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Abstract
Effective methods for determining the boundary of the normal class are very 
useful for detecting anomalies in commercial or security applications—a problem 
known as anomaly detection. This contribution proposes a nonparametric frontier-
based classification (NPFC) method for anomaly detection. By relaxing the 
commonly used convexity assumption in the literature, a nonconvex-NPFC method 
is constructed and the nonconvex nonparametric frontier turns out to provide a 
more conservative boundary enveloping the normal class. By reflecting on the 
monotonic relation between the characteristic variables and the membership, the 
proposed NPFC method is in a more general form since both input-like and output-
like characteristic variables are incorporated. In addition, by allowing some of 
the training observations to be misclassified, the convex- and nonconvex-NPFC 
methods are extended from a hard nonparametric frontier to a soft one, which also 
provides a more conservative boundary enclosing the normal class. Both simulation 
studies and a real-life data set are used to evaluate and compare the proposed NPFC 
methods to some well-established methods in the literature. The results show that 
the proposed NPFC methods have competitive classification performance and have 
consistent advantages in detecting abnormal samples, especially the nonconvex-
NPFC methods.
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1 Introduction

Anomaly detection can be defined as the task of detecting anomalous data that 
differ in some aspects from the normal data which is known during training. The 
practical use and challenging nature of anomaly detection have gained considerable 
research attention and led to many methods being proposed. The applications of 
anomaly detection methods settle across sectors and disciplines, such as in medical 
diagnosis (Park et  al. 2010; da Silva et  al. 2021), faults and failure detection in 
complex systems (Clifton et al. 2014; Jiang et al. 2020), and credit card or telecom 
fraud detection (Bhattacharyya et  al. 2011; Ahmed et  al. 2016; Al-Hashedi and 
Magalingam 2021) to name but a few. In all of these commercial or security 
applications, detecting potential anomalies are of crucial importance to prevent 
from some catastrophic outcome. For comprehensive and structured investigations 
of anomaly detection methods and their application domains, one may refer to the 
surveys of, e.g., Markou and Singh (2003a, 2003b); Ruff et al. (2021); Pang et al. 
(2021).

In practice, it is difficult and costly to collect large-scale labeled anomaly data. 
Thus, a typical data set observed in anomaly detection is extremely unbalanced, 
with a large number of normal data, but insufficient abnormal data to describe the 
anomaly or say novelty. Therefore, classical binary classification methods may not 
be applicable for anomaly detection since they normally require the two classes 
to be more or less balanced. To address the anomaly detection problem from a 
discriminative perspective, one-class classification, occasionally also called single-
class classification, is introduced, see Moya et  al. (1993); El-Yaniv and Nisenson 
(2006), or Khan and Madden (2014). The one-class classification anomaly detection 
methods are particularly based on the single class of normal data.

The fundamental idea of the one-class classification methods aims at finding 
a boundary around the normal class to describe the domain containing normal 
data only. If a new data point is located within the boundary, then it is regarded 
as normal; otherwise, it is an anomaly. Among the various one-class classification 
methods, one-class support vector classifiers (OC-SVCs) determine the boundary 
using only the normal data closest to it, i.e., the support vectors, not relying on 
any property of the distribution of the data. Over the past decades, OC-SVCs have 
been extensively studied and found suitable for anomaly detection in numerous 
applications, e.g., Alam et al. (2020).

Two evolutionary methods of OC-SVCs are the support vector data description 
(SVDD) method and the one-class support vector machine (OC-SVM) method. 
First, the SVDD method proposed by Tax and Duin (1999) defines a hypersphere 
with minimum radius that encloses the normal class. It gives a satisfactory 
performance but leads to a loose boundary for multivariate data sets, see Tax and 
Juszczak (2003). Second, the OC-SVM method proposed by Schölkopf et al. (1999) 
constructs a hyperplane to separate the normal class with the maximal margin 
from the origin in some feature space. In the OC-SVM method, all anomalies are 
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assumed to be close to the origin, while the normal data points are far from the 
origin. In this respect, the OC-SVM method is not purely based on the normal class. 
Moreover, both the SVDD and OC-SVM methods have fixed their general shape 
of the boundary a priori: the former defines a hypersphere, and the latter describes 
a hyperplane. For cases where the normal class cannot be directly described by a 
hypersphere or a hyperplane, the introduction of kernel functions can bring some 
flexibility (Noble 2006).

In line with the fundamental idea of OC-SVCs, this contribution is also interested 
in determining the boundary of the normal class using only part of the normal data. 
Moreover, the boundary is expected to be around the data set without pre-determin-
ing the exact shape. To meet this, the Data Envelopment Analysis (DEA) method, 
which floats a piecewise linear boundary enveloping the observed data set, becomes 
of interest. It is a linear programming model proposed by Banker et al. (1984) and 
widely applied in production economics and finance, see the surveys and historical 
developments in Emrouznejad and Yang (2018); Emrouznejad et  al. (2019); Kaf-
fash et al. (2020). The piecewise linear boundary generated from the DEA model is 
commonly termed as a nonparametric frontier. The shape of the nonparametric fron-
tier is determined by the originally observed data and the imposition of some weak 
maintained axioms, not necessarily in any feature space.

The main inspiration of introducing the nonparametric frontier to anomaly 
detection stems from the earliest work of Troutt et al. (1996) and a modified version 
by Seiford and Zhu (1998). They propose to develop an acceptance frontier with 
DEA method for case-based computer systems. Based on their work, theoretical 
extensions include characterizing data with non-discretionary characteristics (Leon 
and Palacios 2009), incorporating importance measures of characteristics (Yan and 
Wei 2011), etc. A series of empirical and experimental studies with the acceptance 
boundary were contemporaneously conducted by Pendharkar and coauthors in 
various domains, e.g., bankruptcy prediction (Pendharkar 2002), mining breast 
cancer patterns (Pendharkar et al. 2000), etc.

In the above classification methods, a convex (C) nonparametric frontier is 
constructed based on a certain group of training data. Then, this C nonparametric 
frontier is used to predict the group membership of test data. If a test data point is 
located within the C nonparametric frontier, then it has the same group membership 
as the training data which generate the C nonparametric frontier. Otherwise, it 
should be assigned to another group. We refer to these classification methods as 
C-nonparametric frontier-based classification (C-NPFC) methods.

These C-NPFC methods are all constructed from a single group of data. In 
this respect, these methods should have a unique advantage in anomaly detection 
problems, where only the group of normal data is sufficiently available. However, 
the existing C-NPFC methods originating from Troutt et  al. (1996) are mainly 
designed to solve a classical binary classification problem. Therefore, this unique 
advantage of relying on only a single group of data to achieve correct classification 
has not received any attention in the literature related to C-NPFC methods.

To the best of our knowledge, the C-NPFC methods have not been applied 
to solve the anomaly detection problem. Moreover, the C-NPFC methods are 
essentially frontier analysis methods, and anomaly detection is one of the main 
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tasks in supervised machine learning. Machine learning and frontier analysis are 
two relatively disconnected fields. In the literature, a research trend of applying 
well-known machine learning techniques to frontier analysis seems to emerge, e.g., 
Aparicio et al. (2021); Valero-Carreras et al. (2021); Zhu et al. (2021); Esteve et al. 
(2023). However, research applying frontier analysis methods to machine learning 
seems not to be developing in parallel. Therefore, the adaptation of C-NPFC 
methods to the anomaly detection problem can help bringing frontier analysis 
methods into the field of machine learning, thus creating some connection between 
two otherwise more or less unrelated fields.

