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While economic theory acknowledges that some features of technology (e.g., indivisibilities, economies of

scale and specialization) can fundamentally violate the traditional convexity assumption, almost all

empirical studies accept the convexity property on faith. In this contribution, we apply two alternative

flexible production technologies to measure total factor productivity growth and test the significance of

the convexity axiom using a nonparametric test of closeness between unknown distributions. Based on

unique field level data on the petroleum industry, the empirical results reveal significant differences,

indicating that this production technology is most likely non-convex. Furthermore, we also show the

impact of convexity on answers to traditional convergence questions in the productivity growth literature.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Indivisibility implies that inputs and outputs are not necessary
perfectly divisible and also that scaling up or down the entire
production process in infinitesimal fractions may not be feasible.
Start-up and shut-down cost in electricity generation are just one
good example (O’Neill et al., 2005). Scarf (1986, 1994) stresses
the importance of indivisibility in selecting among technological
options. Economies of scale and specialization (implied by the
presence of indivisibilities and other forms of non-convexities in
production) entail that higher per-capita production increases
the extent of the market, facilitates the division of labor,
and increases the efficiency of production.1 These economically
important features of technology, together with the well-known
case of externalities, fundamentally violate the convexity of the
production possibility set (see Farrell, 1959, for an overview).
However, in traditional empirical analysis (e.g., traditional para-
metric production analysis, or even nonparametric production
analysis), these features are dismissed through the imposition of
the convexity axiom. In reality, it is clear that non-convexities in
production are sufficiently important to explain behavior in some
industries and are critical in the development of the new growth
theory (see, e.g., Romer, 1990, on nonrival inputs). In a similar
vein, McFadden (1978) already recognized that the importance of
ll rights reserved.
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erally larger than one for all

production functions.
convexity in production analysis lies in its analytic convenience
rather than its economic realism.

Therefore, given its relevance to both economic theory and
associated empirical analysis, one cannot ignore the potential
impact of non-convexity.2 However, almost no previous studies
have directly tested for the existence of non-convexity in produc-
tion using rigorous statistical techniques. Nevertheless, non-con-
vexities in production play an important role in the theoretical
micro-economic literature and have been studied for decades
(see, e.g., Frank, 1969 or Villar, 1999). For instance, the general
equilibrium theory of non-convex technologies has been thor-
oughly analyzed (e.g., Bobzin 1998; Joshi, 1997, or more recently,
Chavas and Briec, 2012). Recently, operational methods to derive
linear prices supporting a competitive equilibrium in markets
with non-convexities based on mixed integer programming have
been devised (e.g., O’Neill et al., 2005).

In this contribution, we apply two alternative flexible produc-
tion models using nonparametric specifications of technology and
test the validity of the non-convexity assumption in production.
One non-convex specification of production technology (NCP) is
the Free Disposable Hull model (initiated by Deprins et al.
(1984)). It only imposes the assumption of strong or free dispo-
sability of both inputs and outputs. Another more common
technology specification adds convexity to these strong disposa-
bility axioms to form a convex nonparametric production model
2 Even if this implies the risk of producing less ‘‘elegant’’ results than with

standard approaches: in particular, empirical results are harder to report because

they become local rather than global in nature (see infra).
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(CP) (see, e.g., the seminal article of Farrell (1957), or Afriat
(1972), Färe et al. (1994), among others). Based on distance
functions as representations of technology (and their interpreta-
tion as efficiency indicators) computed relative to both these non-
convex and convex nonparametric specifications of technology,
following Briec et al. (2004), we test the significance of the
differences using Li’s (1996) nonparametric test of closeness
between two unknown distributions resulting from independent
or dependent observations. Obviously, if convexity of technology
is questionable, then also the more specific assumption of con-
vexity of either input or output sets separately is doubtful.

Simar and Wilson (2008) develop a complementary view on
the statistical properties of these convex and non-convex non-
parametric frontier estimators that highlights a kind of asymme-
try in imposing both assumptions. If the true production possibi-
lity set is convex, then CP and NCP estimators are consistent and
should yield approximately the same estimates for large datasets,
though the NCP model normally has a slower rate of convergence.
However, if technology is non-convex, then the NCP model
remains consistent while the CP model offers an inconsistent
approximation.

These nonparametric specifications require large data sets for
production technologies to avoid the small sample error problem.
Furthermore, to avoid any aggregation bias, the analysis should
ideally focus on firm-level data with sufficient detail regarding the
production process. Here, we apply this test of convexity to unique
field-level data from the petroleum industry in the US Gulf of
Mexico over the period from 1947 to 1998. Although the produc-
tion possibility set of oil and gas development and exploitation is
acknowledged to be non-convex in part of the literature (see, e.g.,
Devine and Lesso, 1972 and further arguments below), we are
unaware of there being previous economic studies that put this
assumption to an empirical test. Hence, whether the above NCP
methodology yields a relevant reference technology in this industry
becomes a most interesting empirical question for testing.

Furthermore, a topic that has received widespread attention
with the appearance of endogenous growth theories is the question
of convergence in productivity levels (see Islam, 2003 for a survey).
In view of the importance of non-convexities for growth theory
(Romer, 1990), we consider the suggestion by Bernard and Jones
(1996, p. 1043) that ‘‘future work on convergence should focus
much more carefully on technology’’. In particular, we investigate
the issue of convergence/divergence in total factor productivity
change using a recent discrete time Luenberger productivity
indicator (Chambers, 2002) computed relative to nonparametric
technology specifications, while testing for the significance of the
eventual differences between the CP and NCP models. The very
length of the observation period provides ample scope to test the
impact of the convexity assumption on the eventual convergence
of total factor productivity growth rates.

The choice between non-convexity and convexity in measur-
ing total factor productivity change relates to the nature of
technical change. The NCP model has the advantage of eventually
allowing for local instead of global technical change (see, e.g., the
discussion in Tulkens, 1993, and infra). Note that we believe this
is the first paper defining local and global technological change
precisely. While this distinction between local and global tech-
nological change plays a role in some theoretical work (see, e.g.,
Atkinson and Stiglitz, 1969, among others), we are aware of only
few empirical works raising this issue. If NCP is the true repre-
sentation of technology, then previous empirical work on the
convergence issue might not be reliable. Anticipating one of the
key results, this study only finds convergence for the NCP model.

