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The need to adapt Data Envelopment Analysis (DEA) and other frontier models in the context
of negative data has been a rather neglected issue in the literature. A recent article in this journal
proposed a variation on the directional distance function, a very general distance function that is dual
to the profit function, to accommodate the occurrence of negative data. In this contribution, we define
and recommend a generalised Farrell proportional distance function that can do the same job and that
maintains a proportional interpretation under mild conditions.
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1. Introduction

The seminal article of Farrell (1957) and the revived interest

of Charnes et al (1978) have led to the development of the

Data Envelopment Analysis (DEA) literature that has

developed at the interface of operational research and

economics (see, eg, Førsund and Sarafoglou (2005) for its

history). This DEA literature has meanwhile become one

of the success stories of the operational research area (see,

eg, Emrouznejad et al, 2008). The estimation of frontier or

best practice models to determine the relative efficiency of

organisational units has found its way into a large variety

of domains of application. In terms of empirical surveys

of certain well-analysed sectors, one could, for instance,

point to banking (eg, Harker and Zenios, 2001), educa-

tion (Worthington, 2001), health care (eg, Ozcan, 2008),

insurance (Cummins and Weiss, 2000), public transit

(eg, De Borger et al, 2002), and real estate (Anderson

et al, 2000). In addition to this surge of empirical applica-

tions, there has been an extended series of methodological

developments in this literature (see, eg, the surveys in Färe

et al (1994) or Thanassoulis et al (2008)).

In a traditional production context, inputs and outputs

are assumed to be non-negative (see, eg, Färe et al (1994)

for conditions on the input and output data matrices).

However, frontier applications have also moved into areas

where negative data may occur. Examples include the

analysis of financial statements (eg, Smith (1990) or Feroz

et al (2003)) or the rating of mutual funds (see the seminal

article by Murthi et al, 1997), etc. Obviously, growth rates

or returns can be both negative and positive (see Sharp et al

(2007) for a discussion of contexts where negative inputs

and outputs arise naturally).

The issue of handling negative data has attracted some

research attention. For instance, proposals have been made

to translate the data (eg, by adding a number making

all data positive), though in many models this may have

implications on the efficiency measures, among other

things (see, eg, Ali and Seiford, 1990). In fact, very few

DEA models turn out to yield solutions that are invariant

to such data transformations (ie, are translation invariant).

A number of other solutions have been proposed in the

DEA literature (eg, Silva Portela et al (2004), Sharp et al

(2007), among others). This small literature has been

competently summarised in Pastor and Ruiz (2007) or

Thanassoulis et al (2008).

The rather recently introduced directional distance

function generalises existing distance functions by account-

ing for both input contractions and output improvements,

and it is dual to the profit function (see Chambers et al,

1998). Luenberger (1992) introduced the benefit function

as a directional representation of preferences generalising

the input distance function defined in terms of the utility

function. Luenberger (1995) transposed this benefit func-

tion in a production context under the name of the

shortage function. Chambers et al (1998) relabel this same

function as a directional distance function and this name

has become its most common denomination. This direc-

tional distance function is flexible due to the variety of

direction vectors it allows for. In the more pragmatic,

managerially oriented benchmarking models allowing for

negative data, Silva Portela et al (2004) suggest working

with some variations of this directional distance function.
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In this contribution, we argue that a very simple modi-

fication of the traditionally defined proportional distance

function can equally well be used to accommodate for

negative data.

2. Technology and directional distance function

The standard function of a production technology is

to transform inputs x¼ (x1, . . . ,xp)ARþ
p into outputs

y¼ (y1, . . . , yq)ARþ
q . The production possibility set or

technology T summarises the set of all feasible input and

output vectors and can be defined as follows:

T ¼ fðx; yÞ 2 R
pþq
þ ; x can produce yg: ð1Þ

The technology satisfies the following standard assump-

tions: (T.1) no free lunch; (T.2) boundedness; (T.3) close-

dness; (T.4) strong disposal of inputs and outputs; and

(T.5) convexity (see Färe et al (1994) for details). For a

finite data set, it has been demonstrated that the DEA

model suggested by Banker et al (1984) is the non-

parametric minimum extrapolation technology satisfying a

subset of the above set of axioms (see also Färe et al, 1994).

Throughout this contribution, following the literature, we

refer to this model as a convex, strongly disposable

technology, satisfying variable returns to scale (VRS).

