP. Future researchers
should consider more approaches to gain a more comprehensive
understanding and comparison of TFP measurement. Second, only the
share of fossil fuel energy consumption is selected as the core explan-
atory variable and then regression analysis is performed with GTFP to
explore the robustness of the model. More variables could be incorpo-
rated to test the robustness of different approaches under convexity
and nonconvexity. Choosing the proper methods to measure TFP can
better capture economic growth and drive long-term economic
growth. Third, this contribution is unable to include all countries in the
regression analysis due to missing data on some of the control vari-
ables. Later, if more data become available, then more countries can
be included in the regression analysis to present a more complete and

convincing conclusion.
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APPENDIX A

Through linear programming, the PDFs can be estimated for Expres-
sions (7), (8), and (9). As for the LHM productivity indicator, the
output-oriented PDFs can be obtained from (LP1) and (LP3), respec-
tively. The input-oriented proportional distance functions are calcu-
lated through (LP2) and (LP4).
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The programs (LP1) and (LP2) estimate the convex production
technologies, and the nonconvex technologies can be obtained from
(LP3) and (LP4). The activity or intensity vector 41 and 42 are related
to subtechnologies T1 and T», respectively. The scalars 8 and 6 repre-
sent the maximum optimizations of outputs and inputs defined by
(0,35,3@) and (g£,0,0) at the period p € {t,t+1}.

Similarly, the input/output-oriented DDFs of the LPI can be cal-
culated from the (LP5) and (LP6). From the linear programming of
(LP7) and (LP8), the DDFs of the ML productivity index are obtained.
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The scalars u and ¢ are the maximum optimizations of inputs and

outputs of DDFs under the LPI and ML index, respectively.
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