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1 Introduction

Few studies have empirically documented the phenomenon of congestion
in production, here intuitively defined as production where marginal
productivity has become negative. One of the largest streams in the
literature where at least some studies document congestion employs
multi-output nonparametric production technologies that impose either
ray or free disposability to distinguish between technical inefficiency
(understood as production below the production frontier) and conges-
tion (for the moment defined as a particular severe form of technical
inefficiency). While the empirical analysis of efficiency and productivity
has become quite popular (see, e.g., Badunenko and Romero-Ávila,
2013; Henderson and Russell, 2005), congestion is most often ignored in
such studies, despite the fact that some studies find it to be the most
important source of poor performance (e.g., Zhengfei and Oude Lansink,
2003).

Traffic congestion is a prominent example. Throughout the world,
all major cities suffer from severe congestion as manifested by reduced
speeds and traffic flows over a given road network. Another well-
documented example is output loss in agriculture due to excessive use
of fertilisers. Agronomic crop response models relating crop yield to
nutrients in general show a maximal plateau (where marginal product of
input is zero) but also a phase where crop yield declines (where marginal
product of input has become negative). The latter is sometimes denoted
as the toxic range (e.g., Jones, 2001, pp. 216–221).

There is a limited axiomatic literature allowing to reveal and measure
some limited forms of congestion in production.1 In this contribution,
we provide an empirical perspective on these limited forms of congestion
in production. In particular, this paper has two goals. First, we want to
document the amounts and incidence of congestion that are empirically
observed in the available literature and to systematically illustrate these
amounts and incidence using several secondary data sets under some
limited variations in assumptions on technology. Second, we want to see
how the way one measures congestion affects the amounts and incidence

1These forms of congestion are known as monotone output-limitational (MOL)
congestion (see Färe and Svensson, 1980).
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that are revealed and also this is systematically illustrated using these
same secondary data sets.

This paper is structured as follows. Section 2 provides some basic
definitions of technology and its boundaries. Furthermore, it discusses
the representation of technologies by means of efficiency measures and
introduces the nonparametric technologies used in the empirical part
of this paper. Section 3 introduces the distinction between technical
inefficiency and congestion measurement as part of some well-known
static efficiency decompositions. In a second subsection, we review
the empirical literature containing some evidence on the amounts and
incidence of congestion. In a final subsection, we illustrate how the
traditional radial way of measuring efficiency and congestion actually
may underestimate the amounts of congestion. Furthermore, we outline
an alternative approach that does not share this defect with the radial
measure. Thereafter, we present an empirical Section 4 revisiting several
existing data sets and exploring the amounts and incidence of congestion
while contrasting the radial efficiency measure as well as the alternative
approach. Section 5 develops a systematic research agenda. Section 6
concludes.

2 Technologies: Definition, Subsets, and Representation

2.1 Technology: Definition, Subsets, and Representation

A production technology describes all possibilities how input vectors
x = (x1, . . . , xm) ∈ Rm+ can be transformed into output vectors y =
(y1, . . . , yn) ∈ Rn+. The technology T summarises the set of all feasible
input and output vectors: T = {(x, y) ∈ Rm+n

+ : x can produce y}.
Given the focus on efficiency measurement in the input orientation,
technology can be represented by the input correspondence L : Rn+ →
2R

m
+ , where L(y) is the set of all input vectors that yield at least the

output vector y:

L(y) = {x : x can produce y} . (1)

It is useful to distinguish between three subsets of the input set L(y)
denoting production units on the boundary. First, one can define the
isoquant of an input set as:

Isoq L(y) = {x ∈ L(y) : λx /∈ L(y),∀λ ∈ [0, 1[}. (2)
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Figure 1: Input set and its subsets.

Second, the weak efficient subset is defined by:

WEff L(y) = {x ∈ L(y) : u < x⇒ u /∈ L(y)}. (3)

Finally, the efficient subset of an input set is defined as:

Eff L(y) = {x ∈ L(y) : u ≤ x and u 6= x⇒ u /∈ L(y)}. (4)

Obviously, Eff L(y) ⊆WEff L(y) ⊆ Isoq L(y) ⊆ L(y). For nonparamet-
ric technologies, these subsets are described in Section 2.2 and illustrated
in Figure 1.

Technologies can be characterised using distance functions, which
are related to the efficiency measures defined in Farrell (1957). The
input-oriented Farrell efficiency measure Ei(x, y) indicates the minimum
contraction of an input vector by a scalar λ while still remaining part
of the input set:

Ei(x, y) = inf
λ
{λ : λx ∈ L(y), λ ≥ 0} . (5)

Obviously, Ei(x, y) ≤ 1 for x ∈ L(y), with unity indicating efficiency.