The technology can be characterised by the use

of distance functions. To simplify notation, denote the

netput vector z¼ (x, y)AT and the direction vector

g¼ (h,k)A(�Rþp ) � Rþ
q , that is partitioned in an input

and an output direction vector �h and k, respectively. The

directional distance function is seeking a simultaneous

improvement in both the input and output dimensions in

the direction of the vector g and is formally defined as:

Definition 2.1 For a given technology T, the directional

distance function DT is the function DT : T � ((�Rþp ) �
Rþ
q )-R,{þN} with

DT ðz; gÞ ¼ sup
d
fd 2 R : zþ dg 2 Tg:

First, observe that, by extending the target set R with

þN, the directional distance function is well defined for

all possible choices of the direction vector. Indeed if g¼ 0,

then clearly DT (z; 0)¼ þN. Also note that DT (z; g)X0,

since d¼ 0 is always contained in the set {dAR: zþ dgAT}.

Note that in the more general case where a point may not

be part of the technology, the definition of the directional

distance function must be adapted such that it distinguishes

between the standard case where the supremum occurring

in the definition is finite and the case where it is infinite

(�N or þN) (the latter showing up as infeasibilities in

the associated mathematical programming problems). This

distinction is important since Briec and Kerstens (2009)

have recently shown for general production technologies

that there are always circumstances for which this adapted

function may not be well defined. For instance, this leads

to a lack of determinateness in the Luenberger productivity

indicator (a generalisation of the more widely applied

Malmquist productivity index) that is defined using a

combination of directional distance functions: in particu-

lar, infeasibilities may occur when relating an adjacent

period observation to a technology in a given time period

(see Briec and Kerstens (2009) for details).

Second, this distance function has an interpretation as

an efficiency (or better, inefficiency) measure, because it

measures deviations from the boundary of the technology.

A weakly efficient vector zAT yields a directional distance

function value of zero.

The directional distance function has proven to be a

useful tool in applied production analysis. For instance,

it allows Chavas and Kim (2007) to shed new light on

economies of scope from a primal viewpoint and to

propose a decomposition of the benefits from integrated

versus (partially or completely) specialised firms that

includes output complementarities, economies of scale,

and convexity. Furthermore, it provides the defining

components of the Luenberger productivity indicator

(eg, Chambers, 2002), a generalisation of the very

popular Malmquist productivity index. While the latter

index is based on input- or output-oriented distance

functions (that are inversely related to the traditional

radial input- or output-oriented efficiency measures),

the former indicator is based on directional distance

functions and is therefore suitable to evaluate total

factor productivity growth for profit-oriented institu-

tions. Both productivity indices can be decomposed into

a technical efficiency change and a frontier change

component, which partly explains their popularity.

We mention the following proposition that can be

obtained directly from Definition 2.1.:

Proposition 2.1 For a given technology T, zAT,

gA(�Rþp ) � Rþ
q and an arbitrary norm function 8 . . . 8, it

follows that DT (z; g)¼ d� ¼ 8z��z8/8g8, with z� ¼ zþ d�g.

Proof The proof is trivial and is therefore omitted. &

The directional distance function defined in Definition 2.1

uses a general direction vector g. However, sometimes one

considers the special case �g¼ (�x, y) which gives rise to

the Farrell proportional distance function (Briec, 1997)

described in the following definition:

Definition 2.2 For a given technology T, the Farrell

proportional distance function FT is the function

FT : T ! R [ fþ1g : z 7!FTðzÞ ¼ DTðz; �gÞ;

with z¼ (x, y) and �g¼ (�x, y).
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Since this proportional distance function is a special case

of the directional distance function, it also measures

inefficiency. Note that with this choice, �gA(�Rþp ) � Rþ
q .

Obviously, given semi-positive prices, looking for reduc-

tions in inputs and expansions in outputs contributes to the

objective of profit maximisation.

The axiomatic foundations of efficiency measures in

production theory have been analysed since at least Färe

and Lovell (1978). This seminal article proposed three

axioms that an input-based efficiency index should satisfy:

(i) indication (ie, index equals unity if and only if the

input vector belongs to the strongly efficient subset),

(ii) monotonicity (ie, for constant other inputs and outputs,

increasing an input must reduce the value of the index),

and (iii) homogeneity of degree minus one (ie, doubling

inputs must halve the index). Additional axioms have been

proposed (eg, commensurability, continuity in technology

and in input or output quantities, etc). This literature

focused mainly on special distance functions that only look

for a reduction in inputs (or improvements in outputs).

However, the directional distance function measures poten-

tial efficiency improvements in all dimensions. Axiomatic

properties of the directional distance function and the

Farrell proportional distance function are studied in

Chambers et al (1998) and Briec (1997), respectively.

