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1 Introduction 

A burgeoning literature on the nonparametric measurement of 
technical efficiency now exists. The deterministic reference technology 
relative to which efficiency is measured under this approach can be con- 
structed in a variety of ways. The empirical effect of the choice among 
different reference technologies on the traditional radial measures is 
well documented* ^ . However, little attention has been devoted to the 
reverse problem, the consequences of choosing different measures of 
technical efficiency for a given reference technology. The first objective 
of this paper is to gain a better understanding of the economic interpre- 
tation and the justification of different measures of technical efficiency. 
We therefore succinctly review the efficiency measures that have been 
proposed in the axiomatic literature(2) . The second purpose is to offer 
an empirical illustration on a sample of US banks of the effects of us- 
ing different efficiency measures on one of the more popular reference 
technologies, variable returns to scale data envelopment analysis (DEA) 
with strong disposability in inputs and outputs (Afriat [1972], Banker, 
Chames and Cooper [1984]). An analoguous empirical assessment for 
the same data on a free disposal hull (FDH), which relaxes the convexity 
assumption (see, e.g., Tulkens [1993]), is provided in De Borger, Ferrier 
and Kerstens [1994]. 

(1)For example, see Grosskopf [1986] for a review of the relations between the 
radial efficiency measures calculated on a variety of DEA technologies. 

(2) A detailed discussion of this axiomatic literature on efficiency measurement 
is found in Kerstens and Vanden Eeckaut [1994]. 
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450  Recherches Economiques de Louvain 60(4), 1994 

Most of the empirical literature on efficiency measurement is based 
on the radial or equiproportionate measures developed by Debreu [1951] 
and Farrell [1957], while the alternative nonradial measures have been 
largely ignored (Délier and Nelson [1991] is a noteworthy exception). 
Though popular, the radial measures have an important shortcoming - 
they fail to satisfy the intuitively appealing Koopmans [1951] definition 
of technical efficiency. The Koopmans definition equates technical 
efficiency with membership in the efficient subset, whereas the radial 
measures define technical efficiency relative to the isoquant. Many 
popular parametric forms (e.g., Cobb-Douglas) impose equality between 
the isoquant and the efficient subset, therefore this drawback of the 
radial measure may not be very important when using parametric 
techniques. However, for the popular reference technologies used in the 
nonparametric approaches (e.g., the various DEA models), this issue is 
potentially very important since the isoquant and the efficient subset 
are likely to diverge (see Fare, Grosskopf and Lovell [1985]). 

The second section of this paper documents this divergence be- 
tween the definition and the measurement of technical efficiency. Some 
pragmatic solutions to this problem are also considered, but they are 
found to be wanting. Section 3 provides a brief review of the theoretical 
literature that offers various solutions to the divergence problem. This 
literature debates the set of properties that an ideal measure of tech- 
nical efficiency should satisfy and proposes various nonradial measures 
of technical efficiency that satisfy some of the properties. Because the 
importance of the divergence problem is largely an empirical matter (es- 
pecially for DEA models), section 4 offers a systematic analysis of the 
impact of using alternative measures of technical efficiency based on a 
common reference technology (variable returns to scale DEA), an issue 
that has been almost completely ignored in the literature. To the best of 
our knowledge, this is the first empirical paper that explores the alter- 
native efficiency measures in DEA(3) . Section 5 summarizes the paper's 
conclusions. 

2 The divergence between the definition of and 
the radial measurement of technical efficiency 
This section illustrates a major shortcoming of the radial measures 

of efficiency. For simplicity, the discussion concentrates on input ef- 
ficiency, with the input correspondence L(y) serving as the represen- 
tation of technology. In defining measures of technical efficiency, three 

(3) Délier and Nelson [1991] only report the Färe-Lovell efficiency measure, 
which is defined below. 
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subsets of the input correspondence L(y) merit particular attention (see 
Fare, Grosskopf and Lovell [1985], Fare and Hunsaker [1986]). Assum- 
ing that output is semipositive, these subsets are the input isoquant of 
¿(tf)(4): 

IsoqL(y) = {x | x G L(y),Ax i L(y) VA e [0,1)}; 

the weak efficient subset of L(y) : 

WEffLfo) = {x'xe L(y),x' <x^ x' £ L(y)}: 
and the efficient subset of L(y) : 

E«L(y) = {x'xe L(y),x' < x =» x! £ L(y)}. 
All three subsets denote production on the boundary of L(y). The 
efficient subset is a (possibly proper) subset of the weak efficient subset, 
whereas the weak efficient subset is a (possibly proper) subset of the 
isoquant. That is, IsoqL(y) D WEïïL(y) D ESL(y) . 

Figure 1 shows typical isoquants for a DEA technology with strong 
disposability of inputs and a DEA technology with weak disposability of 
inputs. For both technologies, the efficient subset, EffL(y), consists of 
the line segments joining points BCDE. For the technology with strong 
disposability, WEE L(y) and isoqL(y) coincide*5* - both contain the 
connected line segments ABCDEF and the dashed lines beyond A and 
F parallel to the axes. For the weakly disposable technology, WEff L(y) 
contains the connected line segments ABCDEF, and Isoq L(y) is formed 
by adding the line segment FG to W Eff L(y) . Points on the rays through 
0A and 0G are not part of the isoquant, though they do belong to the 
boundary of the input correspondence. Note that WESL(y) contains 
line segments parallel to the axes where the marginal productivity of 
input equals zero, and that Isoq L(y) can be backward bending, implying 
negative marginal productivity or congestion. 

Because both DEA technologies share a common efficient subset, 
the divergence between the Koopmans definition and the radial effi- 
ciency measure depends on the number of observations outside the cone 

(4) Vector inequality conventions in the text: x ̂  y if and only if xt ̂  yi for all 
i ; x > y if and only if x¿ ̂  yi and x ̂  y ; x > y if and only if Xi > y i for all 
i ; and x > y if and only if Xi > y i or xi = y i = 0 for all i . 

(5) Strong disposability of the inputs is a sufficient condition for lsoqL(y) and 
WEff L(y) to coincide. See Fare, Grosskopf and Lovell ([1985] pp. 31-32) for 
details. 
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¡i i / Cone spanned by Eff ¿(y) 

Figure 1: Three subsets of the input correspondence for DEA models. 

spanned by the efficient subset (this cone is spanned by the rays OB and 
0E in Figure 1). This number is an empirical issue, but so far it has 
received little attention in the literature. 

The crucial point is that two different notions of technical efficiency 
have emerged in the economics literature. The first, due to Debreu 
1 1951 1 and Farrell 1 19571, is a radial notion defining (input-based) tech- 
nical efficiency as one minus the maximum equiproportionate reduction 
in all inputs that still allows production of the observed level of out- 
puts. That is, it is the ratio of the smallest feasible contraction of an 
observed input vector to the observed input vector itself. Formally, the 
Debreu-Farrell input-based measure of technical efficiency is given by: 

DF,{x,y) - mill {A | A ̂ 0, An: € L(y)} . 

I)F, varies between zero and one, with unity representing efficient 
production. This measure adopts the isoquant as its reference for 
defining technical efficiency. Therefore, an observation is efficient under 
a radial measure if and only if it belongs to the isoquant; it is inefficient 
otherwise. 