In addition, there are in our opinion three key shortcomings of the existing 
C-NPFC methods which may constrain their classification capacity.

First, the existing C-NPFC methods are limited to construct a C nonparametric 
frontier. If the boundary of the class happens to be C, then a C nonparametric 
frontier offers a reasonable estimate. But, with our ignorance as to the real shape of 
the boundary, the convexity assumption can be overly optimistic. Pendharkar et al. 
(1999, p. 231) mention this as a potential harm to the capacity of the DEA frontier-
based classification method while comparing it to the neural networks which are not 
constrained by convexity.

Second, the existing C-NPFC methods are limited to situations in which all 
characteristic variables have the property called conditional monotonicity. That 
is, acceptability of a case to a class increases with the increase or decrease in all 
characteristic variables. Thus, a radial DEA model without outputs or without inputs 
are adopted in the literature (Lovell and Pastor 1999).

Third, the existing C-NPFC methods are required to be constructed from all 
training observations. In other words, all training observations are presumed to 
be important in characterizing a group, yet some of them may be of very limited 
importance. Even worse, some of these training observations may be noises whose 
presence will overfit a misleading nonparametric frontier.

In conjunction, these restrictions are severe. A generic data set need not be 
separable by a C boundary, and it can simultaneously possess monotonically 
increasing and decreasing characteristics. Moreover, the data set may contain noisy 
or less important observations.

In this contribution, a general NPFC method is proposed to solve the anomaly 
detection problems and it can well compensate the above shortcomings. First, the 
convexity assumption is interpreted as reflecting a substitution relation between the 
characteristic variables. This relation does not always hold in practice. Therefore, 
we propose to relax the convexity assumption and construct a nonconvex-NPFC 
(NC-NPFC) method. This NC-NPFC method is based on the Free Disposal Hull 
(FDH) model, initially proposed by Deprins et al. (1984). Solving the FDH model 
results in a monotonous and staircase shaped nonparametric frontier enveloping 
the observed data. This NC nonparametric frontier is more conservative than the C 
nonparametric frontier. Second, the assumption of free disposability is interpreted 
as reflecting the monotonic relation between the characteristic variables and the 
membership. Therefore, both monotonically increasing and decreasing characteristic 
variables can be incorporated into the model simultaneously. Third, by allowing 
certain training observations to be misclassified, C and NC soft nonparametric 
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frontiers are constructed with a super-efficiency model, initially proposed by 
Andersen and Petersen (1993). These soft nonparametric frontiers are believed to be 
less influenced by noise and less important observations. With these modifications, 
a generalized NPFC method is constructed: it can portray both monotonically 
increasing and monotonically decreasing characteristic variables, and it can generate 
a C hard frontier, a C soft frontier, an NC hard frontier, or an NC soft frontier.

To meet the above objectives, this contribution is structured as follows. Section 2 
introduces the models and procedures used to construct the generalized NPFC 
method. In Sect.  3, both simulation studies and a real-life data set are used to 
show the classification performance of the NPFC methods relative to that of the 
OC-SVM and SVDD methods. Finally, Sect. 4 is concluded with a summary of the 
contributions and a discussion of potential future research topics.

2  Nonparametric frontier‑based classification methods

2.1  Problem description

In anomaly detection problems, there is usually only a sufficient number of normal 
observations. The number of anomalous observations is very limited and therefore 
being insufficient for training a classifier. Thus, the training set consists of normal 
observations only. Let G = {Z1,… , Zn} be the set of training observations. For a 
subset A of G, iG(A) = {j ∈ {1,… , n} ∣ Zj ∈ A} refers to the set of indexes of the 
elements of A in G.

Each training observation Zj ∈ G is characterized by a number of characteristic 
variables. These characteristic variables can be exclusively differentiated into two 
monotonic types, namely the monotonically decreasing characteristic variables 
denoted by X = {x1,… , xm} and the monotonically increasing characteristic 
variables denoted by Y = {y1,… , ys} . The former is also termed as input-like 
characteristic variables, and the latter is termed as output-like characteristic 
variables. Generally, the observation is represented by Zj = (Xj, Yj) ∈ ℝm ×ℝs.

The monotonicity relations between the characteristic variables and the group 
membership are prior-knowledge of a classification problem. Consider the example 
of credit card default. All other characteristics being the same, cardholders with 
higher annual income are less likely to default compared to cardholders with lower 
income. That is, the probability of default should not decrease in the presence of 
better characteristics while the rest remains the same. Specifically, a characteristic 
variable is defined as being output-like if the probability of being normal increases 
(decreases) with the increase (decrease) of its value, e.g., the annual income in the 
example of credit card default. A characteristic variable is defined as being input-
like if the probability of being normal increases (decreases) with the decrease 
(increase) of its value.

Given the training set G, an acceptance possibility set (APS) is constructed from 
the training observations and the imposition of some weak maintained axioms. It 
is a data-based description of the normal group. Any data point within this APS 
is perceived as normal and anomalous otherwise. Then, the boundary of the APS, 
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termed as a nonparametric frontier, is used for anomaly detection. It consists part of 
the normal training observations. A test data point that has the same characteristic 
variables as the training observations is classified as normal if it lies within the 
nonparametric frontier and anomalous otherwise.

2.2  Convex and nonconvex acceptance possibility set

In this subsection, the normal observations from the training set G are used to 
describe the domain containing all possible normal data points. It describes all 
possible combinations of characteristic values for which the corresponding evaluated 
data point can be classified as normal.

In production analysis, a production possibility set (PPS) is used to describe 
the attainable set in production. For all the combinations of the inputs and the 
output within the PPS, these are attainable (producible) under a certain given 
technology. Instead of discussing the producibility under the PPS, the attainable set 
in classification describes the attainability in accepting an observation as normal. 
Hence, we define an APS to describe the attainable set of the normal group based on 
the training set G.

If a data point has the same characteristic values as a normal observation from 
the training set G, then it is in the APS. Based on the monotonicity relations, 
any data point with less X and more Y than an observation Zj ∈ G is perceived 
as having higher probability of being normal and thereby should be in the APS 
of the normal group. A free disposal set denoted by Tj is introduced to describe 
the situation under the monotonicity constraint. For every observation Zj ∈ G , 
Tj = {(X, Y) ∈ ℝm ×ℝs ∣ X ≤ Xj and Y ≥ Yj}.

The union of all the free disposal sets of the observations from G constitutes a 
NC APS denoted by TNC . Specifically, TNC depicts the normal group based on the n 
training observations as follows:

Figure 1 sketches a typical figure displaying a NC APS. All gray crosses are obser-
vations known from the normal group and constitute the training set G. These 
observations are characterized by two characteristic variables, namely X ∈ ℝ1 and 
Y ∈ ℝ1 . For the monotonically decreasing characteristic variable X, the smaller its 
value the higher is the probability of belonging to the normal group. While for the 
monotonically increasing characteristic variable Y, the larger its value the higher is 
the probability of belonging to the normal group.