Russell and Schworm (2009) recently took a look at similar

efficiency measures in production theory and prudently

conclude that the directional distance function with a

proportional interpretation satisfies a stronger unit invar-

iance property compared to the case of a fixed direction.

However, this axiomatic literature is not central to our

contribution. Therefore, we focus on the proportional

interpretation one can attribute to certain variations of the

directional distance function.

We first introduce the following definition:

Definition 2.3 A norm function 8 . . . 8 on Rn is reflection

invariant if 8z8¼ 8fs(z)8 for all zARn and all reflections fs
with respect to an arbitrary hyperplane SCRn.

It can be easily shown that the Euclidean norm has the

property of being reflection invariant.

The meaning of proportionality of the Farrell propor-

tional distance function is twofold as can be seen from the

following proposition:

Proposition 2.2 For a given technology T, zAT and some

reflection invariant norm function 8 . . . 8, the Farrell

proportional distance function value FT (z) satisfies:

(a) FT ðzÞ ¼ �d� ¼ 8z� � z8
8�g8

¼ 8z� � z8
8z8

;

with z� ¼ zþ �d��g;

(b) 0pFT(z)p1.

Proof Both statements follow from Proposition 2.1.

(a) Indeed, since a reflection invariant norm function

is assumed, 8�g8¼ 8(�x, y)8¼ 8(x, y)8¼ 8z8. When

combined with Proposition 2.1, (a) follows directly.

(b) Let z� ¼ (x�, y�). Since z� ¼ zþ �d��g, it is also the case

that x� ¼xþ �d�(�x)¼ (1��d�)x. However, both x and x�

are contained in Rþ
p , with results in �d�p1. Obviously,

since norm functions are positive, �d�X0, which

concludes (b). &

Obviously, a percentage interpretation facilitates the

utilisation of benchmarking results by practitioners.

Now, consider n decision-making units (DMUs) zi¼
(xi, yi), (i¼ 1, . . . , n) from which the technology T is

derived. Furthermore, z0¼ (x0, y0) denotes the DMU under

analysis and g¼ (h,k) is the selected direction vector. Then,

the directional distance function value DT (z0; g) under

convexity, VRS, and strong disposability assumptions is

obtained by solving the following linear programming

(LP) problem:

DT ðz0; gÞ ¼ max

d :
Xn
i¼1

lixirpx0r

(
þ dhr; ðr ¼ 1; . . . ; pÞ;

Xn
i¼1

liyisXy0s þ dks; ðs ¼ 1; . . . ; qÞ;

Xn
i¼1

li ¼ 1; liX0; ði ¼ 1; . . . ; nÞ
)
: ð2Þ

From (2), it is clear that the Farrell proportional distance

function value for the same technology can be computed

by solving the following LP problem:

FT ðz0Þ ¼ max

�d :
Xn
i¼1

lixirpx0r � �dx0r; ðr ¼ 1; . . . ; pÞ;
(

Xn
i¼1

liyisXy0s þ �dy0s; ðs ¼ 1; . . . ; qÞ;

Xn
i¼1

li ¼ 1; liX0; ði ¼ 1; . . . ; nÞ
)
: ð3Þ

3. Proportional distance function: a reformulation for

negative data

Assuming now that inputs and/or outputs can be negative,

one must revise the notion of a technology. In fact, an

element of T no longer needs to be contained in Rþ
pþ q.

Hence, we redefine the technology on this extended data

domain as

T 0 ¼ fðx; yÞ 2 Rpþq; x can produce yg; ð4Þ
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with the standard assumptions stated before (except

(T.1)).1 Note that this extended data domain can yield

problems for certain technology specifications (eg, the

assumption of constant returns to scale: see Silva Portela

et al (2004) for details). With this adaptation, Definition 2.1

of the directional distance function, the corresponding

model (2) for computing it, and Proposition 2.1 remain all

valid. However, the Farrell proportional distance function

defined in Definition 2.2 is no longer well defined when

inputs or outputs can take negative values, since the direction

vector g is not necessarily contained in (�Rþp ) � Rþ
q . Such

a choice is crucial to guarantee a simultaneous increase in

the output direction and a decrease in the input direction.

For instance, assume we start from an observation with

one positive input and one negative output. Then, when

applying model (3), one would be trying to obtain an even

more negative output. Assuming an objective function is

increasing in outputs and decreasing in inputs, this would

lead to a decrease in the objective function value, which is

undesirable.