This contribution is structured as follows. Section 2 reviews
the background literature. Section 3 presents the Luenberger
productivity indicator as well as its underlying distance functions,
the distinction between local and global technical change in
our analysis, and the econometric models employed to test for
convergence. Section 4 introduces the sample of petroleum field
data from the Mexican Gulf. The next section presents the
empirical results and provides the outcomes of the statistical
tests. The final section offers some concluding remarks.
2. Non-convexity in production and in petroleum industry:
Literature review

The literature on non-parametric production analysis (see e.g.,
Afriat, 1972 or Varian, 1984) typically uses convexity only as an
instrumental regularity property of technology justified by the
assumed economic optimization hypotheses. Thus, convexity is
motivated by economic objectives (such as cost minimization or
profit maximization) rather than being an inherent feature of
technology. Similarly, the parametric approach (see, e.g., Bauer,
1990) sometimes imposes regularity restrictions on the para-
meters of cost, revenue and profit functions, but it does not
systematically test for the convexity assumption of technology.

As a result, the impact of convexity in technology (or lack
thereof) on the cost function is often ignored. While the general
property of the cost function as non-decreasing in outputs is well
known, it seems often forgotten that cost functions estimated on
convex (non-convex) technologies are also convex (non-convex)
in the outputs. Jacobsen (1970) was one of the first to point out
that convexity of the cost function in the outputs is due to
convexity of the technology (see proposition 5.2). In other words,
a cost function estimated on a convex technology is smaller or
equal to the same function estimated on a non-convex technology
(see Briec et al., 2004).

Several empirical studies suggest violations of convexity in a
wide variety of industries (e.g., Tone and Sahoo, 2003). Indivisi-
bilities are an obvious feature of real-world production settings
(see Scarf 1986, 1994). The phenomena of economies of scale and
specialization have also been empirically tested in the literature.
The empirical evidence of process analysis, which derives produc-
tion relations directly from theoretical and practical engineering
knowledge, has found evidence of violations of convexity (see
Wibe, 1984). Economies of scale are especially well documented.
For instance, Chenery (1949) studied engineering production
functions of the pipeline transportation of natural gas and derived
a (non-linear) cost function that exhibits economies of scale.
Some evidence of increasing returns has been reported in, for
example, chemical industries and the manufacturing of process
equipment, air pollution control equipment, and biopharmaceu-
tical equipment (e.g., see the survey in Wibe (1984)). Some other
economic analyses documenting these types of violations of
convexity include Yang and Rice (1994) and Borland and Yang
(1995).

We provide an analysis of the offshore oil and gas industry,
which faces substantial sunk cost investments in terms of devel-
opment, exploration and knowledge, which are the main source
of non-convexity in production (see Devine and Lesso, 1972, or
Frair and Devine, 1975). This description is mainly based on the
economic literature on petroleum production. This ignores the
complex details of reservoir (e.g., ‘‘undersaturated’’ (oil) vs.
‘‘saturated’’ (oil and gas) reservoirs depending on temperature
and pressure conditions; natural or artificial (mechanical or gas)
lift; among others) and production (e.g., issues related to gas, oil
and water separation, the design of the whole surface flow
system, among others) engineering in petroleum production
systems (see, for instance, Gua et al. (2007) for details).

Some details are essential to consider for our purpose. For
instance, once an oil field is found after extensive seismic study
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via the drilling of an exploratory well, other ‘‘step-out wells’’ are
drilled to obtain more precise information on the characteristics
of the field (with size being one critical factor). Osmundsen et al.
(2010) is a recent study exploring the reasons for the observed
decreasing productivity of exploratory well drilling. Assuming
that entering the production phase is an option (e.g., because of
favorable well flow tests), the above information is exploited to
decide on possible locations for the production wells (specified by
map coordinates and depth).

An offshore oil field is developed by drilling directionally from
a series of fixed platforms, whereby drilling and completion costs
for a production well are a function of the length and angle of
the hole drilled from the platform to the target. Each platform
involves a huge investment, the precise costs depending on water
depth and the number of wells to be drilled from the platform.
Thus, the ‘‘platform location problem’’ is a complex integer
optimization problem aiming to minimize the sum of platform
and drilling costs by determining the number, size, and location of
the platforms and the allocation of wells to platforms. Needless to
say, small deviations from optimality can generate substantial
inefficiencies. For example, injection wells and other capital
equipment for extraction are sunk and cannot readily be changed
because of their geometric features.

Further, difficult optimization issues at the level of the oil field
might include, for instance, the determination of the production
rate for each time period that is optimal in the sense of maximizing
the total discounted after-tax cash flow over a specific planning
horizon in multilayer oil and gas fields, which is achieved by
exercising control over the number of active wells during the field’s
exploitation period (e.g., Babayev, 1975). In addition, Neiro and
Pinto (2004) argue that the planning and scheduling of subsystems
of the petroleum supply chain (oil field infrastructure, crude oil
supply, refinery operations and product transportation) require
non-convex and nonlinear mixed-integer optimization models (see
also the survey by Durrer and Slater (1977)). In brief, optimization
problems in this sector are challenging because of the integer
nature of certain decisions, the nonlinearities and dynamics
involved, and the intrinsic uncertainties surrounding critical para-
meters (see, e.g., Dempster et al., 2000).

However, in most of the rather limited economic literature on
the oil sector, the issue of convexity seems to be totally ignored
(e.g., Osmundsen et al., 2010 for a recent example). Just to offer
one more example representative of similar studies, we can look
to Cuddington and Moss (2001), who estimate average cost
functions for additional petroleum applying error correction
models over the period 1967–1990. Using aggregate data from
the US, they find that the impact of technological change on
finding costs for crude oil is large.
3 Hence, the more popular input- and output-oriented Malmquist productiv-

ity indexes (Caves et al., 1982, or Färe et al., 1994) based upon these Shephardian

distance functions are less general than the Luenberger productivity indicator.
3. A discrete-time Luenberger productivity indicator:
Definitions, technology specifications, global vs. local technical
change, and the analyis of convergence

Total factor productivity growth, traditionally estimated by the
Solow residual, yields an index number reflecting shifts in technol-
ogy resulting from output growth that remain unexplained by input
growth (Hulten, 2001). Recently, awareness has grown that ignoring
inefficiency may bias productivity measures. Chambers and Pope
(1996) define a discrete-time Luenberger productivity indicator in
terms of the differences between directional distance functions (see
also Chambers, 2002). Indicators (indexes) denote productivity
measures based on differences (ratios) (see Diewert, 2005).

This is the most general primal productivity indicator currently
available, as it is based upon the directional distance function as a
general representation of technology (Luenberger, 1992; Chambers
et al., 1998). Due to its dual relation to the profit function, the latter
distance function generalizes the traditional input- or output-
oriented (Shephard, 1970) distance functions, which are dual to
the cost and revenue functions, respectively.3 Chavas and Briec
(2012) employ such directional distance functions to explore
general equilibrium in a non-convex setting.