In Fig.  1, the observations from G are known to be normal. Thus, they are 
apparently in the APS. Then, we take the observation Z6 as an example to explain the 
free disposal set. The free disposal set is built based on the monotonic relation of the 

(1)

TNC =

n⋃

j=1

Tj

=

{
(X, Y) ∈ ℝm ×ℝs ∣

n∑

j=1

�jXj ≥ X,

n∑

j=1

�jYj ≤ Y ,

n∑

j=1

�j = 1, �j ∈ {0, 1}

}
.
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characteristic variables. If a data point has either a smaller X or a larger Y than Z6 , 
then it is more likely belonging to the normal group than Z6 does. Since Z6 belongs 
to the normal group, thus, a data point which has either a smaller X or a larger Y than 
Z6 can be accepted as normal. This draws the dashed hatched area, which is located 
above and to the left of Z6 . This dashed hatched area represents the free disposal set 
of Z6 , namely T6 . If a new data point is located within this dashed hatched area, then 
it is regarded as normal just like the observation Z6 . For other observations from the 
training set G, their free disposal sets are derived in the same way. The union of all 
these free disposal sets constitutes the NC APS of the normal group. In Fig. 1, this is 
the shaded area restricted to the second quadrant located above and to the left of the 
dotted polyline P5Z1P1Z2P2Z3P3Z4P4Z5P6.

In addition to the monotonicity assumption, the convexity assumption is 
commonly adopted in the literature. Mathematically, the axiom on convexity implies 
that for any two observations from one set, the linear combination of these two 
observations belong to the same set. In classification, this convexity axiom could 
explain a substitution relation between two characteristic variables. For example, 
both Z2 and Z4 in Fig.  1 are normal training observations. With the convexity 
assumption, their linear combinations, which locates on the line between Z2 and Z4 , 
are also regarded as belonging to normal.

The C APS, denoted by TC , is the convex hull of the NC APS. It depicts the 
normal group based on the n training observations as follows:

(2)TC =

{
(X, Y) ∈ ℝm ×ℝs ∣

n∑

j=1

�jXj ≥ X,

n∑

j=1

�jYj ≤ Y ,

n∑

j=1

�j = 1, �j ≥ 0

}
.
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Figure 2 shows a figure of a C APS. The same training observations as in Fig. 1 
are used to illustrate the construction of a C APS. This C APS is built based on the 
NC APS with an additional assumption on convexity. Under the convexity assump-
tion, the data points derived from the linear combination of observations must also 
be regarded as belonging to the normal group. For example, the data points on the 
line Z2Z4 should be classified into the normal group due to the convexity assump-
tion. Then, the data points in the polygon Z2P2P3Z4Z2 marked by grid lines can 
also be classified into the normal group with the monotonicity assumption. Overall, 
three polygons marked by grid lines are added, namely Z1P1Z2Z1 , Z2P2P3Z4Z2 and 
Z4P4Z5Z4 . Thus, the C APS of the normal group is the shaded area restricted to the 
second quadrant located above and to the left of the solid polyline P5Z1Z2Z4Z5P6.

For the NC case, the APS consists of data points which are located within the free 
disposal area of certain training observation from G. While for the C case, except 
for the above situation, if a data point is located within the free disposal area of a 
convex combination of two training observations from G, it also constitutes the APS 
and therefore belongs to the normal group. Obviously, TNC ⊆ TC : a NC monotonic 
hull is a subset of a C monotonic hull. Put differently, the NC APS provides a tighter 
envelopment of the training observations than the C APS does.

To simplify the expressions, we use the following notation to stand for the APS 
of the normal group under the NC and C cases:
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Fig. 2  Convex APS of the normal group G 
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where

2.3  Convex and nonconvex hard nonparametric frontiers

Instead of using all the training observations, the APS of the normal group can be 
simply described by a number of training observations located on the nonparametric 
frontier. These training observations have the least preferable characteristic 
values and are located on the worst-practice frontier. Any data point with better 
characteristics than these training observations is assigned to be normal. On the 
contrary, any data point with worse characteristics than these training observations 
is assigned to be abnormal. In the following, the hard nonparametric frontiers under 
the C and NC settings are introduced correspondingly. These nonparametric frontiers 
are hard in the sense that all the normal training observations are used to construct 
a nonparametric frontier. In other words, all the normal training observations are 
required to be correctly classified during the training process.

Before constructing the hard nonparametric frontiers, we introduce the directional 
distance function (DDF) measure to gauge the relative distance of a data point Z 
to the frontier. Following Chambers et  al. (1998), TΛ is represented by the DDF 
measure ( DΛ,g(Z) ) defined below:

where g = (gX , gY ) ∈ ℝm ×ℝs represents the projection direction. To be meaningful, 
gxi > 0 for all i ∈ {1,… ,m} and gyr < 0 for all r ∈ {1,… , s} . In this way, the 
characteristic variables X are non-decreasing and the characteristic variables Y are 
non-increasing while increasing the value of � , which is the favorable behavior. Note 
that � is a free decision variable that can take positive, zero or negative values.

All the C nonparametric frontier-based classification methods in the literature 
adopt either an input-oriented or an output-oriented radial efficiency measure. 
However, the adoption of these radial efficiency measures may lead to infeasibilities 
for the observations located outside the APS, when there are both input-like and 
output-like characteristic variables. While the DDF measure in expression (4) 
is well-defined for all possible data points, and for different monotonic types of 
characteristic variables.

The value of DΛ,g(Z) serves as an indicator that positions an observation relative 
to the hard frontier of the APS ( TΛ ). A non-negative DΛ,g(Z) means that Z belongs 

(3)TΛ =

{
(X, Y) ∈ ℝm ×ℝs ∣

n∑

j=1

�jXj ≥ X,

n∑

j=1

�jYj ≤ Y ,

n∑

j=1

�j = 1, �j ∈ Λ

}
.

(i) Λ ≡ ΛC =
{
�j ≥ 0

}
, or (ii) Λ ≡ ΛNC =

{
�j ∈ {0, 1}

}
.

(4)DΛ,g(Z) = sup{� ∈ ℝ ∣ Z + �g ∈ TΛ}.
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to TΛ . Specifically, an observation with DΛ,g(Z) equal to 0 means this observation is 
located on the hard frontier. If an observation Z is located outside TΛ , then DΛ,g(Z) 
becomes negative and this observation is projected onto the hard frontier in the 
direction opposite to g.

Note that different choices of the direction vectors g lead to various distance values 
denoted by DΛ,g(Z) . However, this choice does not change the sign of DΛ,g(Z) . In the 
following, the direction vector is applied with g = (|X0|,−|Y0|) for the observation 
Z = (X0, Y0) . This invests the DDF measure with a proportional interpretation, see Briec 
(1997); Kerstens and Van de Woestyne (2011). Such a percentage interpretation is not 
indispensable to assign a membership, but it remains convenient.

Based on the APS of the normal group defined by expression (3), the propor-
tional DDF measure is then computed accordingly. With respect to TΛ , the DDF of a 
data point Z0 = (X0, Y0) is obtained by solving model (5):

where

In the C case, model (5) is a linear programming (LP) problem, while it involves 
solving a binary mixed integer program (BMIP) for the NC case. To remedy the 
computational issue in the NC case, a fast implicit enumeration-based method is 
proposed by Cherchye et al. (2001) requiring only to compute minima and maxima 
of lists of ratios. Instead of solving a BMIP model, the following exact solution is 
obtained for model (5) under the NC case:

The assumption on convexity differentiates the NC APS ( TΛNC ) from the C APS 
( TΛC ). However, this does not change the definition of the DDF measure, only the 
value of the DDF measure may change. Thus, �ΛNC ≤ �ΛC , since TΛNC ⊆ TΛC.