To circumvent this problem, Silva Portela et al (2004)

propose a so-called range directional model. In this model,

the direction vector g̃¼ (�R0,S0) is chosen for a DMU

z0¼ (x0, y0) with

R0r ¼ x0r �minfxir; i ¼ 1; . . . ; ng; ðr ¼ 1; . . . ; pÞ;
S0s ¼ maxfyis; i ¼ 1; . . . ; ng � y0s; ðs ¼ 1; . . . ; qÞ:

This choice guarantees a non-zero direction vector

g̃A(�Rþp ) � Rþ
q under all circumstances, thereby realising

the range directional distance function RT 0 suitable for

negative as well as positive data. In the case of a

technology-satisfying convexity, VRS, and strong disposa-

bility assumptions, the following LP problem needs to be

solved:

RT 0 ðzÞ ¼ max

~d :
Xn
i¼1

lixirpx0r � ~dR0r; ðr ¼ 1; . . . ; pÞ
(

;

Xn
i¼1

liyisXy0s þ ~dS0s; ðs ¼ 1; . . . ; qÞ;

Xn
i¼1

li ¼ 1; liX0; ði ¼ 1; . . . ; nÞ
)
: ð5Þ

An obvious problem with this proposal is the fact that the

efficiency measure resulting from the range directional

model no longer has a proportional interpretation, which

is a disadvantage for practitioners.2

However, there is another simple alternative that basically

generalises the proportional distance function to handle

negative data as well. This seems to have gone unnoticed in

the literature so far. Given a DMU z¼ (x0, y0), we propose

the direction vector ĝ¼ (�|x0|,|y0|) in which |x0| denotes

the input vector with components |x0r|, (r¼ 0, . . . , p), and

similarly |y0| denotes the output vector with components

|y0s|, (s¼ 0, . . . , q) instead of taking �g or g̃. Obviously, this

choice assures that ĝA(�Rþp ) � Rþ
q for both positive

and/or negative data. Moreover, in the case of positive

inputs and outputs, the direction vector coincides exactly

with the one defining the original Farrell proportional

distance function. Therefore, the proposed solution can

indeed be seen as a generalisation of the Farrell propor-

tional distance function suitable for both positive and

negative data domains. We suggest calling it the general-

ised proportional distance function, which leads to the

following definition:

Definition 3.1 For a given technology T 0, the generalised
proportional distance function GT 0 is the function

GT 0 : T 0 ! R [ fþ1g : z 7!GT 0 ðzÞ ¼ DT 0 ðz; ĝÞ;
with z¼ (x, y) and ĝ¼ (�|x|,|y|).

The proportional interpretation of the Farrell proportional

distance function formulated in Proposition 2.2 now has a

counterpart for this generalised proportional distance

function:

Proposition 3.1 For a given technology T 0, zAT 0 and some

reflection invariant norm function 8 . . . 8, the generalised

proportional distance function value GT 0(z) satisfies:

(a) GT 0 ðzÞ ¼ d̂� ¼ 8z� � z8
8ĝ8

¼ 8z� � z8
8z8

;

with z� ¼ zþ d̂�ĝ;

(b) 0pGT 0(z)p1 if at least one of the input dimensions is

strictly positive.

Proof (a) Because the norm function is reflection

invariant,

8ĝ8 ¼ 8ð�jxj; jyjÞ8 ¼ 8ðjxj; jyjÞ8 ¼ 8ðx; yÞ8 ¼ 8z8:

Consequently, (a) follows from Proposition 2.1. (b) Let

z� ¼ (x�, y�). Since z� ¼ zþ d̂�ĝ it is also the case that

x� ¼xþ d̂�(�|x|). Assume the k-th input dimension is

strictly positive. Then, xk
� ¼xkþ d̂�(�xk)¼ (1�d̂�)xk. Since

both xk and xk
� are strictly positive for all data in the

k-th dimension, d̂�p1, with (b) as a consequence. &

Note that the ratio interpretation (statement (a) in

Proposition 3.1) still holds for the generalised propor-

tional distance function. However, the restriction of its

function value between zero and one (statement (b) in

Proposition 3.1) is now only guaranteed in the presence of

1In fact, it is often ignored that the model proposed by Banker et al

(1984) does not satisfy the no free lunch axiom.
2This important contribution is further discussed and contrasted with

other proposals regarding negative data in Pastor and Ruiz (2007).
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at least one strictly positive input dimension within the

sample. Note that in empirical applications the latter

condition is rather mild: in the case of multiple input

dimensions, it is rare to have a DMU with only negative

values for all of these dimensions. For instance, for

portfolio models using the shortage function (Briec and

Kerstens, 2010) containing some even moment (eg,

variance, kurtosis, . . . ) this condition is automatically met.