This section discusses a three-step approach to analyzing total
factor productivity in the petroleum industry. In the first step, a
discrete time Luenberger productivity indicator is defined. Next,
the directional distance functions constituting this indicator are
measured relative to two different technology specifications: one
non-convex and the other convex. Finally, the distinction between
local and global technical change is explicitly defined. In the
second step, these two models are compared using a nonpara-
metric test statistic for comparing densities, which was developed
by Li (1996). In the third step, we investigate whether there is b-
and/or s-convergence in the productivity change for both models
using proper econometric models.

3.1. Definitions of technology, distance function and Luenberger

productivity indicator

Using the index set I¼{1,y,I} for production units, let
x¼(x1,y,xN)ARN

þ and y¼(y1,y,yM)ARM
þ be the vectors of inputs

and outputs, respectively, and define the technology or produc-
tion possibility set as follows:

Tt ¼ fðxt ,ytÞ9xtcan produce ytg ð1Þ

This technology set T consists of all feasible input vectors
xt and output vectors yt at time period t and satisfies certain
minimal axioms sufficient to define meaningful distance func-
tions (see Afriat, 1972). Multi-input and multi-output production
technologies and their boundaries (frontiers) can be characterized
by distance or gauge functions, without any assumption of
optimizing behavior on the part of individual observations.

In economics, distance functions are related to the notion of the
coefficient of resource utilization (Debreu, 1951) and to efficiency
measures (Farrell, 1957). Avoiding the hypothesis of optimizing
behavior may be an advantage, particularly for micro-level analyses
that extend over a long time series with significant uncertainty,
irreversibility and fixed and/or sunk costs. These conditions also
apply to the petroleum industry. In such cases, assumptions of static
efficiency for every production unit in all time periods are likely
suspect. Therefore, we believe the productivity measurement of
petroleum exploitation at sea is best evaluated using a methodology
allowing for inefficiencies.

Luenberger (1992) generalizes the traditional Shephardian dis-
tance functions by introducing the shortage function, which provides
a flexible tool capable of accounting for both input contractions
and output improvements when measuring efficiency. Following
Chambers et al. (1998), the proportional distance function is defined
as follows:

Dt
ðxt ,yt; �xt ,ytÞ ¼maxfd : ðð1�dÞxt ,ð1þdÞytÞATtg ð2Þ

This distance function completely characterizes the technology at
period t. Note that this proportional distance function is a special
version of the shortage or directional distance function. The latter is
defined using a general directional vector (�gi, go), whereas the
proportional distance function employs the special case (�gi,
go)¼(�x, y). To save space, in the remainder the notation for the
proportional distance function is simplified by suppressing the
directional vector.
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Following Chambers (2002), the Luenberger productivity indicator
in discrete time is defined as follows:

Lððxt ,ytÞðxtþ1,ytþ1ÞÞ

¼
1

2
ðDt
ðxt ,ytÞ�Dt

ðxtþ1,ytþ1ÞÞþðD
tþ1
ðxt ,ytÞ�Dtþ1

ðxtþ1,ytþ1ÞÞ

h i
:

ð3Þ

This formulation represents an arithmetic mean between the period t

(first difference) and the period tþ1 (second difference) Luenberger
indicators, each of which consists of a difference between propor-
tional distance functions evaluating observations in periods t and tþ1
with respect to a technology in period t and period tþ1. Using an
arithmetic mean avoids an arbitrary selection from among the base
years. This Luenberger productivity indicator can be decomposed into
two components:

Lððxt ,ytÞðxtþ1,ytþ1ÞÞ ¼ Dt
ðxt , ytÞ�Dtþ1

ðxtþ1, ytþ1Þ

h i

þ
1

2
ðDtþ1

ðxtþ1, ytþ1Þ�Dt
ðxtþ1, ytþ1ÞÞþðD

tþ1
ðxt , ytÞ�Dt

ðxt , ytÞÞ

h i
,

ð4Þ

where the first difference represents the efficiency change (EC) and
the second term, which is an arithmetic mean of two differences,
represents the technological change (TC). While the EC measures
changes in the relative position of a production unit relative to the
changing frontier, the TC component provides a measure of the
change in the production frontier or productivity changes that are due
to innovation. To be more precise, TC measures the arithmetic mean
of the productivity change measured from the observation in period t

and period tþ1 relative to the production frontiers in both periods.
To estimate productivity change over time, four distance func-

tions are needed: within-period and mixed-period distance func-
tions for each field and each time period. For the mixed-period
distance function, we have two years, t and tþ1. For example,
Dt(xtþ1, ytþ1) is the value of the proportional distance function for
the input–output vector for period tþ1 and technology in period t.

Now, we turn to the specification of technology relative to
which these distance functions are estimated. Given the focus on
testing the convexity assumption, we look for a framework that
allows the definition of both a convex and a non-convex repre-
sentation of technology.

3.2. Non-convex and convex technologies

In principle, distance functions can be estimated using para-
metric, semi-parametric or nonparametric specifications of the
directional distance function representing technology. The vast
majority of empirical productivity studies seems to employ deter-
ministic, nonparametric technologies. However, an example of an
empirical productivity study using both nonparametric and para-
metric technologies is Atkinson et al. (2003). While it is common to
employ traditional convex nonparametric frontier technology spe-
cifications, in this study we also compute a directional distance
function relative to a non-convex technology. Therefore, we are able
to compare these two measurements in their effect on the Luen-
berger productivity indicator and test for the validity of the
convexity axiom. Note that the estimated production frontiers
(both CP and NCP) are based on relative benchmarking among
observed units in the marketplace rather than on absolute produc-
tion possibilities (e.g., engineering estimates). Thus, allowing for
any eventual inefficiency among observations, these frontier esti-
mates provide inner approximations — i.e., the (non-)convex hull of
an underlying unknown true technology.

The construction of nonparametric, deterministic technologies
is based on the minimum extrapolation principle: to envelop all
observations and extend these using production axioms about
what is considered feasible. Imposing convexity, strong disposa-
bility of inputs and outputs (i.e., monotonicity), and variable
returns to scale to obtain a flexible representation of technology,
the proportional distance function for CP characterizing the
technology at t (Tt) is defined as:

Dt
cðxt ,ytÞ ¼max

d
ðdt9ð1�dtÞxt ZltXt ; ð1þdtÞyt rltYt; lte¼ 1; lt Z0Þg,

ð5Þ

where d is the maximal proportional amount by which outputs
(yt) can be expanded and inputs (xt) can be reduced simulta-
neously given the technology. Yt and Xt are the matrices of
outputs and inputs; e is a unit vector, and l is a vector of activity
variables. This CP model involves using mathematical program-
ming techniques to estimate the relative efficiency of all produc-
tion units relative to best-practice frontiers.