By solving model (5) for all observations from G, a frontier set denoted by FΛ 
is generated. FΛ consists of the observations from G that have �

∗

Λ
= 0 . Normally, 

the set FΛ under the NC case is different from that under the C case. All frontier 

(5)

max
�j,�Λ

�Λ

s.t.

n∑

j=1

�jxi,j ≥ xi,0 + �Λ|xi,0| ∀i ∈ {1,… ,m}

n∑

j=1

�jyr,j ≤ yr,0 − �Λ|yr,0| ∀r ∈ {1,… , s}

n∑

j=1

�j = 1

�j ∈ Λ ∀j ∈ {1,… , n}

(i) Λ ≡ ΛC =
{
�j ≥ 0

}
, or (ii) Λ ≡ ΛNC =

{
�j ∈ {0, 1}

}
.

(6)�
∗

ΛNC = max
j=1,…,n

(
min

i=1,…,m

(
xi,0 − xi,j

|xi,0|

)
, min
r=1,…,s

(
yr,j − yr,0

|yr,0|

))
.
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observations in FΛC can also be found in FΛNC . However, not all frontier observations 
in FΛNC belong to FΛC , since some frontier observations under the NC case might be 
dominated by convex combinations of certain observations. Therefore, FΛC ⫅ FΛNC.

We consider Figs.  1 and 2 in Sect.  2.2 as an example to illustrate the results 
of model (5). Under the NC setting, model (5) is executed for all training obser-
vations. Only observations Z1, Z2, Z3, Z4 and Z5 have �

∗

ΛNC = 0 , while the other 
observations have 𝛿

∗

ΛNC > 0 . Thus, the NC hard frontier is represented by the fron-
tier set FΛNC = {Z1, Z2, Z3, Z4, Z5} . The NC hard frontier is the dotted polyline 
P5Z1P1Z2P2Z3P3Z4P4Z5P6 . Similarly, model (5) is executed for all observations 
under the C setting. Observations Z1, Z2, Z4 and Z5 still have �

∗

ΛC = 0 , but observa-
tion Z3 has 𝛿

∗

ΛC > 0 as all the other observations do. Thus, FΛC = {Z1, Z2, Z4, Z5} . 
The C hard frontier is the solid polyline P5Z1Z2Z4Z5P6.

2.4  Convex and nonconvex soft nonparametric frontiers

In order to limit the impact of potentially noisy and less important observations on 
constructing the nonparametric frontiers, C and NC soft nonparametric frontiers 
are introduced in this section. These C and NC soft model variations have been 
introduced by Andersen and Petersen (1993) and Kerstens et al. (2022), respectively.

The C and NC nonparametric frontiers are soft in the sense that some of the normal 
training observations are allowed to be misclassified during training. Allowing some 
normal training observations to be misclassified means that these misclassified normal 
training observations are excluded from the construction of a nonparametric frontier. 
The potentially noisy and less important training observations are the ones that should 
be excluded from the construction of the nonparametric frontier.

According to the monotonicity relation, the frontier observations have the least 
preferable characteristic values. If these frontier observations are distant from the 
rest of the training observations, they may be noisy or of low importance. Thus, in 
this contribution, training observations that are close to the hard nonparametric fron-
tier but distant from the other training observations are identified as training obser-
vations that should be misclassified.

The distance of a training observation to the other training observations can be 
measured by a super-efficiency model. Specifically, model (7) is used to calculate 
the distance of a training observation Z0 = (X0, Y0) relative to the rest of the training 
observations. In this model, SΛ represents some subset of the set of training observa-
tions G: its precise meaning is defined in Algorithm 1.

The optimal value �∗
super,Λ

 measures the proportional distance of the training observa-
tion Z0 = (X0, Y0) to the rest of training observations denoted by SΛ ⧵ {Z0} . If �∗super,Λ is 
non-negative, then the training observation Z0 = (X0, Y0) is located within the APS gen-
erated from SΛ ⧵ {Z0} ; otherwise, it is located outside the corresponding APS.

In order to detect the noisy and less important training observations that should 
be misclassified, a negative cut-off super-efficiency denoted by cΛ is introduced. 
Specifically, if a training observation Z0 = (X0, Y0) satisfies �∗

super,Λ
≤ cΛ , then this 

training observation is identified as the one that should be misclassified.
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where

In this contribution, we suggest one way of deciding the value of cΛ . First, model (7) 
is calculated for every training observation in G. The �∗

super,Λ
 calculated for the fron-

tier observations in G should be non-positive. Then, these non-positive �∗
super,Λ

 are 
ordered from largest to smallest and are denoted by �∗

super,Λ
(Z1) , �∗super,Λ(Z2),.... The 

difference between two adjacent �∗
super,Λ

 should be small. If there is a considerable 
jump observed in the difference, i.e., if there is a significant large difference between 
�∗
super,Λ

(Zj) and �∗
super,Λ

(Zj+1) , then cΛ is taken to be the decile between �∗
super,Λ

(Zj) and 
�∗
super,Λ

(Zj+1) , and closest to �∗
super,Λ

(Zj) . An illustrative example for deciding cΛ is 
given in Appendix. Note that our suggested method for determining the value of cΛ 
is a feasible approach, but it is not necessarily the best one. Further research on this 
issue is certainly valuable: we return to this in Sect. 4.
Algorithm 1  Training a nonparametric frontier

Given:
Training data set: G, Input-like characteristics variables: X
Assumption on Convexity, Output-like characteristics variables: Y
Cut-off super-efficiency: cΛ

Training:
1: Let SΛ = G, MisΛ = ∅, l = 1
2: while l �= 0
3: l = 0, FΛ = ∅
4: for every Zj ∈ SΛ

5: Calculate δ∗super,Λ using model (7)
6: if δ∗super,Λ ≤ cΛ, then
7: MisΛ = MisΛ ∪ {Zj}, l = 1
8: end if
9: if cΛ < δ∗super,Λ ≤ 0, then
10: FΛ = FΛ ∪ {Zj}
11: end if
12: end for
13: SΛ = G \MisΛ
14: end while
15: Export FΛ for characterizing the nonparametric frontier

(7)

max
�j ,�super,Λ

�super,Λ

s.t.
∑

j∈iG(SΛ⧵{Z0})
�jxi,j ≥ xi,0 + �super,Λ|xi,0| ∀i ∈ {1,… ,m}

∑

j∈iG(SΛ⧵{Z0})
�jyr,j ≤ yr,0 − �super,Λ|yr,0| ∀r ∈ {1,… , s}

∑

j∈iG(SΛ⧵{Z0})
�j = 1

�j ∈ Λ ∀j ∈ iG(SΛ ⧵ {Z0})

(i) Λ ≡ ΛC =
{
�j ≥ 0

}
, or (ii) Λ ≡ ΛNC =

{
�j ∈ {0, 1}

}
.
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Algorithm 1 is designed to train a nonparametric frontier with a given cΛ . First, 
let SΛ = G,MisΛ = � . Then, the loop starts by calculating the optimal �∗

super,Λ
 for 

every training observation in SΛ . If a training observation Zj satisfies �∗
super,Λ

(Zj) ≤ cΛ , 
it is identified as a misclassified training observation and will be collected to MisΛ . 
As long as there are misclassified training observations identified, the loop continues 
with SΛ = G ⧵MisΛ ; otherwise, the loop ends. After executing Algorithm 1, all the 
training observations in SΛ should have 𝛿∗

super,Λ
> cΛ . Those training observations in 

SΛ that satisfy 0 ≥ 𝛿∗
super,Λ

> cΛ are recognized as the frontier observations and will 
be collected to the frontier set FΛ.