From model (3), it directly follows that the generalised

proportional distance function value for a given DMU,

under the same assumptions as above, is computed from

the following LP model:

GT 0 ðzÞ ¼ max

d̂ :
Xn
i¼1

lixirpx0r � d̂jx0rj; ðr ¼ 1; . . . ; pÞ;
(

Xn
i¼1

liyisXy0s þ d̂jy0sj; ðs ¼ 1; . . . ; qÞ;

Xn
i¼1

li ¼ 1; liX0; ði ¼ 1; . . . ; nÞ
)
: ð6Þ

Note that the generalised proportional distance function

value is a measure of inefficiency just like the proportional

distance function. The closer this value is to zero, the more

efficient the corresponding DMU.

Figure 1 illustrates the proposed direction vector on

a theoretical example consisting of 65 DMUs with

one input (X) and one output (Y). These DMUs are

visualised by small grey circles. Both inputs and outputs

can be negative. The DEA VRS frontier is determined

completely by five DMUs defining the vertex points of

this piecewise linear frontier. These vertices have as

coordinates (�12,�6), (�9, 3), (�4, 10), (8, 15), and

(14, 17), respectively. For four DMUs (labelled with

numbers 1–4), the projection onto the frontier by means

of the generalised proportional distance function is

indicated with an arrow, whereby the direction vector is

selected to be ĝ¼ (�|x0|,|y0|) for a given DMU z¼ (x0, y0).

Note that DMUs 1 and 2 (3 and 4) have a positive

(negative) value for the single input.

Table 1 focuses on these four DMUs and their

projections. The coordinates (x0, y0) of the DMUs labelled

with numbers 1–4 are provided in columns 2 and 3. The

coordinates of the direction vector ĝ¼ (ĝx, ĝy) used in

the generalised proportional distance function are listed

in columns 4 and 5. Consequently, the directions of the

arrows in Figure 1 are determined by the absolute value

of the coordinates of the position vector of the initial

points. Thus, despite what Figure 1 might suggest at first

sight, the directions of the arrows are not arbitrary, but

are precisely determined by the positions of the evaluated

DMUs.

In Figure 1, the resulting projection points located on

the frontier are labelled with the letters A–D. Columns 6

and 7 in Table 1 represent the coordinates (x0
�, y0
�) of these

projection points A–D. Projection points are computed by

inserting the optimal value of the directional distance

function in the right-hand side of the p and q inequalities

related to the input and output dimensions, respectively.

For example, point A on the frontier can be computed as

follows: (8�0.7742 � 8, 7þ 0.7742 � 7)¼ (1.806, 12.419).

The coordinates of the difference vector d¼ (dx, dy)¼
(x0
��x0, y0��y0) connecting the initial point with the

projection point (visualised in Figure 1 with an arrow) is

found in columns 8 and 9. Finally, the value of the

generalised proportional distance function d̂� for the four

DMUs is found in the last column.

We point out that the optimal value of the generalised

proportional distance function can easily be verified ex

post from the previous elements in Table 1. We illustrate

this for the DMU labelled 1. Consequently, the vector z

corresponds with the dash-dotted arrow connecting the

origin with the point labelled 1, and the vector z� can be

observed as the dotted arrow from the origin to the

point labelled A. In addition, the corresponding direction

vector ĝ, shown as the dashed arrow, is obtained by

Figure 1 DEA VRS frontier: projections for four inefficient
DMUs.

Table 1 Numerical example with four DMUs

From–To x0 y0 ĝx ĝy x�0 y�0 dx dy d̂�

1–A 8 7 �8 7 1.806 12.419 �6.194 5.419 0.7742
2–B 5 �9 �5 9 �4.857 8.775 �9.857 17.775 1.9750
3–C �4 2 �4 2 �8.211 4.105 �4.211 2.105 1.0526
4–D �4 �2 �4 2 �9.714 0.857 �5.714 2.857 1.4286
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reflecting the dash-dotted arrow across the vertical axis. It

follows from Proposition 3.1 that

GT 0 ðzÞ ¼ d̂� ¼ 8z� � z8
8ĝ8

¼ 8A18
8ĝ8

¼ 8A18
8z8

; ð7Þ

with 8A18¼ 8z��z8 the distance from the point labelled 1

to the point labelled A. Note that using the notion of

distance requires a reflection invariant norm function as

indicated in Proposition 3.1. Therefore, we consider here the

commonly used Euclidean norm for computing distances.