2.2 Nonparametric Technologies: Definitions and Subsets

Consider a set of K observations A = {(x1, y1) , . . . , (xK , yK)} ∈ Rn+m+

on the base of which we reconstruct a technology. Nonparametric
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specifications of technology can be estimated by enveloping this set of
observations while maintaining some basic production axioms.

First, under variable returns to scale (VRS) we define both a weakly
and a strongly disposable technology. Under strong input and output
disposal (SD), a variable returns to scale technology is defined as:

L(y|SD, V RS) =

{
x : x ≥

K∑
k=1

zkxk, y ≤
K∑
k=1

zkyk,

K∑
k=1

zk = 1, z ≥ 0

}
.

(6)

The vector z represents the activity variables that indicate the intensity
at which a particular activity is employed in constructing the reference
technology. Under weak input disposal (WD), strong output disposal,
and variable returns to scale the technology is defined as:

L(y|WD,V RS)

=

{
x : γx =

K∑
k=1

zkxk, y ≤
K∑
k=1

zkyk,
K∑
k=1

zk = 1, γ ∈ (0, 1], z ≥ 0

}
.

(7)

Note that the inequalities on the input dimensions have now been
replaced by an equality while the observed inputs are scaled down by
the scalar γ.

Second, under constant returns to scale (CRS) we can equally
define both a weakly and a strongly disposable technology by sim-
ply removing the constraint

∑K
k=1 zk = 1 in the technologies (6) and

(7), respectively. These technologies are denoted L(y|SD,CRS) and
L(y|SD,CRS), respectively. Details on these technologies and the
underlying axioms are found in Hackman (2008) or Ray (2004).

Figure 1 shows typical isoquants for such nonparametric input sets
with strong disposability of inputs and with weak disposability of inputs
starting from some basic observations. Note that the weakly disposable
technology (7) is normally a subset of the strongly disposable technology
(6). We now clarify the three subsets ((2)–(4)) on these input sets. For
both technologies, the efficient subset Eff L(y) consists of the line
segments joining points def . For the weakly disposable technology, the
weakly efficient subset WEff L(y) contains the connected line segments
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cdef , and its isoquant Isoq L(y) is formed by adding the line segments
bc and fg to those in WEff L(y). Points on the rays through 0b and 0g
belong to the boundary of the input correspondence, not to any of its
three subsets. For the technology with strong disposability, the weakly
efficient subset and the isoquant coincide: both contain the connected
line segments cdef and the lines beyond c and f parallel to both axes.

3 Technical Inefficiency and Congestion: Framework and Empirical
Perspective on Congestion Measures and Incidence

3.1 Static Efficiency Decomposition: The Role of Congestion

The distinction between technical efficiency (TE) and structural effi-
ciency (STE) or congestion can be seen against the background of a
variety of proposals to develop a static taxonomy of efficiency. The
seminal article by Farrell (1957) distinguished between technical and
allocative inefficiency. Seitz (1970) was the first to add a further dis-
tinction by defining a scale efficiency component based on cost function
comparisons. Later on Førsund and Hjalmarsson (1974), Färe et al.
(1983b), and Banker et al. (1984) distinguished between technology-
based technical and scale efficiency, whereby the second team of authors
also integrated a congestion component. Färe et al. (1985c) were among
the first to offer an extended efficiency decomposition summarising most
of the above developments.2

Since the focus is on congestion measurement, we first intuitively
explain the notion of congestion and how it can be revealed with the
help of the technologies defined above using Figure 1. To illustrate
how the weakly disposable technology models congestion, we start from
observation f . While the strongly disposable technology allows to waste
additional inputs x1 at no opportunity cost, the weakly disposable
technology leaves two options: either the wasting of extra inputs x1
requires additional costs in terms of extra inputs x2 to reach, for instance,
observation g while maintaining current output levels, or the wasting
of extra inputs x1 without any additional inputs x2 results in reaching
another input set of the weakly disposable technology with a lower level

2These decompositions (including the distinction between short- and long-run
measures as well as the integration of capacity measures) are surveyed in De Borger
et al. (2012).
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of outputs. In short, wasting additional inputs x1 has an opportunity
cost in terms of either additional inputs x2 or less outputs.