Note that Algorithm  1 is quite general, since it can train both soft and hard 
nonparametric frontiers, as well as C and NC nonparametric frontiers. Specifically, 
the assumption on convexity differentiates the nonparametric frontier as a C or a 
NC one. A hard nonparametric frontier can be trained by using a relatively small 
value of cΛ , e.g., cΛ = −100 . A soft nonparametric frontier is trained by deciding a 
suitably large value of cΛ based on the suggested way.

2.5  Nonparametric frontier‑based classification rules

Regardless of whether the NPFC method uses a hard or soft nonparametric 
frontier, their classification rules are the same. Therefore, this subsection does not 
differentiate between NPFC methods that use hard or soft frontiers when presenting 
the classification rules.

The membership of a new data point is decided by the relative location with respect 
to the hard or soft nonparametric frontier characterized by the frontier set FΛ . Specifi-
cally, model (8) is used to calculate the distance of the new data point Z0 = (X0, Y0) 
relative to the nonparametric frontier.

where

The decision variable �Λ in model (8) is a free variable. If �∗
Λ
≥ 0 , then it indicates 

that there exists a projection point that dominates the new data point Z0 = (X0, Y0) . 
This projection point is generated from the left-hand side of the inequality 

(8)

max
�j,�Λ

�Λ

s.t.
∑

j∈iG(FΛ)

�jxi,j ≥ xi,0 + �Λ|xi,0| ∀i ∈ {1,… ,m}

∑

j∈iG(FΛ)

�jyr,j ≤ yr,0 − �Λ|yr,0| ∀r ∈ {1,… , s}

∑

j∈iG(FΛ)

�j = 1

�j ∈ Λ ∀j ∈ iG(FΛ)

(i) Λ ≡ ΛC =
{
�j ≥ 0

}
, or (ii) Λ ≡ ΛNC =

{
�j ∈ {0, 1}

}
.
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constraints in model (8) and is represented by Zb = (
∑

j∈iG(FΛ)
�∗
j
Xj,

∑
j∈iG(FΛ)

�∗
j
Yj) . It 

is either an observation from the NC frontier set FΛNC or a convex combination of the 
observations from FΛC . In the case where �∗

Λ
≥ 0 , the following inequalities hold: ∑

j∈iG(FΛ)
�∗
j
Xj ≥ X0 and 

∑
j∈iG(FΛ)

�∗
j
Yj ≤ Y0 . Comparing to the projection point Zb 

which is normal, the new data point Z0 = (X0, Y0) has less X and more Y. Therefore, 
it should be assigned to the normal group.

By contrast, if 𝛿∗
Λ
< 0 , then the new data point Z0 dominates the projection point Zb . 

That is, 
∑

j∈iG(SΛ)
𝜆∗
j
Xj < X0 and 

∑
j∈iG(SΛ)

𝜆∗
j
Yj > Y0 . The projection point Zb is on the 

boundary of the APS. Comparing to the projection point Zb , the new data point Z0 has 
more X and less Y, and therefore, it is situated outside the APS. Hence, the new data 
point Z0 is assigned as an anomaly if there is no further information.

For a new data point Z0 whose group membership is unknown, model (8) is exe-
cuted and the optimal �∗

Λ
 is calculated. Then, the group membership of Z0 is decided 

based on the following Rule (9):

3  Experimental analysis

3.1  Experimental setup

The classification performance of the classifiers is characterized by 6 measures, 
namely, accuracy, precision, recall, specificity, F1 score and G-mean. These perfor-
mance measures are listed in Eqs. (10) to (15):

(9)
If �∗

Λ
≥ 0, then Z0 belongs to the normal group;

Otherwise, Z0 belongs to the group of anomalies.

(10)Accuracy =
TP + TN

TP + TN + FP + FN

(11)Precision =
TP

TP + FP

(12)Recall =
TP

TP + FN

(13)Specificity =
TN

TN + FP

(14)F1 score =
2 ⋅ Precision ⋅ Recall

Precision + Recall

(15)G-mean =
√
Precision ⋅ Recall
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whereby TN, TP, FN, and FP represent true negative, true positive, false negative 
and false positive cases, respectively. An anomaly is depicted as positive, while the 
normal case is depicted as negative.

Accuracy, which captures the percentage of correctly predicted samples out of all 
test samples, is the most commonly used overall performance measure. However, it 
fails to comprehensively reflect the overall performance when facing an unbalanced 
data set (Akbani et  al. 2004). Instead of using accuracy, a common choice in the 
literature is to calculate the harmonic and geometric means of the recall and the 
precision, namely the F1 score and the G-mean. These measures can alleviate the 
problem that the accuracy measure has with respect to the unbalanced data set (He 
and Garcia 2009). In addition to the F1 score and G-mean, we also list the precision, 
recall and specificity to give the readers a better understanding of the performance 
of different groups. Specifically, precision depicts the percentage of true positive 
(abnormal) samples out of all predicted positive samples. Recall represents the 
percentage of correctly predicted positive (abnormal) samples out of all true 
positive samples. Specificity indicates the percentage of correctly predicted negative 
(normal) samples out of all true negative samples.

Four NPFC methods are evaluated in the experimental analysis, namely, the 
C-NPFC method with a hard frontier, the C-NPFC method with a soft frontier, the 
NC-NPFC method with a hard frontier and the NC-NPFC method with a soft fron-
tier. The performance of the proposed NPFC methods is compared with two existing 
methods, namely, the OC-SVM and SVDD methods. It is important to remark that 
this comparison is intended to show that the proposed NPFC methods can be a good 
candidate for the anomaly detection problem, rather than always beat the best OC-
SVM and SVDD methods. Thus, the OC-SVM method with a Gaussian kernel and 
the SVDD method with a polynomial kernel are chosen to be compared with. The 
OC-SVM method with a Gaussian kernel is implemented using the MATLAB func-
tion “fitcsvm”. The SVDD method with a polynomial kernel is implemented using 
the MATLAB code available from Qiu (2022).

3.2  Simulation studies

In this subsection, two simulation studies, one based on C data sets and the other on 
NC data sets, are designed to evaluate the proposed NPFC methods. A data set is 
described as C if its boundary has an overall convex shape. Correspondingly, if the 
boundary of the data set as a whole exhibits a distinctly NC shape, it is described as 
NC.

A graphical representation of the C and NC data sets is depicted in Fig.  3. In 
both sub-figures, the blue crosses represent the normal observations, while the red 
dots represent the abnormal observations. Apparently, the boundary of the normal 
observations in Fig.  3a is C, while the boundary of the normal observations in 
Fig. 3b is NC.

In the first simulation study, the normal data sets are generated from a bivariate 
Normal density distribution N1(�1,Σ1) with the following parameters: �1 = (0, 5) 



1228 Q. Jin et al.

1 3

and Σ1 =

(
10 − 5

−5 20

)
 . The abnormal data sets are also generated from a bivariate 

Normal density distribution N0(�0,Σ0) , but with different parameters: �0 = (10, 10) 

and Σ0 =

(
2 − 1

−1 3

)
 . Each simulation generates 700 normal observations for 

training the classifier. Then, 100 normal observations and 100 abnormal 
observations are generated to form a test sample. This simulation with a C data set is 
repeated 100 times, and the average performance is reported for different 
performance measures.