Consequently,

d̂� ¼ 8d8
8ĝ8
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
x þ d2

y

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝ2x þ ĝ2y

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:806� 8Þ2 þ ð12:419� 7Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�8Þ2 þ 72

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�6:194Þ2 þ 5:1492

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�8Þ2 þ 72

q ¼ 0:7742: ð8Þ

The inefficiency measures for the other points can be

computed in a similar fashion.

We first recall that Proposition 3.1 guarantees a

proportional interpretation of the inefficiency measure.

In this example, however, its value can be larger than

one since the only input present can attain negative

values. This can be observed for the DMUs labelled 2, 3,

and 4. From Proposition 3.1 statement (a), we know this

means the (Euclidean) distance from the DMU to the

optimal frontier is then larger than the (Euclidean)

distance to the origin. For instance, for DMU 2, the

efficiency measure amounts to 1.9750, or 197.50%. This

means that the (Euclidean) distance of this DMU to the

optimal frontier (location labelled B) is almost double

the (Euclidean) distance to the origin. In Figure 1, this

can be observed from the fact that the origin is located

nearly halfway between the points labelled 2 and B.

Obviously, the closer a point is situated to the frontier,

the smaller is the numerator of (7) leading to smaller

inefficiency values and therefore more efficient units.

However, for points closer to the origin, the denomi-

nator of (7) decreases, consequently leading to larger

inefficiencies. If a DMU were to be located in the origin,

then its inefficiency would measure þN.

Furthermore, also note that in the case of one input and

one output, all DMUs positioned in the second and fourth

quadrant are projected in a direction whose support line

passes the origin. This follows directly from the choice of

direction vector. Indeed, assume z¼ (x, y) is positioned in

the second quadrant. Then, xo0 and y40. Consequently,

ĝ¼ (�|x|,|y|)¼ (x, y)¼ z. From Proposition 3.1, it now

follows that z� ¼ zþ d̂�ĝ¼ zþ d̂�z¼ (1þ d̂�)z, meaning that

z�, z, and 0 are collinear. A similar argument holds for z

positioned in the fourth quadrant. This phenomenon can

be observed for the points labelled 2 and 3 in Figure 1. This

explains why DMU 2, which has a positive value for the

single input, nevertheless has an efficiency measure larger

than unity.

Thus, in the case of negative data in DEA and assuming

that it is critical in practice to maintain a proportional

interpretation, we recommend using the generalised pro-

portional distance function (see Definition 3.1) and solving

LP problem (6) rather than employing the standard

directional distance function (Definition 2.1) or the Farrell

proportional distance function (Definition 2.2) and their

corresponding mathematical programs (see (2) and (3),

respectively).

4. Concluding comments

The fast growing DEA literature has for a long time

neglected the issues surrounding the use of negative data

in managerially oriented benchmarking models. The

timely work of Silva Portela et al (2004) suggests a

variation on the directional distance function, a general

distance function compatible with profit maximisation

that has recently gained some popularity. This contribu-

tion has argued that a very simple modification of the

traditional proportional distance function can be em-

ployed in this context instead. This generalised propor-

tional distance function (Definition 3.1) has been shown

to maintain a proportional interpretation under very

mild conditions. This interpretation facilitates the use of

benchmarking results in a managerial context.
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Chambers R, Chung Y and Färe R (1998). Profit, directional
distance functions, and Nerlovian efficiency. J Optimiz Theory
Appl 98: 351–364.

Charnes A, Cooper W and Rhodes E (1978). Measuring the
efficiency of decision making units. Eur J Opl Res 2: 429–444.

Chavas J-P and Kim K (2007). Measurement and sources of
economies of scope: A primal approach. J Inst Theor Econ 163:
411–427.

Cummins D and Weiss M (2000). Analyzing firm performance in
the insurance industry using frontier efficiency and productivity
methods. In: Dionne G (ed). Handbook of Insurance. Kluwer:
Boston, pp 767–829.

De Borger B, Kerstens K and Costa A (2002). Public transit
performance: What does one learn from frontier studies?
Transport Rev 22(1): 1–38.

Emrouznejad A, Parker B and Tavares G (2008). Evaluation of
research in efficiency and productivity: A survey and analysis of
the first 30 years of scholarly literature in DEA. Socio Econ Plan
Sci 42: 151–157.
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