The second notion of efficiency is due to Koopmans 119511, who 
provided a definition of technical efficiency without proposing how to 
measure it. In his now classic definition, a producer is deemed tech- 
nically efficient if an increase in any output requires a decrease in at 
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least one of the other outputs, or if a decrease in any input requires an 
increase in at least one of the other inputs. This definition of technical 
efficiency clearly centers on the efficient subset. The great intuitive ap- 
peal of this definition led to its adoption by several authors, including 
Charnes, Cooper and Rhodes [1978] and Fare and Lovell [1978](6) . 

The Koopmans definition is more demanding than the Debreu- 
Farrell measure. Radial measures, such as DFi , require that efficient 
observations belong to the isoquant, though not necessarily to the 
efficient subset. Consequently, the two concepts of technical efficiency 
are in conflict for any reference technology for which the isoquant 
diverges from the efficient subset. The ultimate importance of this issue 
is an empirical matter, but it is likely to be of greater concern when using 
nonparametric models (such as DEA). Several proposals have been made 
to ameliorate the problem in practice. We briefly examine two of them, 
but conclude that neither offers a very satisfying solution to the problem. 

The first proposal (Bessent et alii [1988]) is to use constrained facet 
analysis (CFA) in DEA. If a conflict between the Koopmans definition 
and the radial efficiency measure is encountered, CFA maintains the 
radial approach to efficiency measurement, but modifies the reference 
technology. If an inefficient activity is not projected onto EffL(y) during 
DEA, CFA subsequently projects it onto the "nearest" hyperplane or 
facet belonging to Eff L(y) . For example, the radial input measure first 
projects observation 1 to the point 1' in Figure 2, then CFA extends 
the facet spanned by observations B and C and projects point T to point 
1". The resulting efficiency measure no longer underestimates technical 
inefficiency. 

Unfortunately, the solution offered by CFA is flawed. First, it 
confounds the specification of the set of production possibilities with 
the selection of an efficiency measure. The extension of a technology's 
hyperplanes is not justified by the assumptions of production analysis. 
In terms of Figure 2, one must be skeptical of the basis upon which 
point 1" is considered a "feasible" production possibility. Second, the 

(6) Remark that Koopmans ([1951], pp. 60 and 80) actually requires the simul- 
taneous membership of both the efficient subsets of the input and the output 
correspondences (see also Lovell [1993], p. 13), which amounts to member- 
ship in the graph efficient subset. But only for a few DEA reference technolo- 
gies does membership in the input efficient subset imply that an observation 
is also in the output efficient subset (see, e.g., Fare, Grosskopf and Lovell 
([1985], pp 46-47)). This is, however, not a limitation for our analysis as the 
input efficiency measures - to be discussed below - can be easily general- 
ized to graph efficiency measures (along the lines of, e.g., Fare, Grosskopf 
and Lovell [1985]). An empirical application of radial and nonradial graph 
efficiency measures is provided in De Borger, Ferrier and Kerstens [1994]. 
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Constrained Facet Analysis and four measures of technical efficiency on 
a DEA input correspondence. 

solution is not general. It requires that a "sufficient" number of efficient 
observations be available to define the "nearest" hyperplane belonging 
to Ei' L(y). This shortcoming of CFA was already recognized in the 
Bessent et alii I1988] article. 

A second, indirect, solution to the divergence problem is to report 
any remaining slacks in addition to the radial efficiency measure it- 
self (e.g., Lovell [19931 and Lovell and Vanden Eeckaut [19941). Slacks, 
however, are rarely reported in the DEA literature. In a review of pre- 
vious DEA studies, Bessent et alii 1 1988 1 found widespread occurrence 
of slacks. In one study, all of the inefficient units had additional slacks! 
While this suggestion provides all of the information needed to check 
whether an observation belongs to the efficient subset, it fails to sum- 
marize this information with a single number. Furthermore, it is worth 
mentioning the computational implications of obtaining correct infor- 
mation on slacks in the input and the output dimensions. Including 
a non-Archimedian constant in the objective function when computing 
the radial efficiency measure provides a good specification for the ra- 
dial projection and yields correct information on slacks. But in practice 
this approach leads to numerical difficulties (see Ali and Seiford [1993], 
Chames, Cooper and Rhodes [19781 and Fare and Hunsaker 11986]). 
Recently, Ali and Seiford 1 1993.1 find the maximal slacks for the radial in- 
put, efficiency measure by solving a two stage linear programming DEA 
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model. In the first step the traditional radial input efficiency measure 
is determined. In the second stage an additive model (as proposed in 
Charnes et alii [1985]) is calculated where the inputs of the observation 
being evaluated are now scaled down by the optimal radial efficiency 
measure obtained in the first step (see Appendix A for details). 

In sum, the divergence between the intuitively appealing Koop- 
mans definition of technical efficiency and the standard radial measure- 
ment of technical efficiency boils down to the issue of the appropriate 
economic interpretation of technical efficiency. Therefore, it is worth- 
while reconsidering the use of radial efficiency measures in the math- 
ematical programming approach. To that end, three of the alternative 
nonradial measures of technical efficiency are now considered. 

3 Technical efficiency measures in the axiomatic 
literature 
Fare and Lovell [1978] pioneered the axiomatic approach to tech- 

nical efficiency measurement by proposing a set of desirable properties 
that an ideal measure of technical efficiency should satisfy. Given these 
properties, they proposed a new efficiency measure that compares inef- 
ficient observations to the efficient subset. We first review their contri- 
bution, then we present three nonradial measures of technical efficiency 
that have appeared in the literature, and finally we discuss the debate 
Fare and Lovell [1978] provoked. As above, the discussion concentrates 
on input efficiency. 

Fare and Lovell [1978] suggested that a measure of technical 
efficiency should satisfy four properties. In the case of an input-based 
measure of technical efficiency, Ei(x,y), these desirable properties can 
be formulated as follows: 

1. Observed input vectors should be termed "efficient" if and only if 
they belong to the efficient subset: 

If x e L(y), y>0, then E^x.y) = I & x E EffLQ/); 

2. Inefficient input vectors should be compared to vectors belonging 
to the efficient subset: 

If x G L(y) , y > 0 , and x i Eff L(y) , 
then Ei(x,y) should compare x to some x* e Eff L(y); 

3. Ei(x,y) should be homogeneous of degree minus one (e.g., a dou- 
bling of the input vector used by the inefficient observation halves 
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the efficiency measure): 

If x G L(y), and Ax G L(y), y>0, 
then Ei{'x,y) = '-lEi(x,y), 

for all A G [A0, +oo) , where A°x G Isoq L(y) ; 

4. Ei(x,y) should be strictly negatively monotonie (i.e., increasing 
one input, while holding all other inputs and all outputs constant, 
lowers the efficiency measure): 

If x e L(y)9 y >0,andz' ^x,then Ei(x,y) >Ei(x',y). 

The first two properties say that Ei(x,y) should conform to the Koop- 
mans definition of efficiency. They express the desire to scale inefficient 
vectors to an element of the efficient subset. Sensitivity of the efficiency 
measure with respect to input usage is addressed by the third and fourth 
properties. The third one imposes a direct proportionality between in- 
puts used in all dimensions and technical efficiency, while the fourth 
guarantees sensitivity of input usage in any single dimension. 