While implementing the NPFC methods with a soft frontier, different val-
ues of cΛ are used for the C and NC cases. Specifically, we use cΛC = −0.1 and 
cΛNC = −0.2 . Note that we do not intend to suggest that these values of cΛ are the 
optimal choices. A careful choice of cΛ is important for identifying noisy and less 
important training observations as accurately as possible (see Appendix for a dis-
cussion on different choices of cΛ).

The performance results are summarized in Table 1. The first column displays 
the six performance measures used in this contribution. Columns 2–7 correspond 
to the performance results under the SVDD, OC-SVM, C-NPFC method with a 
hard frontier, C-NPFC method with a soft frontier, NC-NPFC method with a hard 
frontier and NC-NPFC method with a soft frontier, respectively. Horizontally, 
each row reports the average classification performance of the various methods 
under the corresponding measures (10)–(15). In each row, the best result among 
the six methods is highlighted in bold.

Several observations can be made from the performance results reported in 
Table 1.

First, benchmarking the classification performance of the two existing 
methods, the performance results of the proposed four NPFC methods can be 
found to be rather competitive. Specifically, in this simulation, the proposed 
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Fig. 3  Illustration of the simulated data sets
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C-NPFC methods have better performance results than the two existing methods 
in almost all measures. The only exception is that the recall value of the OC-SVM 
method is slightly higher by 0.3%.

Second, the adoption of a soft nonparametric frontier improves the overall 
performance for both the C- and NC-NPFC methods. Specifically, in this 
simulation, the improvement in overall performance brought by the soft frontiers 
to the NC-NPFC method occurs mainly in the third decimal place, while the 
improvement to the C-NPFC method is more pronounced and occurs in the 
second decimal place.

Third, the comparison between the C- and NC-NPFC methods demonstrates 
the relative strengths of each. Compared to the C-NPFC methods, the NC-NPFC 
methods provide a more conservative frontier enveloping the normal training 
observations. As a result, the NC-NPFC methods always have a higher recall value, 
indicating their better performance in correctly detecting abnormal observations. 
The C-NPFC methods, on the other hand, always have a higher specificity value, 
implying their good performance in correctly predicting normal observations.

Fourth, in terms of overall performance, it is expected that the C-NPFC 
methods should perform better when dealing with the C data set. However, the 
results show that the hard NC-NPFC method outperforms the hard C-NPFC 
method by about 0.52%. The above expectation is only validated when a soft 
frontier is used, i.e., the overall performance of the C-NPFC method is then about 
0.39% better than that of the NC-NPFC method.

In the following, another simulation setting is introduced for generating NC 
data sets. In this setting, the normal data sets are characterized by two bivariate 
Normal density distributions N1(�1,Σ1) and N2(�2,Σ2) , with the following 

parameters: �1 = (0, 5) , Σ1 =

(
10 − 5

−5 20

)
 , �2 = (12,−2) , Σ2 =

(
20 − 1

−1 8

)
 . The 

abnormal data sets are generated from the same bivariate Normal density distri-
bution N0(�0,Σ0) as in the first study. In each simulation, the training sample 
consists of two parts of data: one is a sample of 350 normal data generated from 
N1(�1,Σ1) , the other is a sample of 350 normal data generated from N2(�2,Σ2) . 
The test sample consists of three parts of data: the first is a sample of 50 normal 
data generated from N1(�1,Σ1) , the second is a sample of 50 normal data 
generated from N2(�2,Σ2) , and the third is a sample of 100 normal data generated 
from N0(�0,Σ0) . This simulation is also repeated 100 times, and the average 
performance is reported for different measures. While implementing the NPFC 
methods with a soft frontier, we use cΛC = −0.1 and cΛNC = −0.2.

The performance results are summarized in Table 2, which is structured in the 
same way as that of Table 1. Compared to the performance results under the C 
data set, there are still some observations worth mentioning in Table 2.

First, the performance of the NC-NPFC methods is still quite competitive 
in comparison with the two existing methods, and even outperform them on 
all performance measures in this simulation. However, this is not the case for 
the C-NPFC methods. The overall performance of the C-NPFC methods is still 
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competitive with that of the SVDD method, but much inferior to that of the OC-
SVM method.

Second, the improvement in overall performance brought by the soft frontiers still 
exists and is much more pronounced in terms of the increase. Specifically, in this 
simulation, the NC-NPFC approach shows an improvement of about 0.57–0.67%. 
For the C-NPFC methods, this improvement can be up to 18.13%.

Third, the relative strengths of the C- and NC-NPFC methods can still be 
observed in Table 2. Specifically, the C-NPFC methods still have a higher specificity 
value, and the NC-NPFC methods have a higher recall value.

Fourth, the C-NPFC methods perform rather poor when dealing with the NC data 
set. Specifically, the C-NPFC methods identify most of the normal observations 
but over-optimistically predict some of the abnormal observations as normal. As a 
result, it fails miserably in detecting abnormal observations, with observed recall 
values around or well below 50%. While dealing with the same NC data sets, the 
NC-NPFC methods have a balanced and good performance in predicting both nor-
mal and abnormal observations. Thus, their overall performance is the best among 
all the listed methods.

To sum up, the simulation results show that the proposed NPFC methods are 
competitive in solving the anomaly detection problem, using the two existing 
methods as benchmarks. For both the C- and NC-NPFC methods, the adoption of a 
soft frontier can improve the overall performance. The C-NPFC method with a soft 
frontier may have the best overall performance if the boundary shape of the data set 
is C as in the first simulation study, but the performance of the NC-NPFC method 
is also competitive. However, if the boundary shape of the data set is NC as in the 
second simulation study, then the overall performance of the NC-NPFC methods 
will be much better than that of the C-NPFC methods.

3.3  Experiments on a real‑life data set

The proposed NPFC methods are applied to a real-life data set, see Cox et  al. 
(1982).1 This data set arose in a study that aims at identifying carriers of a rare 

Table 1  Performance results under the C data sets

Existing methods C-NPFC NC-NPFC

SVDD OC-SVM Hard Soft Hard Soft

Accuracy 0.8567 0.9731 0.9835 0.9929 0.9882 0.9890
Precision 0.8863 0.9501 0.9948 0.9899 0.9865 0.9818
Recall 0.9073 0.9990 0.9720 0.9960 0.9901 0.9966
Specificity 0.8061 0.9471 0.9949 0.9897 0.9863 0.9813
F
1
 Score 0.8724 0.9738 0.9824 0.9929 0.9880 0.9890

G-mean 0.8842 0.9742 0.9829 0.9929 0.9882 0.9891

1 The data set is collected from the Statlib data archive at: http://lib.stat.cmu.edu/data-
sets/
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genetic disorder. Because the disease is rare, the number of carriers whose data are 
available is relatively smaller comparing to the number of normal samples. Specifi-
cally, this biomedical data set contains 194 observations after excluding 15 observa-
tions which have missing values. Among them, 127 observations are normal sam-
ples and 67 observations are disease carriers which are deemed as anomalies. Each 
observation is characterized by five characteristic variables, namely, age and 4 blood 
measurements.