Then, we define and illustrate the traditional radial way of measuring
technical efficiency and congestion as proposed in Färe et al. (1983b).
The radial measure of input congestion can be defined as follows:

Ci(x, y|VRS ) =
Ei(x, y|SD,VRS )

Ei(x, y|WD,VRS )
, (8)

where Ei(x, y|SD,VRS ) and Ei(x, y|WD,VRS ) denote the radial
efficiency measure (5) defined relative to VRS technologies with
strong disposability (6) and weak disposability (7), respectively. Since
Ei(x, y|SD,VRS ) ≤ Ei(x, y|WD,VRS ), the ratio Ci(x, y|VRS ) ≤ 1.

This leads to the following decomposition of pure technical efficiency:

Ei(x, y|SD,VRS ) = Ei(x, y|WD,VRS ) · Ci(x, y|VRS ). (9)

The left-hand side is the pure technical efficiency measure Ei(x, y|SD,
VRS ) evaluated with respect to a technology with strong disposability.
On the right-hand side we have a weak technical efficiency measure
Ei(x, y|WD,VRS ) evaluated with respect to a technology with weak
disposability times the congestion measure Ci(x, y|VRS ) as defined
in (8). This whole decomposition is measured with respect to VRS
technologies.

This radial congestion measure Ci(x, y|VRS ) can be illustrated
by commenting on observation h situated in the interior of the
input set L(y|WD,VRS ) in Figure 1. Weak technical efficiency
Ei(x, y|WD,VRS ) is represented by the ratio of distances 0h2/0h
measured relative to the input set L(y|WD,VRS ). Pure technical effi-
ciency Ei(x, y|SD,VRS ) is represented by the ratio of distances 0h3/0h
relative to h3 on the weakly efficient subset (WEff L(y|SD,VRS )).
Structural efficiency or congestion Ci(x, y|VRS ) is measured by the
ratio of distances 0h3/0h2 derived by comparing radial distances
between an activity without congestion at point h3 on the weakly
efficient subset (WEff L(y|SD,VRS )) and activity with congestion
h2 on the boundary of L(y|WD,VRS ). Hence, using (9), the total
deviation from the strongly disposable technology captured by pure
technical efficiency can be decomposed into a weak technical efficiency
and a congestion component.
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Turning now to a comparison of observations a and b on the same
Figure 1, we obtain the following results. Since observation a is pro-
jected onto the weakly efficient subset of both the strongly and weakly
disposable technologies, it does not suffer from congestion but the ratio
of distances 0c/0a is just interpreted as technical inefficiency solely.
By contrast, applying the same logic, observation b is situated on the
Isoq L(y) of the weakly disposable technology and hence technically
efficient. However, the gap between the strongly and weakly disposable
technologies (i.e., 0b2/0b) reveals congestion. Noticing that observation
a wastes more of both inputs than observation b for identical outputs,
one may wonder why the latter is considered congested but technically
efficient, while the former is technically inefficient but uncongested. We
return to this issue below.

Crucial for our focus on congestion measurement in the remainder are
the following remarks. First, we consider congestion as an extreme and
unacceptable form of technical efficiency. While technical inefficiency is
costly and implies a waste of resources, one can imagine certain reasons
justifying its existence (e.g., slack resources and capacity in anticipation
of an increasing demand over a product life cycle). However, congestion
implies a waste of resources and an additional opportunity cost in
terms of additional inputs or wasted outputs. Therefore, it is almost
impossible to justify and ideally requires prompt managerial action.3

Second, one should clearly distinguish between detecting congestion
and summarising its relative importance as a source of inefficiency within
some efficiency decomposition. While the radial efficiency measure (5)
is convenient to summarise the relative importance of different efficiency
components in a multiplicative decomposition, as illustrated above it
need not necessarily be an accurate tool to reveal the incidence of
congestion (see also infra).

Third, in view of the previous argument, congestion is traditionally
measured with respect to a nonparametric technology with flexible (i.e.,
variable) returns to scale. Färe et al. (1985c) distinguish between private

3Ray (2004, p. 184) states in this respect: “A general note of caution is strongly
warranted at this point. Presence of input congestion is quite unlikely in behavioral
data. Even though the marginal productivity of an input could eventually become
negative, it is difficult to imagine a producer actually using the input at that level —
especially when it has to be procured at a cost.”
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and social goals when discussing the rationale behind their decomposi-
tion components. These authors consider scale issues a social goal, while
they deem technical efficiency and congestion private matters. However,
some authors have implicitly or explicitly proposed alternative mea-
surement schemes. For instance, McDonald (1996) proposes measuring
congestion by contrasting weakly and strongly disposable technologies
under constant returns to scale. His numerical examples illustrate how
this change in returns to scale assumption affects the amount of con-
gestion. In our view, given our research question, it is important to
understand how the amounts of congestion may vary depending on the
axioms maintained on technologies.4 However, we consider the variable
returns to scale technology to be the true technology, while the constant
returns to scale technology is just an auxiliary technology useful to
determine, e.g., the returns to scale for individual production units.5

Therefore, this case of measuring congestion relative to constant returns
to scale technologies is just included for the sake of completeness.