The Fare and Lovell [1978] article led to proposals of further de- 
sirable properties and additional nonradial efficiency measures. This 
literature, and our discussion, focusses on the properties of four par- 
ticular measures of technical efficiency: the Debreu-Farrell measure 
(DFi), the Färe-Lovell measure (FL¿), the Zieschang [1984] measure 
(Zi) y and the asymmetric Fare measure (AFi) (Fare [1975], and Fare, 
Lovell and Zieschang [1983])(7) . The Debreu-Farrell input measure of 
technical efficiency was defined in the previous section; the others are 
now presented. 

Radial efficiency measures do not necessarily compare the obser- 
vations to the efficient subset and therefore fail to satisfy the first two 
axioms(8). Fare and Lovell [1978] propose a measure of technical ef- 
ficiency, known as the Färe-Lovell, or Russell, measure, that does not 

(7^Färe [1975] first proposed the asymmetric Fare measure, calling it an input 
efficiency function. Fare, Lovell and Zieschang [1983] refer to it as the overall 
asymmetric measure of technical efficiency. Analogous to the other efficiency 
measures, we refer to the measure by its originator. 

(8) The weak measure of technical efficiency (see Fare, Grosskopf and Lovell 
[1985]) is not discussed in this paper as it only differs from the Debreu-Farrell 
efficiency measure in that the weak efficient subset is used as a reference set 
instead of the isoquant. 
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possess this shortcoming*^ . The Färe-Lovell input technical efficiency 
measure is given by: 

Í m A Ì 
FL2(x, y) = min I ]T ^ 

A 
(A^, . . . , Xmxm) G L(y), A2 G (0, 1] Vz I 

FL¿ minimizes the arithmetic mean of the proportional reductions in 
each input dimension (i.e., the scalars A¿). A nonradial measure, FLi 
scales each input by a different proportion. To determine the projection 
point each of its inputs must be contracted with the corresponding scalar 
element of the efficiency measure (AiXi, . . . , Xmxm) . 

The Zieschang measure of input technical efficiency is: 

Zi(x,y) = FLl(x-DFt(x,y),y)-DFt(x,y), 
where 

DFf(x,y) = min {A | A ̂  0, Xx e L+(y) = L{y) + M™} . 

Zi is an amalgamation of the Debreu-Farrell (this component is denoted 
'z~df) and Färe-Lovell measures (with typical element A¿~^). It radi- 
ally scales the inefficient observation down to the isoquant, and then 
shrinks the resulting input vector until it reaches an element of the ef- 
ficient subset. Note that the nonradial component of Zi is calculated 
on a technology satisfying strong input disposability, while the (radial) 
Debreu-Farrell measure is defined without this restriction on the tech- 
nology. The projection point associated with the Zieschang measure is 
found by rescaling each input dimension by the two components of Zi ; 
i.e., Zi is actually a multiplicative measure, with the projection point 
givenby ('*-<V'zl-flxl,...,'*-*'£flxm). 

Finally, the asymmetric Fare technical efficiency measure is: 

AFi(x,y) = 
min|i4Fj(x,y)| , j = l,...,?n, 

where 

AF]{x,y) = min {Ai | (AiXi, . . . ,xó, . . . ,xm) G L{y), Xi G (0,1]} 

AFf(x,y) = min {A,- | (xi, . . . , XjXj, . . . ,zm) G L(y), A, G (0, 1]} 

AF™{x,y) = min{Am | {xu . . . ,xá, . . . , Xmxm) G L(y), Xm G (0,1]}. 

(9) The term "Russell measure" is a misnomer. First, because the measure ap- 
pears originally in Fare and Lovell [1978]. Second and foremost, because Rus- 
sell himself clearly advocates the Debreu-Farrell efficiency measure (see Rus- 
sell [1985, 1988]). We therefore prefer the moniker "Färe-Lovell measure". 
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AFi scales down each input in turn, while holding all other inputs 
fixed. It then takes the minimum over these scalings as its measure of 
technical efficiency. This measure scales an inefficient observation down 
to the boundary of L(y) , which does not necessarily coincide with either 
the isoquant, the weak efficient set, or the efficient subset. Its projection 
point is found by scaling down the single input dimension for which the 
corresponding scalar element minimizes the vector of components. If 
the j-th component is the minimum (Aj), then the projection point is 
(Xi, . . . , AjXj) . . . , Xm ) . 

A few remarks can be made on the connections between these 
efficiency measures. A first remark is on the relations among these 
efficiency measures. The Färe-Lovell measure generalizes both the 
Debreu-Farrell and the asymmetric Fare measures. For Ai = A2 = • • = 
Am , FL collapses to DFi ; and for A¿ = 1 for AF' ^ min AFi , F Li reduces 
to AFi. Furthermore, in the case of a single input dimension (ra = 1) 
these four efficiency measures all coincide (DFi = F Li = Zi = AFi). 
More importantly, for a given reference technology these four efficiency 
measures can be a priori ordered as follows: 

DFi > Zi^ FLi ^ AFi - 

This complete ranking received so far little notice in the literature* 10) . 
A second remark is on the similarity between DFi and Z¿ . The 

Zieschang efficiency measure is defined with the intent of eliminating 
slacks. Thus, DFi coincides with Z¿ if it scales an inefficient observation 
down to the efficient subset. If the radial measure projects an inefficient 
observation to another subset, however, slack will remain and it will 
not coincide with the Zieschang measure. As a final remark, strictly 
speaking, the above definitions hold only if none of the inputs is zero. 
If the input vector is semi-positive, then the definitions of the Färe- 
Lovell measure (and consequently the Zieschang) and asymmetric Fare 
measures need to be adjusted. The idea behind the modifications 
proposed in Fare, Lovell and Zieschang [1983] is to avoid any influence 
of zero dimensions on the efficiency measure. As a consequence, the 
performance of different observations may possibly be gauged relative 
to spaces of different dimensionality. This seems clearly unsatisfactory. 
However, since this issue does not affect our empirical illustration, we 
simply conclude that the treatment of zeros warrants more attention in 
future work. 

(io) pare, Lovell and Zieschang [1983] demonstrate many of these relations. The 
relative magnitudes of FLi and Z¿ , however, were only recently proven in 
Kerstens and Vanden Eeckaut [1994]. 
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Figure 2, presented above, illustrates these four efficiency mea- 
sures on the DEA input correspondence. For clarity, the figure is de- 
signed such that each efficiency measure selects a different reference 
point, though this need not be the case. The radial efficiency measure, 
DFi , calculates technical inefficiency along a ray through the origin, 
which leaves slack in the first input (i.e., the distance from 1' to B in Fig- 
ure 2). The Färe-Lovell measure, FL{ , scales the inefficient observation 
down to observation C. The Zieschang measure, Z¿ , adjusting the radial 
efficiency measure for the remaining slack in the first input, relates the 
inefficient observation to point B. Finally, because performance is worst 
in the first input dimension, the asymmetric Fare efficiency measure 
selects point 1'" as the reference point. This leaves slack in the second 
input (i.e., the distance from 1'" to C). 