Notice that free disposability is an almost generally accepted
assumption in production economics. This implies that marginal
products of inputs, marginal rates of substitution between inputs,
and marginal rates of transformation between outputs are
assumed to be non-negative. Obviously, congestion of production
factors violates this assumption and can, e.g., be modeled using
the weaker axiom of ray or weak disposability. However, we can
interpret monotonicity as a congestion adjustment to the produc-
tion possibility set, i.e., the distance functions for monotonized
technologies include a mixture of technical efficiency and con-
gestion. Alternatively, monotonicity can be motivated by the fact
that it does not interfere with the Pareto–Koopmans classification
of technical efficiency. Anyway, in the context of testing conver-
gence issues we think it is fair to consider free disposability as a
minimal assumption.

Next, the NCP can be formulated as follows. The non-convex
technology is obtained from two minimal assumptions: all inputs
and outputs are strongly disposable, and there are variable
returns to scale. Thus, the proportional distance function for the
NCP technology at t is defined as (see Deprins et al., 1984):

Dt
ncðxt ,ytÞ ¼max

d
fdt9ð1�dtÞxt ZltXt; ð1þdtÞyt rltYt;

lte¼ 1; li
t Af0,1g,8iA Ig ð6Þ

Notice that the convex monotone hull (5) is obtained by replacing
the binary integer constraint on the activity variables liA{0,1},8iAI

in (6) by lZ0. Details on the actual calculations of the distance
functions under the CP and NCP models are provided in Appendix
A. Earlier applications of the NCP model to evaluate technical
change include Tulkens (1993) and Tulkens and Malnero (1996),
among others.

Obviously, the following relation between proportional dis-
tance functions for the CP and NCP technologies holds:

Dt
cðxt ,ytÞZDt

ncðxt ,ytÞ: ð7Þ

In other words, the distance (or inefficiency) relative to a convex
technology is always larger or equal to the distance relative to a
non-convex technology (see Briec et al., 2004). Consequently, the
number of efficient units compared to a convex technology is
always smaller or equal to the one relative to a non-convex
technology. Furthermore, all efficient units under a convex model
are also efficient under a non-convex model, but the reverse need
not be true.

Though the inefficiency relative to CP is always larger or equal
to the distance relative to NCP and the number of efficient units to
a CP is always smaller or equal relative to a NCP, it is impossible to
sign the effect on the EC component. The same remark applies to
the TC component. Hence, the effect of convexity on the Luenber-
ger productivity indicator and its decomposition is a priori unclear.
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3.3. Global vs. local technical change in the context of convex vs.

non-convex technologies

The notion of global and local technical change has been
discussed since at least the work by Atkinson and Stiglitz
(1969). The basic intuition is simple enough: technical change
need not lead to a global shift of the production technology, but
may lead to a local change for some specific segment of technol-
ogy. Fig. 1 shows a convex technology at period t and two possible
shifts of this technology in the next period tþ1: the first one leads
to the outward shift of observation 3 only yielding a local
technical progress (dashed line), the second one leads to an
outward shift of all observations resulting in technical progress
everywhere (long dashed line). Similar figures could be devised
illustrating the same phenomena in input space (along an
isoquant) or in output space (along a transformation curve).

Notice that some assumptions on technology automatically
impose the type of global technical change illustrated in Fig. 1.
For instance, constant returns to scale leads to a cone technology
whose shifts over time always affect all scale levels. For this reason,
our CP and NCP models instead impose the more flexible variable
returns to scale assumption. Furthermore, local technical change
plays a role in part of the new growth theory. For instance, Basu and
Weil (1998) propose a theoretical model in which local technolo-
gical change explains growth, convergence clubs, and divergence in
the real economy. Local technical change is known to lead to path
dependency, local learning, and (in)efficiency dynamics (see Stiglitz,
1987; Foray, 1997; Antonelli, 2006, among others).

Few authors have elaborated upon the difference between global
and local technical change in relation to the difference between
convex and non-convex technologies. For instance, Tulkens and
Vanden Eeckaut (1995) mention local and global technical change,
but fail to offer precise definitions. Equally so, Tulkens (1993) offers
one definition of local technical change (page 202), but fails to
explicitly contrast it to what is being measured with respect to
traditional convex technologies. Using the NCP model, Los and
Verspagen (2009) find that technological change and diffusion
(distance to frontier) regarding CO2 emissions of passenger cars
differ substantially between different segments: TC for gasoline cars
is larger than for diesel cars, and TC varies across different ranges of
engine capacity. While they illustrate this local technical change
(their Fig. 3), they do not formally define it.

Therefore, we are the first to offer a series of precise definitions
of global and local technical change related to the use of convex
vs. non-convex technologies. First, we define global technical
y
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Fig. 1. Global and local technical change.
progress as the one resulting from efficient observations at
two time periods that do experience positive TC between these
periods t and tþ1 relative to CP:

PTC1t,tþ1
c ¼ fðx,yÞ : Dt

cðxt ,ytÞ ¼ 04Dtþ1
c ðxtþ1,ytþ1Þ ¼ 04TCt,tþ1

c 40g

ð8Þ

By contrast, we define local technical progress as the one result-
ing from efficient observations at two time periods in terms of
NCP while being inefficient w.r.t. CP that do experience positive
TC in terms of NCP between these two time periods:

PTC1t,tþ1
nc ¼ fðx,yÞ : Dt

ncðxt ,ytÞ ¼ 04Dt
cðxt ,ytÞ40

4Dtþ1
nc ðxtþ1, ytþ1Þ ¼ 04Dtþ1

c ðxtþ1, ytþ1Þ404TCt,tþ1
nc 40g ð9Þ

Recall that given (7), it is easier to obey conditions (9) than to
satisfy conditions (8). Both these definitions are illustrated in Fig. 2.
While observations 3, 5 and 7 satisfy conditions (8), observations 2,
4 and 6 meet conditions (9). In a similar vein, global technical
standstill or regress could be defined by a zero or a negative TC
component, respectively. Since this is less interesting for our
purpose, these definitions are suppressed.