Therefore, we also define a radial measure of input congestion with
respect to CRS technologies as follows:

Ci(x, y|CRS ) =
Ei(x, y|SD,CRS )

Ei(x, y|WD,CRS )
, (10)

4We dissent from the argument made by Färe and Grosskopf (2000) in reply
to McDonald (1996) who simply refer to economic tradition to justify measuring
congestion relative to a variable returns to scale technology.

5The issue seems to be that some proportionality between inputs and outputs
seems mistakenly taken as evidence of a constant returns to scale technology. Scarf
(1994, pp. 114–115) aptly ridicules the possibility of a constant returns to scale
technology as follows: “Both linear programming and the Walrasian model of equilib-
rium make the fundamental assumption that the production possibility set displays
constant or decreasing returns to scale; that there are no economies associated with
production at a high scale. I find this an absurd assumption, contradicted by the
most casual of observations. Taken literally, the assumption of constant returns to
scale in production implies that if technical knowledge were universally available we
could all trade only in factors of production, and assemble in our own backyards
all of the manufactured goods whose services we would like to consume. If I want
an automobile at a specified future date, I would purchase steel, glass, rubber,
electrical wiring and tools, hire labor of a variety of skills on a part — time basis,
and simply make the automobile myself. I would grow my own food, cut and sew
my own clothing, build my own computer chips and assemble and disassemble my
own international communication system whenever I need to make a telephone call,
without any loss of efficiency. Notwithstanding the analysis offered by Adam Smith
more than two centuries ago, I would manufacture pins as I needed them.”
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where Ei(x, y|SD,CRS ) and Ei(x, y|WD,CRS ) denote the radial effi-
ciency measure (5) defined relative to technologies L(y|SD,CRS ) and
L(y|WD,CRS ), respectively. Since Ei(x, y|SD,CRS ) ≤ Ei(x, y|WD,
CRS ), the ratio Ci(x, y|CRS ) ≤ 1.

Now, this results in the following alternative decomposition of pure
technical efficiency:

Ei(x, y|SD,CRS ) = Ei(x, y|WD,CRS ).Ci(x, y|CRS ). (11)

The left-hand side is the pure technical efficiency measure Ei(x, y|SD,
CRS ) evaluated with respect to a technology with strong disposability.
On the right-hand side we have a weak technical efficiency measure
Ei(x, y|WD,CRS ) evaluated with respect to a technology with weak
disposability times the congestion measure Ci(x, y|CRS ) as defined
in (10). This whole decomposition is measured with respect to CRS
technologies.

These same static decompositions of efficiency have also been inte-
grated into the decompositions of productivity indices and indicators.
Examples of decompositions of the efficiency change component of the
Malmquist productivity index are found in Fukuyama and Weber (1999),
Glass et al. (1997), Glass and McKillop (2000), and McCallion et al.
(2000), or Ng and Li (2009), among others.

Note that congestion occurs only when either Ci(x, y|VRS ) < 1 or
Ci(x, y|CRS ) < 1. Therefore, congestion incidence is somehow affected
by rounding rules determining whether a congestion measure is situated
below unity. We round numbers up at three decimals in the empirical
part: this should normally lead to a very conservative estimate of
congestion and its incidence.

3.2 Congestion Measurement: Amounts and Incidence Reported
in the Empirical Literature

While congestion is widely cited as a theoretical possibility in most
microeconomics textbooks, empirical evidence as to its prevalence is
relatively rare. The merit of the literature applying this nonparametric
efficiency decomposition outlined above is that quite a lot of studies
have reported on (parts of) these efficiency decompositions, though
relatively few report on congestion.
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Congestion measured using either decomposition (9) or (11) is the
most important source of inefficiency at the sample level in at least
eight articles we are aware of: Byrnes and Färe (1987) and Byrnes
et al. (1988) both analyse US surface coal mines, Çakmak and Zaim
(1992), Wu et al. (2003) and Zhengfei and Oude Lansink (2003) assess
Turkish, American and Dutch agriculture respectively, Färe et al. (1989)
analyse US electric utilities, Mulumba et al. (2017) assess Ugandan
referral hospitals, and Odeck (2006) evaluates the Norwegian public
bus companies.6 Just to offer some basic idea of the amount of waste
involved, Table 1 summarises for each study the average amount of
congestion efficiency as well as its incidence (% of sample). The last

Table 1: Congestion efficiency and incidence: Literature review.