These four efficiency measures are thoroughly discussed in the 
theoretical debate that followed Fare and Lovell [1978]. This literature 
concludes that for a broad class of reference technologies none of these 
measures can satisfy all four ideal conditions simultaneously (see Fare, 
Lovell and Zieschang [1983], Russell [1988], and Zieschang [1984]). 
More generally, Bol [1986] and Russell [1988] show that no measure 
of technical efficiency can satisfy all four conditions simultaneously for 
the broad class of technologies considered in this literature. This finding 
changes the focus of the debate to the consideration of properties that 
are both desirable and feasible. Bol [1986] suggests two possibilities. 
First, narrow the class of reference technologies to which the efficiency 
measures are applied(11) . Second, relax (or drop) at least one of the four 
initial ideal conditions and/or add other desirable properties to the list. 
But this debate so far yielded few clear-cut results. 

From a practitioner's viewpoint it is important to stress that the 
negative results obtained in this theoretical literature require some 
qualification if one no longer focuses on a broad class of reference 
technologies. Although the problem of the choice among efficiency 
measures does not disappear on a restricted production technology, the 
list of satisfied properties changes if efficiency measurement is restricted 
to popular nonparametric reference technologies such as DEA(12^. In 
DEA models DFi is homogeneous of degree minus one, but fails to 
satisfy the first two ideal conditions and only satisfies a weaker version 

(ii) This strategy was partly pursued by Fare, Lovell and Zieschang [1983]. 
(12) See Kerstens and Vanden Eeckaut [1994], who also consider the properties 

satisfied on the FDH. 
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of the fourth condition (i e., it is weakly monotonie*13)). F Li satisfies 
the first two and the fourth conditions, but only a weaker version of the 
third axiom. It is subhomogeneous, rather than homogeneous, of degree 
minus one (see Petersen [1990])*14). Z¿ satisfies all four axioms on 
DEA. Finally, AFi satisfies the first condition, but fails to meet the other 
conditions. While it correctly identifies input vectors as efficient if they 
belong to the efficient subset, in general, the inefficient input vectors are 
not compared to this subset. AFi also satisfies only subhomogeneity of 
degree minus one and weak negative monotonicity. Consequently, only 
Zi satisfies all four ideal conditions of an efficiency measure on DEA. 
While FLi manages to meet three out of the four standards, both DFi 
and AFi only fulfill one of the four axioms on DEA. 

The theoretical debate as to the "best" measure of technical effi- 
ciency is clearly inconclusive. None of the proposed measures enjoys 
theoretical superiority over the others. This in part may explain why 
practitioners have ignored the debate and continue to use the radial 
measures as their standard for efficiency evaluation. In addition, there 
are two arguments that appear in the margin of the axiomatic literature 
that favor the radial measures (see Lovell and Schmidt [1988]). The first 
argument in support of the radial measures is that they have a straight- 
forward cost interpretation* 15) . In fact, the Debreu-Farrell measure can 
be written as the ratio of minimal to actual costs: 

»,(,.,)- A- ï^>. 
where w is a vector of input prices. Thus, it shows the potential 
cost reduction resulting from the elimination of technical inefficiency. 
Note that scaling all factor prices equally, or any one factor price 
individually, does not affect the cost ratio. Factor price independence is 
due to the radial nature of the measurement. No such straightforward 
cost interpretation is available for the nonradial efficiency measures 

(13) Weak monotonicity is defined as: 
If x G L(y), y > 0, and x ^ x, then Ei{x,y) ̂  Ei{x,y). 

That is, increasing at least one of the inputs, while holding all others constant, 
cannot increase the efficiency measure. 

(14) Subhomogeneity of degree minus one is defined by: 

If z e L(y), and 'x e L{y), y > 0, then Ei{'x,y) = '~l Ei(x,y) if A | 1. 

That is, the scaling of the input vector by a factor larger (smaller) than unity 
leads to an efficiency measure smaller (larger) than the inverse scaling of the 
efficiency measure by the same factor. 

(15) This point is noted by Debreu [1951], and stressed by Russell [1985]. 
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- cost ratios are factor price dependent, and therefore, physical and 
cost efficiency need not coincide in this case(16). This is an important 
limitation of the nonradial efficiency measures. It must be added, 
however, that the factor price independent cost interpretation of the 
radial efficiency measures is not always valid. For example, if additional 
behavioral constraints are imposed on the production technology (e.g., 
due to rate-of-return regulation, as in Fare and Logan [1992]), its cost 
interpretation also becomes factor price dependent. 

A second, more theoretical, argument in favor of the radial effi- 
ciency measure is that there is an equivalence between it and the in- 
put correspondence set L(y) (see Lovell and Schmidt [1988] and Lovell 
[1993]). As the inverse of the input distance function, the input-based 
radial efficiency measure contains all of the information on the under- 
lying technology L(y) : 

L(y) = {x'0<DF^y) ^ 1}. 

Furthermore, DFi gives a functional representation of the isoquant: 

IsoqLfo) - {x' DFi{x,y) ="l}. 

However, a similar argument can be made in favor of all the nonradial 
efficiency measures. This reasoning is developed explicitly for the case 
of the asymmetric Fare efficiency measure. The asymmetric Fare effi- 
ciency measure contains all information on the technology represented 
by any input correspondence satisfying strong input disposability (Fare 
([1975], p. 322) and Fare, Lovell and Zieschang([ 1983], p. 167)): 

L+(y) = {x'0<AFi(x,y)^l}. 

Moreover, AFi provides a functional representation of the efficient 
subset of a general input correspondence L(y) :(17) 

E«L(y) = {x'AFi(x,y) = l}. 

For the other nonradial alternatives, i.e. FL{ and Z¿ , this analogy be- 
tween on the one hand the efficiency measure and the input correspon- 
dence with strong input disposability (L+ (y)), and on the other hand 
the efficiency measure and the efficient subset of L(y) holds true as 
well. In general, this equivalence is valid for any efficiency measure 

(16)See Kopp [1981a, b] for discussions of the cost interpretations of the Färe- 
Lovell and the asymmetric Fare efficiency measures. 

(17)This result holds true for a general input correspondence because L(y) and 
L+(y) have the same efficient subset (Fare [1975] p. 321). 
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satisfying the first axiom. Therefore, if one adopts the Koopmans defi- 
nition of technical efficiency, then the efficient subset, not the isoquant, 
is relevant and nonradial efficiency measures are favored over radial 
efficiency measures. 

It is unclear whether these additional arguments bestow preferred 
status to any of the efficiency measures discussed above. What emerges 
from the theoretical debate on efficiency measures is that both radial 
and nonradial measures possess certain advantages and disadvantages 
relative to one another. We therefore turn our attention to an empir- 
ical analysis in order to ascertain the relative performances of these 
measures in practice. 

4 An empirical comparison of efficiency measures 
for US banks using DEA 

4.1 Description of the sample 
This section systematically explores whether the choice among 

the various efficiency measures makes any difference in practice. The 
technical efficiency of a sample of 575 US banks operating in 1984 is 
calculated using the four efficiency measures described above on a DEA 
reference technology. The results across efficiency measures are then 
compared. To the best of our knowledge, an empirical comparison of 
radial and nonradial efficiency measures does not appear in the DEA 
literature. 