One can now conceive two alternative definitions in which the
requirement of efficiency in both periods is gradually relaxed.
First, one can require the observations to be efficient in the
second period tþ1 but not necessarily in the first period t, while
obtaining a positive TC in terms of NCP between both time
periods. This leads to a slightly relaxed global technical progress
definition as follows:

PTC2t,tþ1
c ¼ fðx,yÞ : Dt

cðxt ,ytÞ404Dtþ1
c ðxtþ1, ytþ1Þ ¼ 04TCt,tþ1

c 40g

ð10Þ

and a local technical progress definition as follows:

PTC2t,tþ1
nc ¼ fðx,yÞ : Dt

ncðxt ,ytÞ404Dt
cðxt ,ytÞ404

Dtþ1
nc ðxtþ1, ytþ1Þ ¼ 04Dtþ1

c ðxtþ1, ytþ1Þ404TCt,tþ1
nc 40g ð11Þ

Second, one can alternatively require the observations to be
efficient in the first period t but not necessarily in the second
period tþ1, again obtaining a positive TC in terms of NCP
between both time periods. This leads to another slightly relaxed
global technical progress definition:

PTC3t,tþ1
c ¼ fðx,yÞ : Dt

cðxt ,ytÞ ¼ 04Dtþ1
c ðxtþ1, ytþ1Þ404TCt,tþ1

c 40g

ð12Þ
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and a corresponding local technical progress definition as follows:

PTC3t,tþ1
nc ¼ fðx,yÞ : Dt

ncðxt ,ytÞ ¼ 04Dt
cðxt ,ytÞ40

4Dtþ1
nc ðxtþ1, ytþ1Þ404Dtþ1

c ðxtþ1, ytþ1Þ404TCt,tþ1
nc 40g ð13Þ

It is simply clear that these technical change definitions on a CP
model affect more observations than on a NCP model.

However, it is not possible to abandon the efficiency require-
ment altogether, otherwise no global vs. local distinction can be
maintained. It should be noted that both global and local are
defined without recourse to a mathematical distance metric.

3.4. Statistical analysis of productivity growth and convergence

As already stated in the Introduction, the estimates of NCP are
statistically consistent for a wide range of distributions (e.g., Park
et al., 2000). Consistency also applies for the CP approximation,
but only if the true production set is convex. Hence, if the true
production set is convex, then CP and NCP models are both
consistent and generally yield approximately the same results
in large datasets. However, if the production set is non-convex,
then CP set yields an inconsistent approximation while NCP
remains consistent. Therefore, in large-scale applications, con-
vexity constitutes a potential source of specification error but
cannot improve the statistical fit (see Simar and Wilson, 2008).
Notice that these results are obtained under a deterministic
postulate according to which no noise is allowed in the technol-
ogy: if the data would contain noise, then both CP and NCP
frontier estimators become inconsistent. Also note that these
results are asymptotic and little is known about the small sample
properties of these estimators. Further observations on inferential
issues in particular related to the NCP model are found in
Cesaroni (2011) (otherwise see Simar and Wilson, 2008).

The convexity axioms in production have almost never been
exposed to rigorous empirical testing. Using the same NCP model
above, Grifell-Tatjé and Kerstens (2008) document the impact of
convexity in evaluating cost efficiency differences in an assess-
ment of Spanish electricity distribution, while Tone and Sahoo
(2003) illustrate the relevance of process indivisibilities in a
multi-stage model of production. As already argued in Ramey
(1991), Inman (1995) and Hall (2000) using a different modeling
approach, non-convex costs also matter in, e.g., car manufacturing
due to changes in the number of shifts and in the shutting down
of plants for some time. Recently, Copeland and Hall (2011)
explicitly test for convex and non-convex cost functions in USA
car assembly firms and find the latter model to fit the data best.

However, test procedures for testing the convexity hypothesis
in the CP model are available. In particular, we apply the
nonparametric (Li’s, 1996) test to examine the differences in the
distribution of the efficiency scores. Li’s (1996) method tests the
closeness of two distributions using sample distributions based
on the kernel density method. The convexity hypothesis is
accepted if there is no statistically significant difference in the
efficiency estimates of the two CP and NCP models. This test
ideally requires large samples. In small samples, it can confuse
non-convexities with the small sample error associated with the
relaxed NCP model. Specification tests can only test production
assumptions under conditions in which those assumptions cannot
improve the fit of the estimators.

Following the convergence literature, we also report estimates
on the b-convergence and s-convergence (e.g., Barro and Sala-i-
Martin, 1992). The b-convergence notion refers to a tendency of
firms or sectors with relatively low initial productivity levels to
grow relatively quickly, while s-convergence suggests a decreas-
ing variance of differences in productivity levels, building upon
the proposition that growth rates tend to decline as firms or
sectors approach their steady state. In our contribution, conver-
gence is tested at the field level.

In particular, we estimate the following model consisting of a
simple unconditional speed-of-convergence equation (see Steger,
2000):

Dln yitðiÞ ¼ aþbln yi0þei, ð14Þ

where Dln yitðiÞ shows the indicators of average productivity
changes, technological changes (TC), and efficiency changes (EC)
from year 0 to year t for each field i, Dln yi0 indicators represent the
initial level (field discovered) of these same indicators, and ei

represents an error term. The indicators might result from either
CP or NCP. We intend to analyze whether initial high productivity
is associated with lower productivity changes (or TC or EC)
later on. A negative value for b is interpreted as support for the
b-convergence hypothesis, since it means that those with lower
initial productivity levels have grown faster over time. Whether or
not we observe convergence might crucially depend on the choice of
(non-)convexity assumption.

The s-convergence notion normally refers to a decrease over
time in the cross-sectional variation (usually measured by the
standard deviation) of the natural logarithm of the variable under
study (see de la Fuente, 2002, for a review). Notice that b- and
s-convergence are related concepts: b-convergence is a neces-
sary, but not sufficient condition for s-convergence.

Despite the popularity of productivity estimates using frontier
technologies, notice that few frontier technology studies have
analyzed questions surrounding convergence. Available frontier-
based convergence studies focus most of the time on countries
(e.g., Arcelus and Arocena, 2000; Henderson and Russell, 2005;
Kumar and Russell, 2002), regions (e.g., Salinas-Jiménez, 2003), or
sectoral analysis (e.g., Gouyette and Perelman, 1997). Among the
studies focusing on firm-level data within a given industry is the
article by Alam and Sickles (2000) on the U.S. airlines industry.
Our study focuses on a single industry observed over a long time
period.
4. Sample description

Data used in this analysis are obtained from the U.S. Department
of the Interior, Minerals Management Service (MMS), Gulf of
Mexico OCS Regional Office. We have developed a unique micro-
(i.e., field-) level database using three MMS data files: (i) production
data including monthly well-level oil and gas outputs from 1947 to
1998 (a total of 5,064,843 observations for 28,946 production
wells); (ii) borehole data describing drilling activity for each well
from 1947 to 1998 (a total of 37,075 observations); and (iii) field
reserve data including oil and gas reserve sizes and the discovery
year of each field from 1947 to 1998 (a total of 957 observations).
Relevant variables were extracted from these data files and merged
by year and field across wells.