Since the data set is small, a repeated k-fold cross-validation (CV) is used to eval-
uate the performance of various classifiers (Kim 2009). Moreover, we stick to the 
general situation of anomaly detection where only one group of data is available. 
That is, only the normal observations are used for the training process, while all the 
abnormal observations are excluded from the training process and are waited to be 
classified in the test process. The specific process of dividing the data into training 
and test data is as follows. The normal data set is randomly partitioned into k dis-
joint folds of approximately the same size. A fold of normal observations is set aside 
for testing and the remaining folds are used as training data to train a classifier. The 
trained classifier is then tested against the previously set aside fold of normal obser-
vations as well as the abnormal observations. The above process is repeated 100 
times, and the average performance is reported for different performance measures. 
With respect to the choice of k, there is no formal rule for deciding its optimal value. 
Thus, both the commonly used k values of 5 and 10 are adopted in this contribution, 
as these two values are believed to give test error estimates that suffer neither from 
extremely high bias nor very high variance (Marcot and Hanea 2021).

In implementing the NPFC methods, the monotonicity relations of the 
characteristic variables are derived from the expert knowledge released in Cox et al. 
(1982). Since all normal observations are younger than 40, the expert knowledge 
should be descriptive of carriers. Specifically, the expert knowledge suggests that 
high measurements are more likely to correspond to carriers. In addition, young 
carriers tend to have even higher measurements compared to old carriers. That is, 
the probability of being normal decreases with the increase in the measurements, 
and therefore, the blood measures should be input-like characteristic variables. 
Given the same measurements, the probability of being normal increases with age, 
so age should be an output-like characteristic variable.

As for the assumption on convexity, it is decided by the potential substitution 
relation between the characteristic variables. However, in this biomedical data set, 
there is no prior information on this substitution relation. Thus, both C- and NC-
NPFC methods are adopted in this analysis. For the cut-off super-efficiencies, we 
use cΛC = −0.3 and cΛNC = −0.4.

The classification performance results under various k-fold CVs are presented in 
Table 3. Table 3 is structured in a similar way as that of Table 1. Horizontally, each 
block reports the performance results under a specific k-fold CV. Within each block, 
the results of the performance measures (10)-(15) are arranged in the same way 
as that in Table 1. In each row, the best performance is highlighted in bold. Note 
that the test data set is unbalanced for both 5-fold and 10-fold CVs. Specifically, 
under 5-fold CV, the number of normal and abnormal test observations are 25 and 
67, respectively, while under 10-fold CV, they are 13 and 67, respectively. For the 
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unbalanced data set, using accuracy as an overall performance measure is perceived 
as virtually useless (Akbani et al. 2004). Thus, the results on accuracy are displayed 
but are not analyzed.

The experiments under the 5-fold and 10-fold CVs yield the same observations. 
Therefore, in the following discussion, we do not make any special distinction 
between them.

First, a comparison is made between the four NPFC methods and the two 
existing methods. It is observed that the precision value of the two existing methods 
is quite high, but their recall value is relatively lower. This implies that the two 
existing methods are quite conservative in identifying observations as abnormal, 
consequently leading to a relatively small proportion of abnormal observations 
being identified. Comparatively, the recall value of the NPFC methods is always 
higher, although the precision value may be lower. This suggests that the NPFC 
methods perform well in identifying abnormal observations, but entails some risk 
of misclassifying normal observations as abnormal. Each of the listed methods has 
its own relative advantages, either in correctly predicting normal or in correctly 
predicting abnormal observations. However, in this experiment, the overall 
performance of the four NPFC methods is better than the two existing methods, with 
a range of 2.11–28.88%.

Second, a comparison in made between the NPFC methods with a hard and the 
NPFC methods with a soft frontier. In this experiment, the NPFC methods with a 
soft frontier slightly outperform the ones with a hard frontier in terms of the overall 
performance, with a range of 0.03–1.62%.

Third, a comparison in made between the C- and NC-NPFC methods to reveal 
their relative advantages. The C-NPFC methods have better performance in correctly 
predicting normal observations (reflected by a higher specificity value), while the 
NC-NPFC methods have better performance in correctly identifying abnormal 
observations (reflected by a higher recall value).

Fourth, in terms of the overall performance, the NC-NPFC methods outperform 
the C-NPFC methods with a range of 2.31–6.13%.

The performance results in Table 3 are visualized in Fig. 4. Figures 4a, 4b report 
the performance results under the 5-fold and 10-fold CVs, respectively. In every 
sub-figure, the green dashed line marked with upward-pointing triangles reports the 
recall values; the black dotted line marked with downward-pointing triangles reports 

Table 2  Performance results under the NC data sets

Existing methods C-NPFC NC-NPFC

SVDD OC-SVM Hard Soft Hard Soft

Accuracy 0.5701 0.9670 0.6625 0.7540 0.9767 0.9824
Precision 0.6050 0.9492 0.9731 0.9807 0.9827 0.9735
Recall 0.3638 0.9873 0.3304 0.5175 0.9707 0.9922
Specificity 0.7763 0.9466 0.9946 0.9905 0.9826 0.9726
F
1
 Score 0.3541 0.9677 0.4657 0.6470 0.9758 0.9825

G-mean 0.4028 0.9680 0.5425 0.6919 0.9763 0.9827
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the precision values; the black dotted line marked with squares reports the specific-
ity values; the red solid line marked with circles reports the F1 scores; the red solid 
line marked with asterisks reports the G-mean values. Six classification methods 
listed in Table 3 are displayed accordingly on the horizontal axis.

The four observations from Table  3 can still be drawn from Fig.  4. Moreover, 
it is easier to analyze the general trend with Fig. 4. From the left to the right, both 
Figs. 4a, b show a progressively upward trend in F1 score, G-mean and recall, while 
there is a continuous downward trend in precision and specificity. That is, the per-
formance of correctly detecting abnormal observations is improving, while the per-
formance of correctly predicting normal observations is deteriorating. The positive 
effect of the former is stronger than the negative effect of the latter, so the over-
all performance represented by F1 score and G-mean shows some improvement. 
In addition, the smaller the difference between the recall value and the specificity 
value, the more balanced a model’s performance in predicting normal and abnor-
mal observations. In this sense, the hard NC-NPFC method is the one with the most 
balanced performance because it has the smallest distance between the recall and 
specificity lines.

In general, the proposed NPFC methods show a competitive classification 
performance, and even outperform the listed OC-SVM and SVDD methods in terms 
of the overall performance. Moreover, they show unique advantages in correctly 
detecting abnormal samples, especially the NC-NPFC methods. All these support 
that the proposed NPFC methods, especially the NC-NPFC methods, can be well 
applied to the anomaly detection problem.