A first step in assessing productive efficiency is to define the inputs 
and outputs involved in the transformation process. This is an uncer- 
tain first step when measuring banking efficiency, because considerable 
disagreement exists as to the appropriate definition of bank inputs and 
outputs. Prior research on efficiency in banking has distinguished two 
approaches to input/output definition and measurement - the "inter- 
mediation" and the "production" approaches. Each of these approaches 
has its advantages and drawbacks and no consensus exists as to the most 
appropriate way to analyze the complexity of banking activities(18) . 

(is) The intermediation approach views banks as intermediaries between lenders 
and borrowers - banks accumulate deposits and purchased funds and 
transform these funds into financial services. Under this approach, outputs 
are measured in monetary volumes because the inputs not only include 
traditional inputs (i.e., labor, capital and materials), but also the interest 
costs of purchased funds. Under the production approach, banks are viewed 
as producers of deposit and loan services using traditional inputs. In this 
setting, outputs are measured by the number of different deposit and loan 
accounts serviced, or by the numbers of transactions performed on each 
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Table 1: Descriptive statistics on the sample of US banks (N=575). 

Inputs/ Mean Standard Minimum Maximum 
Outputs Deviation Value Value 

xi 111.17 130.0 5.10 1165.79 

x2 533145.05 790336.7 2260.13 7608838 

x3 1034901.77 1372993.0 36806.48 1155379.05 

yi 12334.50 15819.4 136 151029 

y2 25470.81 34238.0 226 404045 

y3 2764.97 23965.5 0 570385 

y4 5949.33 10332.9 0 151828 

2/5 1476.99 3822.2 0 84515 

Both approaches have been used in the recent empirical literature 
on bank efficiency: Aly, Grabowski, Pasurka and Rangan [1990], Berger, 
Han weck and Humphrey [1987] and Berger and Humphrey [1991] 
employ the intermediation approach; while Ferrier and Lovell [1990], 
Fried, Lovell and Vanden Eeckaut [1993] and Tulkens [1993] opt for the 
production approach. This literature also uses a variety of reference 
technologies. For example, Aly, Grabowski, Pasurka and Rangan [1990] 
use variable returns to scale DEA; Ferrier and Lovell [1990] use both 
stochastic parametric frontiers and DEA; Fried, Lovell and Vanden 
Eeckaut [1993] choose the FDH approach; Tulkens [1993] compares 
DEA and FDH. Surveying the empirical literature, a common finding 
is that technical efficiency has a greater effect on banks' observed costs 
than do other types of inefficiencies or economies of scale or scope (see 
Berger, Hunter and Timme [1993] and Colwell and Davis [1992] for 
recent reviews of this literature). 

Our analysis adopts the production approach. Five outputs are 
specified: the numbers of demand (y') and time (y2) deposit accounts, 
and the numbers of real estate (1/3), instalment (2/4) and commercial (2/5) 
loans. The outputs are measured in terms of numbers of accounts. Three 
inputs are considered: the total number of employees (x'), occupancy 
and equipment costs (£2) > and expenditures on materials (x3) (19) . De- 
scriptive statistics of these variables are given in Table 1. The data were 
collected under the Federal Reserve System's Functional Cost Analysis 

output. See the discussion in Colwell and Davis [1992]. 
(19)Note that the definition of the quantities of capital (x2) and materials (rr3) 

is not ideal, but no better information on these inputs is available. 
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(FCA) program, a program designed to assist participating banks to 
increase their operating efficiency by providing them with average per- 
formance figures for banks with similar characteristics against which to 
compare their own performance. This feature of the FCA program helps 
to ensure that banks have a self-interest in reporting data accurately. 

A variable returns to scale DEA model with strong input and 
output disposability serves as the reference technology in measuring 
the input-based technical efficiency of banks using the four measure 
discussed above. This reference technology is given by the following 
input correspondence: 

r / 'sd-vrs _ / i 'ri * z ^ > 0. -*- v^ z < ~ T* -y _ i z -, a Mk ' M2/J 
_ - 'x I * z ^ = > Vi 0. -*- z = < x-> ~ 

*kz 
-y - _ i *' z -, a *=■ ™+J ? 

where Y is the k x n matrix of observed outputs, X is the k x m matrix of 
observed inputs, z is a k x 1 vector of intensity, or activity, variables, and 
y and x are n x 1 and m x 1 vectors of outputs and inputs, respectively, 
and Ifc is a A: x 1 unity vector. Remark that a weakly disposable 
DEA production technology with variable returns to scale has the same 
efficient subset. Since the paper focuses on the distinction between the 
efficient subset and the other subsets of a production technology, the 
empirical application is based on a traditional DEA model assuming 
strong input and output disposability. 

As to the computational aspects, we briefly indicate how the non- 
radial efficiency measures can be obtained for the above DEA model. 
First, the Färe-Lovell efficiency measure results from solving a single 
linear program for each observation, which allows each input dimension 
in the constaints to be proportionally reduced by a scalar À and which 
minimizes the arithmetic mean of these scalars in the objective func- 
tion. Second, the Zieschang efficiency measure involves the solution of 
two linear programs for each observation. In the first step one calculates 
the traditional radial input efficiency measure DFi , and in the second 
step the Färe-Lovell efficiency measure FLi is computed for the same 
observation rescaled by DFi • Finally, the asymmetric Fare efficiency 
measure requires solving m linear programs - one for each input di- 
mension - for each observation, and taking the minimum over the m 
resulting optimal values. All details on the linear programs needed to 
implement the radial and especially the nonradial efficiency measures 
are discussed in Appendix A. 

4.2 Empirical results 
We assess the four input efficiency measures as defined above on 

this reference technology in the following way. First, the cardinality of 
the various subsets is discussed. Then the problem of slacks in the radial 
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input efficiency measure is illustrated. Further, descriptive statistics 
and correlations between the various efficiency measures are described. 

Of the 575 US banks in the sample, 546 are judged to be inefficient. 
All 29 efficient observations belong to the efficient subset. Only 134 
out of the 546 inefficient observations, however, are projected onto 
the efficient subset by the radial efficiency measure. That is, only 
about a quarter of the inefficient observations have zero slacks in their 
inputs. This result confirms the potential importance of slacks for radial 
measurement on the widely used DEA models. 

The importance of slacks is illustrated for the radial input measure 
in Table 2. To facilitate comparison, the slack in each dimension is 
expressed as a percentage of the observed inputs and outputs for each 
bank being evaluated. 

Table 2: Slacks and radial efficiency in the inputs on DEA (N=546). 