Due to spillover effects across wells within a given field, the
field level is a more appropriate unit for measuring performance
than the well. Indeed, crude oil production displays common-
property conditions for which field wide unitization offers a
solution. If each firm drills in a competitive way, this results in
too many wells and too high extraction rates leading to prema-
ture depletion of natural subsurface pressure. Loss of pressure
makes the natural gas dissolved in the oil come out of solution.
This reduces oil mobility and can lead to significant amounts
being permanently trapped. The oil retaining some mobility must
be artificially lifted at higher marginal costs. This explains, for
instance, why companies often engage in joint ventures to exploit
a field to internalize the externalities between wells within
each field.
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The final data set comprises annual data from 933 fields over a
50-year time horizon. On average, there are 370 fields operating
in any particular year and a total of 18,117 observations. Thus, the
database includes field-level annual data over the period 1947 to
1998 for the following variables. Output variables are oil output
and gas output. Input variables are the number of exploration and
development wells drilled, the total drilling distance of explora-
tion and development wells, the number of platforms, water
depth, oil reserve, gas reserves, and untreated produced water.
See Appendix B for a table with descriptive statistics.

Furthermore, we measure productivity change by looking at
relative productivity across fields of different vintages. In so
doing, we are able to separate productivity effects associated
with the stock depletion of the field from effects due to differ-
ences in the state of the technology. This vintage model differs
from the conventional nonparametric model specification in that
the mixed period distance functions compare fields of different
vintages for a given field year, so that the model compares
outputs and inputs while holding fixed the number of years that
the fields have been operating. Thus, we use cumulative values for
inputs and outputs because for this nonrenewable industry, it is
more appropriate to express the production technology in cumu-
lative terms. For example, for a field, the production at t is
determined by cumulative inputs (e.g., the total number of
exploration and development wells drilled up to t�1) and out-
puts up to t�1. See Appendix A for a more detailed description of
this vintage model.
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Fig. 5. Efficiency change in petroleum industry under non-convex and convex

assumptions.
5. Empirical estimation results

5.1. Luenberger productivity indicator results

We first examine the convexity hypothesis by comparing the
convex and convexity-free production models in terms of both
the resulting growth rates and the number of firms involved in
bringing about technical change. The Luenberger indicator in
Fig. 3 shows how the gross productivity in offshore oil and gas
grows by 24.9% and 29.7% over the study period (a yearly growth
rate of about 0.50% and 0.60%) under the assumptions of NCP and
CP, respectively. Although the general trend of these productiv-
ities is very similar, their magnitude is clearly different, with
smaller TFP growth occurring under NCP.

Turning to specific periods, we can see that growth is moder-
ate during the 1980s. The latter result is consistent with common
reports regarding Gulf of Mexico production: it was referred to as
the ‘‘Dead Sea’’ in the 1980s. More recent productivity growth has
probably occurred because production has moved to very great
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Fig. 3. Productivity change in petroleum industry under non-convex and convex

assumptions.
water depths in about the last decade or so. While production
occurred at a depth of over a mile by 1997, exploratory wells were
being drilled in nearly 10,000 feet of water by 2001. This deep-
water production has allowed the discovery of larger fields.

We also decompose productivity effects into those associated
with new innovation (TC) and with catch-up effects (EC) in
Figs. 4 and 5. We find significant differences in their sources of
TC and EC. The results for TC are provided in Fig. 4. TC increases
by 15.7% and 27.8% over the study period under the assumptions
of NCP and CP, respectively. Thus, there are significant increases
in TC when imposing the convexity assumption, while TC is
relatively smaller under non-convexity. In contrast, in Fig. 5 we
find a significant increase of EC in the non-convex model, while
EC is much smaller in the convex model. EC increases 9.2% and
1.9% over the study period under the assumptions of NCP and CP,
respectively.

Table 1 reports descriptive statistics of the growth rates over
the years for the Luenberger indicator decomposition in the first
horizontal part, and indicates the average number of observations
experiencing progress, regression, and no change per year in the
second part. The third part of the table specifically indicates the
average number of observations involved in global or local tech-
nological progress per year according to definitions PTC1t,tþ1

i to
PTC3t,tþ1

i where iA{c,nc} (see (8)–(13)).
The analysis of the yearly growth rates in the first part confirms

the preceding Figs. 3–5 in that EC constitutes about one third of
productivity growth under NCP, while it explains only a fraction
(about 6%) in CP. Even though productivity growth is smaller,
we find on average more units experiencing both a positive and a



Table 1
Productivity indicator: descriptive statistics.

Descriptive statistics Non-convex production Convex Production

TFP TC EC TFP TC EC

Mean 0.50 0.31 0.18 0.60 0.56 0.04

Standard deviation 0.23 0.27 0.25 0.25 0.31 0.23

Minimum �0.74 �0.69 �0.12 �0.81 �0.77 �0.09

Maximum 1.23 1.22 0.67 1.26 1.31 0.43

Mean # obs. with component40 204 211 192 185 195 178

Mean # obs. with componento0 139 134 156 116 124 140

Mean # obs. with component¼0 27 25 22 69 51 52

Mean # obs. in PTC1t,tþ1
i iA{c,nc} – 57 – – 35 –

Mean # obs. in PTC2t,tþ1
i iA{c,nc} – 61 – – 45 –

Mean # obs. in PTC3t,tþ1
i iA{c,nc} – 63 – – 38 –

Table 2
Results on the closeness of efficiency/productivity distributions.

Indicators z-test statistics Conclusion

Efficiency score 3.582nnn Reject null hypothesis

Productivity change 4.723nnn Reject null hypothesis

Technological change 5.942nnn Reject null hypothesis

Efficiency change 3.499nnn Reject null hypothesis

nnn Significant at 1% level.

Table 3

Testing b-convergence of productivity changes.

Parameter TFP TC EC

Non-convex production

b �0.009nn(�2.69) �0.012nn(�2.39) �0.007nnn(�4.71)

R2 0.036 0.027 0.052

Convex production

b �0.004 (�1.63) �0.003 (�1.52) �0.006nn (�2.86)

R2 0.012 0.010 0.039

Note — Values in parentheses are t-values. n Significant at 10% level. nn Significant

at 5% level. nnn Significant at 1% level.
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negative productivity, TC, and EC component under the NCP
than under the CP model in the second part. This is probably a
consequence of the fact that on average fewer units experience a
zero productivity, TC, or EC component under the NCP compared to
the CP model.

In addition, focusing on the TC component in the third horizontal
part of the table, one observes first that the yearly average number
of observations that are compatible with global or local positive TC
varies rather substantially depending on the exact definition
retained. Since more observations experience local compared to
global TC, technological progress seems to involve many players in
industry under NCP rather than just a few star performers under CP.
Second, the ratio of observations experiencing local compared to
global technical change varies between a low 35% (61/45) and a high
66% (63/38) on average per year depending on the exact definition
retained. Clearly, more to substantially more observations tend to
push the frontier up- and outward under NCP than CP.