Table 3  Performance Results under Various k-fold CVs

Existing Methods C-NPFC NC-NPFC

SVDD OC-SVM Hard Soft Hard Soft

k=5 Accuracy 0.5798 0.7696 0.7968 0.8032 0.8282 0.8179
Precision 0.9919 0.9702 0.9641 0.9461 0.9139 0.8553
Recall 0.4246 0.7045 0.7487 0.7745 0.8442 0.9024
Specificity 0.9886 0.9407 0.9234 0.8786 0.7865 0.5956
F
1
 Score 0.5892 0.8158 0.8422 0.8505 0.8770 0.8780

G-mean 0.6455 0.8265 0.8492 0.8554 0.8780 0.8784
k=10 Accuracy 0.5592 0.7417 0.7719 0.7766 0.8336 0.8518

Precision 0.9911 0.9823 0.9855 0.9778 0.9565 0.9220
Recall 0.4827 0.7070 0.7407 0.7530 0.8415 0.9012
Specificity 0.9674 0.9294 0.9397 0.9035 0.7917 0.5872
F
1
 Score 0.6372 0.8218 0.8454 0.8500 0.8950 0.9113

G-mean 0.6845 0.8331 0.8542 0.8576 0.8970 0.9114
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4  Conclusions

Although anomaly detection is a popular research problem, no consensus has been 
reached on the best classification method. This contribution proposes for the first 
time that the NPFC method can be used for anomaly detection. In the NPFC method, 
the nonparametric frontier is generated from the group of normal training data and 
consists of only a few frontier training observations. Moreover, the shape of the non-
parametric frontier is determined by the training observations and the imposition of 
some weak maintained axioms, rather than being predetermined as a hyperplane or 
a hypersphere. A test data point only has to be compared with this nonparametric 
frontier for deciding its membership.

In addition to bringing the NPFC method to anomaly detection, this contribu-
tion also makes three innovations at the methodological level. First, the convexity 
assumption is explained as a substitution relation between the characteristic vari-
ables; thus, it can be reasonably relaxed. Having the convexity assumption relaxed, 
a NC-NPFC method is constructed for anomaly detection and it ends up with a 
more conservative nonparametric frontier describing the observed normal group. 
Second, the other assumption of free disposability is explained to reflect the mono-
tonic relation between the characteristic variables and the membership. Therefore, 
characteristic variables with both the monotonically increasing and the monotoni-
cally decreasing relations can be included in the model without data transformation. 
Third, by allowing certain training observations to be misclassified, the hard non-
parametric frontier is extended to a soft nonparametric frontier. Compared to the 
hard frontier, the soft nonparametric frontier is more conservative in describing the 
observed normal group. We leave the determination of the value cΛ as an avenue of 
future research. To sum up, assigning reasonable interpretations to the assumptions 
justifies the NPFC methods and also contributes to the construction of a more gener-
alized NPFC method.
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C-NPFC: Soft
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NC-NPFC: Soft
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Fig. 4  Performance results for various k-fold CVs
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The simulation studies and the experiment analysis on a biomedical data set both 
reveal that the proposed NPFC methods have competitive overall performance and 
have consistent advantages in detecting abnormal samples. This advantage in cor-
rectly detecting abnormal samples is consistent with the goal of anomaly detection. 
Moreover, the overall performance can be further improved by using a soft nonpara-
metric frontier. This improvement exists for both the C- and NC-NPFC methods. 
Last but not least, if there is no prior information on the substitution relation among 
characteristic variables, then the NC-NPFC methods should be favored so as to cor-
rectly detect more abnormal samples.

We end with developing some perspectives for potential future research. First, it 
is worthwhile to further connect axioms inherited from production theory (e.g., the 
axiom of returns-to-scale) with explainable knowledge in anomaly detection such 
that these axioms can be reasonably exploited or even relaxed. Second, although 
the monotonicity relation contributes to explainable classification results, it is not 
always known to the decision maker. For situations where the monotonicity relation 
is not prior known, one may wonder whether it is possible to weaken the currently 
maintained axiom of disposability. A recent attempt in the production theory to 
do so is developed in Briec et  al. (2016) and empirically implemented in Briec 
et  al. (2018). Third, one may equally wonder to which extent the same ideas can 
be transposed in the limited literature employing double separating frontiers in a 
classification setting, e.g, Sueyoshi (2006); Chang and Kuo (2008); Wu et al. (2011). 
Finally, while we have in this contribution compared the NPFC methods to the 
OC-SVM and SVDD methods, it could be interesting to compare the best of the 
NPFC methods to some of the best performing state of the art classification methods 
in anomaly detection to check their relative classification and prediction accuracies.

Appendix: Discussions on the choices of cut‑off super‑efficiency

In this contribution, a negative cut-off super-efficiency denoted by cΛ is introduced 
to decide the noisy and less important training observations. A larger value of 
cΛ means that more training observations will be identified as noisy and of low 
importance and thus, will be excluded from the construction of a soft nonparametric 
frontier.

For both the C and NC cases in Sect.  3.2, the simulation is executed for 100 
times. Here, an example for the C case is extracted to show different C and NC soft 
nonparametric frontiers constructed from different choices of cΛ.

The resulted frontiers under different choices of cΛ are displayed in Figs. 5 and 
6. In every sub-figure, the normal training observations are represented by blue 
crosses. The training observations that are identified as noisy and of low importance 
are further marked by red circles. These training observations are excluded while 
constructing the corresponding soft nonparametric frontier. The soft nonparametric 
frontier is represented by the blue solid lines.

Similar observations can be derived from Figs.  5 and 6. With the increase in 
cΛ , more training observations are identified as noisy and of low importance. 
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Accordingly, the soft nonparametric frontier becomes more conservative. In 
comparison with the C soft nonparametric frontier, the NC soft nonparametric 
frontier is more conservative, since more training observations are excluded.

A proper choice of cΛ is important for identifying as accurately as possible noisy 
and less important training observations. In the following, the suggested way of 
deciding the value of cΛ is explained with the above simulation example.

Input-like Characteristic Variable: x1

In
pu

t-l
ik

e 
C

ha
ra

ct
er

is
tic

 V
ar

ia
bl

e:
 x

2

(a) cΛC=-0.2

Input-like Characteristic Variable: x1

In
pu

t-l
ik

e 
C

ha
ra

ct
er

is
tic

 V
ar

ia
bl

e:
 x

2
(b) cΛC=-0.1

Input-like Characteristic Variable: x1

In
pu

t-l
ik

e 
C

ha
ra

ct
er

is
tic

 V
ar

ia
bl

e:
 x

2

(c) cΛC=-0.075

Input-like Characteristic Variable: x1

In
pu

t-l
ik

e 
C

ha
ra

ct
er

is
tic

 V
ar

ia
bl

e:
 x

2

(d) cΛC=-0.05

Fig. 5  C soft nonparametric frontiers with different choices of cΛ
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Fig. 6  NC soft nonparametric frontiers with different choices of cΛ
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By solving model (7) under the C case for 700 normal training observations, 5 of 
them are identified as frontier observations. Their values of �∗

super,ΛC
 ordered from 

largest to smallest are represented by blue diamonds in Fig. 7a. It is observed that 4 
out of 5 frontier observations have a �∗

super,ΛC
 larger than −0.1. Only one frontier 

observations has �∗
super,ΛC

= −0.1537 . Thus, cΛC = −0.1 is chosen.
Similarly, by solving model (7) under the NC case for the same normal training 

observations, 11 of them are identified as frontier observations. Their values of 
�∗
super,ΛNC

 ordered from largest to smallest are as shown in Fig. 7b. It is observed that 
10 out of 11 frontier observations have the value of �∗

super,ΛNC
 larger than −0.2. Only 

one frontier observations has �∗
super,ΛNC

= −0.2494 . Thus, cΛNC = −0.2 is chosen.
One suggested way of deciding the value of cΛ is illustrated. Note that we do not 

intend to suggest that this is the optimal way. It is worthwhile for future researches 
to explore the other methods of deciding a proper cΛ.
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