Dimension Mean Standard Minimum Maximum 
Deviation Value Value 

Total Slack (%) 

Input 1 72.11 16.69 0.14 96.66 

Input 2 67.35 16.43 0.31 93.28 

Input 3 68.58 17.72 0.14 98.83 

Output 1 2.47 26.52 0 555.3 

Output 2 8.61 30.13 0 373.2 

Output 3 13.50 68.02 0 817.5 

Output 4 83.03 309.53 0 6204.0 

Output 5 110.89 1571.20 0 36090.0 

Slack eliminated by the radial input efficiency measure (%) 

All inputs 66.38 17.66 0.14 93.28 

Slack not eliminated by the radial input efficiency measure (%) 

Input 1 5.73 9.05 0 68.13 

Input 2 0.97 4.65 0 45.80 

Input 3 2.20 5.10 0 59.35 

Total slack per dimension is the difference between the observed 
data point and the projection point; i.e., the linear combination deter- 
mined by the non-zero components in z* . Table 2 reveals the impor- 
tance of this phenomenon. Total slack is partially eliminated by the 
radial input efficiency measure (termed radial slack). The remaining 
slack (termed nonradial slack) is, on the average, of minor importance 
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for the second input dimension. Considering the wide range of values, 
however, nonradial slack is far from negligible, especially in the first 
and third input dimensions (20) . 

An examination of the empirical distributions of the four efficiency 
measures reveals their similarities and differences. Table 3 contains 
the descriptive statistics of the distributions for both the full sample 
and for the inefficient observations only. The following observations can 

Table 3: Input efficiency measures on DEA. 

Ei(x,y) Mean Standard Skewness Kurtosis Minimum Maximum 
Deviation Value Value 

All Observations (N = 575) 

DFi .370 .225 1.513 4.680 .067 1.000 
FLi .328 .215 1.809 5.940 .036 1.000 
ZL .341 .218 1.657 5.343 .037 ; 1.000 
AFX .134 .227 3.021 11.406 .006 1.000 

Inefficient Observations Only (N = 546) 

DFi -336 .177 1.465 5.315 .067 - .999 
FLi -292 .152 1.472 5.524 .036 .951 
Zi .306 .161 1.374 5.053 .037 .955 
AF% .088 .110 3.223 16.694 .006 .855 

be made. First, the mean efficiency levels are quite low and are much 
lower than the radial results reported in Ferrier and Lovell [1990]. They 
are also below the averages of about .80 which are typically reported in 
most bank efficiency studies based on DEA models (see Berger, Hunter 
and Timme [1993] and Col well and Davis [1992]). Second, the radial 
efficiency measure had the largest mean, followed by the Zieschang, the 
Färe-Lovell, and the asymmetric Fare efficiency measures, reflecting 
the complete ordering among efficiency measures pointed out earlier. 
Third, the efficiency distributions have large ranges, are positively 
skewed and have positive kurtoses. This results in long, fat right- 
tailed distributions as compared with the normal distribution. Fourth, 
the standard deviations are very similar over the various efficiency 
measures. Finally, the extreme nature of the asymmetric Fare efficiency 
measure is evident. 

( 2°) The results for the same sample on FDH differ in that the radial efficiency 
measure eliminates, relatively speaking, less slacks: see De Borger, Ferrier 
and Kerstens [1994]. 
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Figure 3 illustrates the density distributions of the four efficiency 
measures. The nature of the resulting efficiency distributions is for- 
mally evaluated using two nonparametric test statistics (see Siegel 
and Castellan 11988]). First, a Friedman two-way analysis of vari- 
ance based on ranks was computed to test whether the efficiency mea- 
sures are all drawn from the same population (or at least from popu- 
lations with the same median). Second, a Wilcoxon signed rank test 
does the same for all pairs of efficiency measures. These tests suggest 
that the efficiency measures are not drawn from a single population 
(Fr. = 1437.84 > Xo.ooi(^) = 16.27), and that no pair of efficiency mea- 
sures shares a common distribution^21^. 

 Inp. Farrel 
300- 

i  ,np Färe-Lovell 
•t 

250- ¡; ----- Inp. Zieschang 

5-200 M 
 Inp. Asym. Fare 

• « 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0^9 1 
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 

Efficiency Measures 

Figure 3: Densities of input efficiency measures on a DEA model (N = 575). 

The low average efficiency scores require some comments. First 
and foremost, this difference is accounted for by the fact that Ferrier 
and Lovell 1 1990] also included a large set of environmental variables 
in their analysis. Under the nonparametric approach to efficiency mea- 
surement, increasing the number of dimensions reduces the amount of 
inefficiency detected. The impact of the dimensionality of the produc- 
tion technology on radial and nonradial efficiency measures is discussed 

(JI)For the sake of brevity, details on the lattei' test statistics are suppressed. 
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in Kerstens and Vanden Eeckaut [1994]. To accentuate the differences 
across the four efficiency measures considered in this paper, the dimen- 
sionality of the production technology is kept to a minimum. Therefore, 
only input and output variables are included in the model, and environ- 
mental variables are ignored. Second, another plausible cause for the 
results is the presence of a large variation in the relative specialization 
of the banks in the sample. There are two arguments. First, the sam- 
ple contains 52 inefficient observations with zero values for one or more 
of the outputs. Furthermore, 8 out of 29 efficient observations have at 
least a single zero output (details are in Appendix B). Second, in another 
study by Ferrier et alii [1993] the same sample has been examined for 
the existence of economies of diversification. It turned out that on aver- 
age there are cost advantages for specialized banks, as the majority of 
observations exhibited diseconomies of diversification (22) . 

In addition to the distribution of these efficiency measures, it is 
worthwhile to look at the individual dimensions underlying each of 
them, especially for the inefficient observations. Scaling the input vec- 
tors of an inefficient observation with each of these components yields its 
projection point or role model. Descriptive statistics for each dimension 
of the nonradial efficiency measures are reported in Table 4 for the in- 
efficient observations only. To be specific, for FLi these dimensions are 
(Ai, . . . , Am) , for Zi these are {Xz-dfX'~f' . . . , Xz~^X^fl) , and for AF{ 
the components are (1, . . . , Aj, . . . , 1) if the minimum of this efficiency 
measure is in the j -th dimension. The number of observations on which 
the statistics are based (see the last column) is identical, except for the 
asymmetric Fare efficiency measure. Recall that for the latter only a 
single dimension of the inefficient observation is scaled down. Results 
are easier to interpret if the computations for each dimension are based 
on the inefficient observations which are scaled down in this particular 
dimension, instead of including the other observations which have unity 
components for that dimension. Note, that the radial efficiency measure 
is, of course, identical for each dimension and that is it only included to 
facilitate comparisons. 

It turns out that the components of the nonradial efficiency mea- 
sures agree both on the dimensions with the least and worst technical 
inefficiency: on average the least technical inefficiency is detected in the 
first input dimension, while performance is worst in the second input 

(22) On FDH the average of the distributions of these efficiency measures is much 
higher. It is in no way unusual relative to the results reported in other 
applications: see De Borger, Ferrier and Kerstens [1994]. This divergence of 
results on DEA and FDH for the same sample illustrates the major impact 
of the convexity assumption, especially in the presence of many specialized 
observations. 
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Table 4 
Components of the input efficiency measures on DEA (inefficient obser- 
vations only). 