Interpreting these empirical phenomena, the lower productivity
for NCP might be an indication of local rather than global changes
in the production frontier. Also the larger average number of
production units involved in bringing about the technical change
points to a local and dispersed growth phenomenon. Atkinson and
Stiglitz (1969) analyze the generation of new technologies and
introduce the hypothesis that technological change can take place
only in a limited technical space, defined in terms of both factor
intensity and scale. Technological change is localized because it has
limited externalities and affects only a limited span of the
techniques contained by a given isoquant (see also Stiglitz, 1987;
Foray, 1997; Antonelli, 2006).

Since technological improvements are in fact associated with a
specific input space, the convexity assumption is likely to over-
estimate the true changes in technology. This could explain the
higher growth rate under CP and the almost exclusive reliance on
TC as a motor of growth. In fact, in this study convexity seems to
somewhat obscure the role of EC in productivity growth: while it
plays almost no role under CP, the catching up component (EC) is
crucial in explaining productivity growth under NCP. It reveals an
intense diffusion process whereby new techniques and knowl-
edge seem to be continuously absorbed by the majority of players
in the industry. If existing resources are not fully utilized in
production initially (due to technical inefficiencies and variations
in capacity utilization, among others), then one can expect
significant scope for such variations in EC as revealed by NCP.

Table 2 shows the results of Li (1996) test to determine whether
or not each of the production models NCP and CP has a different
distribution of values for the proportional distance functions
(i.e., ‘‘efficiency scores’’), as well as the resulting productivity indicator
and its TC and EC components. In all of these cases, the empirical
results indicate that the two different distributions of CP and NCP
follow statistically significant different patterns. Therefore, we reject
the null hypothesis of distribution closeness between NCP and CP.

To the best of our knowledge, there appear to be no valid
theoretical arguments for assuming a priori that the set of produc-
tion possibilities is truly convex (see also McFadden, 1978). In this
empirical study, the economically important industry of petroleum
exploitation reveals violations of the convexity hypothesis. There-
fore, NCP seems to have a comparative advantage for analyzing TFP.

5.2. Convergence results

In this subsection, we investigate the b-convergence phenom-
enon in the petroleum industry. Table 3 presents the estimation
results for convergence in average productivity changes, technolo-
gical changes, and efficiency changes for a change in a crucial
technology assumption. The results show that productivity change,
as well as both of its components, converge in the NCP model over
the observation horizon. In contrast, productivity and efficiency
changes do not seem to be converging in CP, though the EC is
converging. Notice that the speed of convergence of EC is about
identical in both models. Therefore, we have confirmed strong
evidence for productivity convergence among petroleum fields,



Table 4
Testing s-convergence of productivity changes.

Standard deviations TFP TC EC

Non-convex production

1947 0.283 0.293 0.262

1998 0.256 0.243 0.250

Convex production

1947 0.243 0.302 0.224

1998 0.256 0.312 0.239
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assuming that NCP provides a true measurement. These results
might imply that technology diffusion behind productivity con-
vergence expands opportunities for secondary firms to catch up to
leading firms. Applying the standard assumption of CP yields
altogether different conclusions.

Now we turn to testing for the eventual existence of s-
convergence for productivity, TC, and EC in the NCP and CP
models. Table 4 reports cross-sectional standard deviations of
productivity changes for the two years 1947 and 1998 at the
beginning and end of the sample period. The 1998 standard
deviations are greater than those of 1947 for the CP model, while
the reverse is true for NCP. Therefore, assuming NCP, we are able
to find the tendency of poor fields to grow faster in a cross-section
bivariate regression of growth rates on initial productivity level
and also the tendency of the sample dispersion of productivities
to diminish. In contrast, no sign of s-convergence emerges under
the traditional CP.
4 Note (Managi et al., 2004) apply a more traditional Malmquist productivity

index method.
6. Conclusions

After reviewing traditional theoretical arguments for non-
convexities in production, this study raises doubts regarding the
ability of traditional convex production technologies to explain
the real-world phenomenon of industrial production. We exam-
ine data on the petroleum industry using unique field-level data.
We find that the traditional convex production model fits our data
rather poorly and that the shape of the technology is likely non-
convex. The existing evidence suggests that non-convexities may
exist in petroleum fields as well as in some other industries (such
as electricity generation, car assembly among others). In the light
of this preliminary empirical evidence presented in this study,
there is no good reason to take the convexity of production
possibility sets for granted in general. Therefore, more studies
are called for that explicitly test for the validity of the convexity of
technology.

The whole issue of testing for convexity raises a host of
challenges. Just to mention one, it is important to recall that the
shape of the production technology is a crucial determinant of the
properties of value functions summarizing optimal economic
behavior. For instance, it affects the property of the cost function
with respect to changes in outputs: while in general the cost
function is non-decreasing in outputs, cost functions estimated on
convex (non-convex) technologies are convex (non-convex) in the
outputs (Jacobsen, 1970). This could have consequences regarding
tests of regularity conditions for traditional parametric estimation
approaches. While substantial progress has been made in the
development of flexible functional forms (see, e.g., Gallant and
Golub, 1984 or Tishler and Lipovetsky, 1997) and the testing of
monotonicity and curvature properties (also in a frontier estima-
tion context: see Michaelides et al., 2010 and O’Donnell and Coelli,
2005), it could be a challenge to combine flexible functional forms
allowing for eventual convexity or not in outputs and the testing of
traditional regularity conditions.
If in some distant future these results invalidating convex
technologies would be replicated in other industries, then serious
implications for standard micro-economic theory could follow.
This is because the equilibrium of the firm and the existence of
competitive markets normally depend on the convexity of tech-
nology. It is therefore necessary for researchers to explicitly test
for the assumption of convexity when the true empirically
estimated technology may well be non-convex (e.g., according
to engineers).
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Appendix A. Efficiency estimation based on non-convex
production assumption

When analyzing productive efficiency with regard to the
extraction of non-renewable resources, such as in the petroleum
industry, one faces challenges not met in typical applications to
the single-period production of goods and services. For example,
production from an oil field at some point in time depends upon
cumulative past production from the field (due to depletion
effects), in addition to the technology employed and the attri-
butes of the field (e.g., field size, porosity, water depth). Holding
inputs constant, output from a given field follows a well-known
pattern of an initially increasing output rate, obtaining a peak
after some years of production, and then follows a long path of
declining output (e.g., Pindyck, 1978). This implies that, for the
purpose of measuring changes in productivity, it is inappropriate
to compare contemporaneous levels of output from a newly
producing field with those of a field that has been producing for
ten years or fifty years. Rather, comparisons across fields should
be done holding constant the number of years the fields have
been in operation.

Thus, we measure productivity change by looking at relative
productivity across fields of different vintages. By doing so, we
separate productivity effects associated with the aging of the field
from effects due to differences in the state of the technology. The
CP formulation with the vintage model differs from the conven-
tional CP formulation (as described in, e.g., Färe et al., 1994).
Similar to the approach of Managi et al. (2004), our CP formula-
tion calculates the distance function by solving the following
optimization problem:4

Di
cðx

i
k0 j0 ,y

i
k0j0 Þ ¼ max

dk0 j0 ,kkj

dk0j0

subject to

X
kAKðiÞ

XJðkÞ

j ¼ 0

lkj yi
kjnZ ð1þd

k0 ,j0
Þyi

k0 j0n, n¼ 1,. . .,N,



Table B1
Descriptive statistics of inputs and outputs over the years 1947–1998 (N¼18,117).

Unit Mean Std. Dev. Min Max

Oil output Barrels 1.05Eþ07 3.74Eþ07 0.1 5.23Eþ08

Gas output Million cubic feet 1.10Eþ08 2.46Eþ08 0 3.09Eþ09

No. of exploration wells drilled – 9.11 10.89 1 142

No. of development wells drilled – 28.69 67.74 1 871

Total drilling distance of exploration wells Meter 8832.31 3627.67 0 22086.5

Total drilling distance of development wells Meter 7381.28 4435.97 0 22457

No. of platforms – 5 10.80 1 121

Water depth Meter 169.33 286.69 9 5330

Oil reserve Million barrels 2.36Eþ04 6.18Eþ04 100 5.42Eþ05

Gas reserves Billion cubic feet 2.58Eþ05 3.95Eþ05 100 3.20Eþ06

Untreated produced water Ton 7.92Eþ06 3.16Eþ07 0 5.16Eþ08
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X
kAKðiÞ

XJðkÞ

j ¼ 0

lkj xi
kjmr ð1�dk0 ,j0

Þxi
k0j0m, m¼ 1,. . .,M,

X
kAKðiÞ

XJðkÞ

j ¼ 0

lkj ¼ 1,

lkjZ0, kAKðiÞ, j¼ 1,. . ., J ðkÞ: ðA1Þ

where j is the field year, k is the field number, K(i) includes all
fields of vintage i (i.e., discovered in year i), J(k) is the final year of
production for field k, and lkj is the weight for field k at field year j.

In a similar manner, our NCP formulation calculates the
distance function by solving the following optimization problem:

Di
ncðx

i
k0 j0 ,y

i
k0j0 Þ ¼ max

$k0 j0 ,kkj

$k0 j0

subject to

X
kAKðiÞ

XJðkÞ

j ¼ 0
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kjnZ ð1þ$

k0 ,j0 Þyi
k0j0n, n¼ 1,. . .,N,

X
kAKðiÞ

XJðkÞ

j ¼ 0

lkj xi
kjmr ð1�$k0 ,j0 Þxi

k0 j0m, m¼ 1,. . .,M,

X
kAKðiÞ

XJðkÞ

j ¼ 0

lkj ¼ 1, lkjAf0,1g8jAS

lkjZ0, kAKðiÞ, j¼ 1,. . ., J ðkÞ: ðA2Þ

We refer to this simple algorithm because it points to an
important difference in the logic that lies behind convex vs. non-
convex methodologies. The role of the integrality constraint is
indeed essential to identify a relationship of dominance between
observed production plans. On the one hand, an observation is
declared efficient and considered to be part of the boundary of the
reference technology if it is un-dominated. On the other hand, an
observation is declared inefficient (i.e., it lies in the interior of the
technology) if it is dominated by at least one other observation. In
the latter case, the mixed integer program identifies a most
dominating observation that serves as a reference since it corre-
sponds to the maximum of the computed efficiency measure.

In contrast, the linear programs used in the convex case seek to
compute a distance with respect to the frontier of a convex envelope
of the data. While dominance also plays some role in identifying this
envelope, the additional requirement of convexity introduces the
possibility that un-dominated observations can be declared ineffi-
cient because they do not lie in the convex envelope of the data.
Note that the NCP model treats only a specific and real peer unit, or
a collection of such units in the case of a non-unique solution, as a
benchmark at the optimum for the efficiency measure. Thus, the
NCP model provides a more conservative inner approximation and
estimation of the production possibility set than does CP.
Appendix B. Descriptive statistics of the sample

(See Table B1 below).
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Chambers, R.G., Chung, Y., Färe., R., 1998. Profit, directional distance functions, and
Nerlovian efficiency. Journal of Optimization Theory and Applications 98 (2),
351–364.

Chavas, J.P., Briec, W., 2012. On economic efficiency under non-convexity,
Economic Theory Forthcoming. 10.1007/s00199-010-0587-1.

Chenery, H.B., 1949. Engineering production functions. Quarterly Journal of
Economics 63 (4), 507–531.

Copeland, A., Hall, G., 2011. The response of prices, sales, and output to temporary
changes in demand. Journal of Applied Econometrics 26 (2), 232–269.

Cuddington, J.T., Moss, D.L., 2001. Technical, change, depletion and the US
petroleum industry: a new approach to measurement and estimation. American
Economic Review 91 (4), 1135–1148.



K. Kerstens, S. Managi / Int. J. Production Economics 139 (2012) 196–206206
de la Fuente, A., 2002. On the sources of convergence: a close look at the spanish
regions. European Economic Review 46 (3), 569–599.

Deprins, D., Simar, D., Tulkens, H., 1984. Measuring labor efficiency in post offices.
In: Marchand, M., Pestieau, P., Tulkens, H. (Eds.), The Performance of Public
Enterprises: Concepts and Measurements. North Holland, Amsterdam.

Debreu, G., 1951. The coefficient of resource utilization. Econometrica 19 (3),
273–292.

Dempster, M.A.H., Hicks Pedron, N., Medova, E.A., Scott, J.E., Sembos, A., 2000.
Planning logistics operations in the oil industry. Journal of the Operational
Research Society 51 (11), 1271–1288.

Devine, M.D., Lesso, W.G., 1972. Models for the minimum cost development of
offshore oil fields. Management Science 18 (8), B378–B387.

Diewert, W.E., 2005. Index number theory using differences rather than ratios.
American Journal of Economics and Sociology 64 (1), 347–395.

Durrer, E.J., Slater, G.E., 1977. Optimization of petroleum and natural gas produc-
tion — a survey. Management Science 24 (1), 35–43.
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