Ei(x,y) Mean Standard Skewness Kurtosis Minimum Maximum N 
Deviation Value Value 

DFi .370 .225 1.513 4.680 .067 1.000 546 

FLi Input 1 .301 .171 1.852 6.808 .067 1.000 546 

FLi Input 2 .277 .173 1.719 6.516 .032 1.000 546 

FLi Input 3 .297 .184 1.590 5.913 .010 1.000 546 

Zi Input 1 .326 .164 1.427 5.426 .067 .997 546 

Zi Input 2 .278 .166 1.649 6.250 .033 .999 546 

Z¿lnput3 .314 .177 1.353 5.118 .012 .999 546 

AFi Input 1 .325 .191 1.450 4.105 .158 .855 21 

AFi Input 2 .071 .084 3.761 24.631 .006 .827 489 

,4F* Input 3 .177 .151 1.485 4.342 .022 .598 36 

dimension. The latter result is also evident from the largest number 
of observations being scaled down in that dimension by the asymmetric 
Fare efficiency score. This variation in the distributions of the com- 
ponents of each nonradial efficiency score is also confirmed by a series 
of nonparametric test statistics. First, a Friedman two-way analysis of 
variance based on ranks reveals that the components of none of the non- 
radial efficiency measures follow the same distribution. Furthermore, 
for no single dimension do these efficiency measures share a common 
distribution. Second, a Wilcoxon signed rank test confirms these neg- 
ative results, except for some similarities between components of FLi 
and Zi and between the first and third dimension of AFi • Overall, these 
results seem to indicate that there are considerable differences in the 
proposed role models between, on the one hand, the radial and nonra- 
dial efficiency measures, and on the other hand among the nonradial 
efficiency measures(23) . 

Similarities in efficiency rankings across the four measures can 
be inferred from the matrix of Pearson product-moment correlation 
coefficients reported in Table 5. Note that all correlation coefficients 

(23) Because of space limitations, details on both nonparametric test statistics 
are suppressed. 
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Table 5: Correlation matrix between input efficiency measures on DEA. 

Ej(x,y) DFj FLj Z{ AFj 

All Observations (N = 575) 

DFi 1.000 0.979 0.985 0.872 

FLi 1.000 0.994 0.919 

Zi 1.000 0.905 

AFi 1.000 

Inefficient Observations Only (N = 546) 

DFi 1000 0.972 0.976 0.839 
FLi 1.000 0.990 0.864 
Zi 1.000 0.858 
AFi 1-000 

are significantly different from zero at the 99% significance level. Given 
the large number of efficient observations, the positive correlations are 
very high. Therefore, we added the correlation matrix calculated on 
the inefficient observations only. The size of the correlations is aided 
by the fact that for the 134 inefficient observations that are projected 
onto the efficient subset, the radial and Zieschang efficiency measures 
are equal. The Färe-Lovell and Zieschang measures also coincide for 71 
(about 13%) inefficient observations. The other efficiency measures do 
not agree for any of the observations. The highest correlations found 
are those between the Färe-Lovell and Zieschang efficiency measures. 
This finding is not too surprising, given that the latter incorporates 
the former in its definition (and, as indicated above, sometimes selects 
the same projection point). The lowest correlations in the matrix are 
those between the radial and the asymmetric Fare efficiency measures. 
Furthermore, the asymmetric Fare measure correlates only slightly 
better with the Färe-Lovell and the Zieschang efficiency measure(24) . 

5 Summary and conclusions 
The purpose of this paper was twofold. First, the choice of a tech- 

nical efficiency measure was analyzed from a theoretical perspective. A 

(24) These results are similar to those obtained on the FDH, except that on 
the latter reference technology all correlation coefficients are lower: see De 
Borger, Ferrier and Kerstens [1994]. 
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review of the axiomatic literature provided a list of desirable properties 
and three alternatives to the radial efficiency measure. Unfortunately, 
neither the radial nor the nonradial efficiency measures meet all of the 
desirable properties for a large class of production technologies. The 
primary disadvantage of the radial measure is its failure to conform to 
the Koopmans definition of technical efficiency. Each of the nonradial 
measures conforms to the Koopmans definition of efficiency, and are 
thus superior to the radial measure on this score. However, none of the 
nonradial measures satisfies all of the properties of an "ideal* efficiency 
measures, therefore it is difficult to choose among them on theoretical 
grounds alone. In addition, the radial measure possesses an attrac- 
tive factor price independent cost interpretation vis-à-vis the nonradial 
measuring, further complicating the choice among alternatives. For a 
specific reference technology like DEA, however, the picture changes 
somewhat, as the Zieschang efficiency measure satisfies all four Fare 
and Lovell [1978] axioms while the Färe-Lovell efficiency index meets 
three of these properties. In this case the radial and the asymmetric 
Fare efficiency measures satisfy only a single axiom. 

Second, to provide a comparison of their empirical performances, 
these four technical efficiency measures were applied to a set of input 
and output data on US banks using a DEA model. Wide differences in 
the distributions of technical efficiency and in the resulting correlations 
were revealed by this exercise. It also showed that the radial efficiency 
measure is not a good empirical substitute for the nonradial alternatives, 
as on average it scaled inefficient observations down to projection points 
far removed from the efficient subset. 

Two final conclusions emerge from this theoretical and empirical 
analysis. First, the choice among the various alternative measures 
of technical efficiency is an important consideration within the DEA 
framework. Empirical evidence confirms the theoretical intuition that 
the radial efficiency measure does a poor job in closing the distance 
between the inefficient observations and the efficient subset. Second, 
both the theoretical arguments and empirical evidence suggest that 
the Färe-Lovell and Zieschang efficiency measures provide valuable 
alternatives to radial measurement. These measures appear to differ 
little in either theory or in practice. 
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APPENDIX A 
Computation of efficiency measures on DEA 

This appendix first discusses the linear programs developed to compute 
the radial efficiency measure in the inputs and the optimal slack vectors. Then 
it proceeds to the calculation of the nonradial alternatives. 

To calculate the radial efficiency measure in the inputs (DFi(x,y)) on 
this deterministic non-parametric reference technology requires solving the 
following linear program for each observation {x°,y°) being evaluated: 

Min A 
k 

s.t. ]T ViJzi = yoj for j = 1, . . . , n 
2=1 
k 

/J %uZi = Axo¿ for f- - 1, . . . , 771 
2=1 
k 

E2* = 1 ■ 
2=1 

A ̂  0, Zi ̂  0 fori = l,...,fc. 

Or, in a more compact matrix notation and introducing explicitly slack vectors 
to convert the above inequality constraints into equalities leads to the following 
formulation: 

Min A 
A,2,s,e 

s.t. Ylz-s = y° 
x°X - X*z - e = 0 

Ifc* = 1 

A ̂  0, z ^ 0, s ^ 0, e ̂  0, 
where s and e are vectors of surplus outputs and excess inputs of dimension 
n and m respectively. In the second stage the maximal slacks and the optimal 
activity vector are obtained by solving one additional linear program for each 
observation (x°,y°): 

s.t. Y*z - s = y° 
- X*z - e = -X*x° 

Ifc* = ! 

z ^ 0, s ;> 0, e ^ 0, 
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where À* is the optimal radial efficiency measure determined in the first stage, 
i.e. the previous linear program. If one is only interested in the optimal values 
of the efficiency measure, this second step is redundant. 

To compute the nonradial alternative efficiency measures requires some 
simple modifications of the above presented linear programs. Their only draw- 
back is their sometimes higher computational cost, as they can involve the so- 
lution of more than one linear program for each observation. The discussion 
starts with the Färe-Lovell efficiency measure, then deals with the Zieschang 
efficiency measure, and finally mentions the computation of the asymmetric 
Fare efficiency measure. 

The calculate the Färe-Lovell efficiency measure in the inputs FLi(x, y) 
requires solving the following linear program for each observation (x°, y°) : 

Min -4a 
s.t. Y*z ̂  y° 

x° 0 A -.X*z £ 0 

tkz = 1 

A ^ 1 

A ̂  0, z Z 0, 

where A is now defined as an m x. 1 vector, and 0 denotes the Hadamard 
product, i.e. the element-by-element multiplication. Each component of this 
vector A is able to scale down a corresponding component of the input vector of 
the observation being evaluated x° (see also Fare, Grosskopf and Lovell [1985], 
pp. 160-162). It must be stressed that, in contrast to the radial approach, the 
inequality constraints on the components of the efficiency measure must be 
absolutely incorporated, if not projections can be made on hypersurfaces which 
are no part of the boundary of the input correspondence. 

The calculation of the Zieschang efficiency measure in the inputs Zi(x, y) 
requires solving a pair of linear programs for each observation (x° , y° ) . The first 
step is the calculation of the radial efficiency measure in the inputs DFi(x, y) : 
A* is the optimal value. The second step is the calculation of the Färe-Lovell 
efficiency measure FLi(x,y) for the modified observation ('*x°,y°). The 
Zieschang efficiency measure is simply the product of the efficiency measures 
obtained in both steps Z»(x, y) = FLi(x DFi(x, y), y) DF^x, y) . 

The asymmetric Fare efficiency measure in the inputs AFi(x, y) requires 
solving in linear programs (one for each input dimension) for each observation 
(x°,y°) and taking the minimum of the in calculated partial efficiency mea- 
sures AF? (x, y) . Or formally, these partial measures AF¡(x, y) are obtained 
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as the solutions to the following linear program: 

Min A/7 
k 

s.t. ^2 ViJzi = 2/0j for j = 1, . . . , ñ 
t=i 
k 

^^XiiZi ^ xoe for £■=!,..., in; £^ h 

2=1 
k 

xoh^h - 2ZXihZi ̂  0 
¿=i 
'k 

5> -1 
2=1 

A/, ̂ 0, 2¿ St 0 fori = l,...,ifc 

and i4F¿(x, y) = min{À*, . . . , A^} determines the asymmetric Fare efficiency 
measure in the inputs. 

APPENDIX B 
Additional analysis of diversification in the sample 

Table B. 1 presents for all 29 efficient observations the values of the 
inputs and the outputs (rounded numbers). In addition, it reports an index 
of specialization, which is defined as follows: 

. ye min - 
S= 

e 
% for£=l,...,m 

max - 
i ye 

where y¿ is the median output for the i-th dimension in the sample. Clearly, 
0 ̂  5 ^ 1 . Note that a zero value implies a complete specialization in at least 
one of the outputs, while a value of unity indicates that an observation is equally 
diversified as the median of each output dimension in the sample. Finally, 
descriptive statistics are reported on the same information for the inefficient 
observations only. 

This table can be interpreted as follows. First, for the inefficient observa- 
tions it is clear that they are on average less specialized and thus more diver- 
sified than the efficient observations which span the hyperplanes of the convex 
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Table B.1: Outputs, inputs and an index of specialization of US banks 

Obs Y1 Y2 Y3 Y4 Y5 X1 X2 X3 S 

Efficient observations (29 observations) 

1 37812 48236 2923 13874 1598 299 92902 1001416 0.3517 
2 38280 80900 3250 30500 8800 265 485185 419629 0.5129 
3 139733 12532 803 1248 646 48 373152 467218 0.0219 
4 7455 17000 829 3704 593 58 23793 230546 0.5013 
5 1489 6484 405 791 175 15 48451 58258 0.3028 
6 13574 26066 1325 7108 2343 103 15452 646172 0.6962 
7 151029 104147 3069 52064 9041 876 4413101 4205357 0.2413 
8 131614 126655 1874 69793 14820 1166 6706439 11550379 0.1303 
9 8916 11688 583 2048 958 66 164174 86963 0.5621 
10 17849 118488 773 9570 5538 185 380889 784920 0.1382 
11 11411 5678 570385 987 564 71 367587 1310195 0.0004 
12 20184 61439 2354 5131 4099 144 221287 420021 0.3646 
13 14524 16891 1096 4774 1253 85 8017 386396 0.6519 
14 4119 12424 1202 3403 84515 57 205181 309610 0.0059 
15 1221 4402 179 858 291 6 29914 92315 0.4948 
16 698 1853 43 122 213 5 18000 55086 0.1684 
17 3039 5575 127 454 713 20 2260 113894 0.1873 
18 1200 226 41 356 390 9 5804 36806 0.0390 
19 1182 16212 0 4515 0 20 12390 347664 0.0000 
20 9500 29482 342 10613 603 34 125972 183109 0.1564 
21 8647 36569 877 10990 555 33 47802 622515 0.1717 
22 4815 25192 0 10016 0 51 68814 307679 0.0000 
23 28638 103346 632 16018 0 121 242464 1320286 0.0000 
24 3783 34607 484 7561 0 22 98207 164678 0.0000 
25 1254 8903 0 3452 0 12 7000 172650 0.0000 
26 10714 85061 16145 3183 1 210 73829 1518068 0.0000 
27 2213 7562 103 3762 0 8 35638 72101 0.0000 
28 36437 404045 0 151828 0 333 1441161 6237352 0.0000 
29 4745 40305 4564 6794 0 91 21183 495702 0.0000 

Mean 24692 50068 21186 15018 4749 152 542622 1159206 0.1965 
Minimum 698 226 0 122 0 5 2260 36806 0.0000 
Maximum 151029 404045 570385 151828 84515 1166 6706439 11550379 0.6962 
St. Dev. 41015 76550 103832 30052 15457 255 1424837 2353889 0.2218 

Inefficient observations (546 observations) 

Mean 11678 24164 1787 5468 1303 109 532642 1028300 0.2948 
Minimum 136 392 0 0 0 5 8448 45111 0.0000 
Maximum 95777 194116 29886 74703 11803 914 7608838 9536301 0.8676 
St. Dev. 12871 29823 3640 7738 1448 119 741603 1300030 0.2036 
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DEA hull. Furthermore, 52 of these observations are completely specialized in 
at least a single dimension (5 = 0). Second, for the efficient observations one 
finds, as stated earlier, 8 observations with a complete specialization (5 = 0) . 
Moreover, 20 out of 29 observations have an index of specialization below the 
overall sample average of .2898. 

These observations are consistent with our hypothesis that the large 
variation in the degree of specialization and diversification cause the observed 
pattern of technical efficiency scores. This is also confirmed in a simple analysis 
of correlation between the four technical efficiency measures and the above 
defined index of specialization. The product-moment correlation coefficients for 
the radial, the Färe-Lovell, the Zieschang and the asymmetric Fare efficiency 
measures are respectively -.233, -.212, -.204 and -.179. They all have the 
expected negative sign and differ significantly from zero. 
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