Congestion Congestion
Article efficiency incidence Remarks
Byrnes and Färe
(1987)

0.71 26.3% N = 186

Byrnes et al. (1988) 0.74 69.0% N = 84, Interior states
0.70 83.3% N = 54, Interior states; UMWA†

0.77 74.3% N = 113, Western states
0.43 83.3% N = 12, Western states; Nonunion

Çakmak and Zaim
(1992)

0.92 38.1% Sample

Färe et al. (1989) 0.925 NA‡ N = 23, Year 1969
0.924 NA N = 23, Year 1975

Mulumba et al. (2017) 0.921 53.8% N = 13, Year 2012
0.952 53.8% N = 13, Year 2013

Odeck (2006) 0.89 57.6% N = 33
Wu et al. (2003) 0.92 44.9% N = 147

Zhengfei and Oude
Lansink (2003)

0.88 75.0%§ N = 1072

†UMWA = affiliation with United Mine Workers of America.
‡NA = Not available.
§Text states: “approximately 3/4 of observations” (p. 475).

6The study of Habibullah et al. (2005) reports an output-oriented congestion
measure: while the definition correctly defines the congestion measure as being
larger than or equal to unity, the reported empirical congestion measure is smaller
than or equal to unity. However, the scale efficiency measure is both theoretically
and empirically correctly defined. If the empirical congestion measure just needs
inverting, then congestion is again the most important source of poor performance.
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column adds the sample size and some remarks whenever needed. Note
that the second, fourth, and fifth studies have several entries: in the
second article a basic distinction is made between the Interior and
Western US states; the fourth study compares two distinct years; and
the fifth article reports two out of three years for which congestion
is most important. Furthermore, for the second study we also report
results for those subsamples for which congestion efficiency is the key
component. Remark that we have been scanning for studies reporting
the highest congestion inefficiencies rather than the studies reporting
the highest congestion incidence levels relative to the incidence of other
sources of poor performance.

Several conclusions can be drawn from Table 1. First, congestion
inefficiency can vary from a modest 7.5% (=1− 0.925) to a high 29%
(=1 − 0.71) at the sample level. In the second study, for Western
nonunion mines one even observes a staggering 57% (=1− 0.43) con-
gestion inefficiency. Second, the incidence of congestion inefficiency
varies widely: between a low 26.3% to about 75% of the sample. For
the second study, two subsamples even record an incidence of 83.3%.
Finally, congestion inefficiency and incidence need not be correlated.
For instance, the lowest incidence coincides with the highest congestion
inefficiency (see Byrnes and Färe, 1987). By contrast, the second lowest
congestion inefficiency goes hand in hand with the highest incidence
levels (Byrnes et al., 1988). In particular, modest congestion inefficiency
levels can hide high incidence levels (see Odeck, 2006; Zhengfei and
Oude Lansink, 2003). In brief, these studies reveal a wide variety of pat-
terns of congestion inefficiency and incidence, even though the sample
sizes of most studies are quite modest.

Adding further evidence on the low inefficiency high incidence com-
bination, one striking example is found in a comparative study of French
and US hospitals reported in Dervaux et al. (2004). Congestion affects
79.8% and 54.4% of French and US hospitals for rather modest con-
gestion levels that amount to 0.968 and 0.966, respectively. Sample
size of French and US hospitals is 1,080 and 903, respectively. Other
studies with smaller sample size often yield quite similar results. For
instance, Färe et al. (1985a) indicate that 57.5% of electric utilities are
congested though congestion efficiency is 0.947 on average, Kritikos et al.
(2010) list that 70.9% of Greek telecommunication branches suffer from
congestion which amounts to 0.954 on average, while Puig-Junoy (2000)
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reports a congestion incidence of 40.4% for a level of 0.972. Sample
sizes of the last three studies are 151, 127, and 94, respectively. Finally,
Habibullah et al. (2005) study 37 commercial banks listed on the Kuala
Lumpur Stock Exchange in the period 1988–1993: in four out of six
years congestion incidence is highest compared to the incidence of other
sources of inefficiency, while in the two remaining years it is at a tie
with the incidence of other sources of inefficiency: it varies between a
low 56.8% and a high 83.8%.

Furthermore, while in some studies congestion inefficiency does not
dominate at the sample level, it may well turn out to be important for
specific parts of the sample. We again offer a selection of illustrations
from the literature known to us. Byrnes et al. (1987) document that
congestion dominates for Illinois grain farms smaller than 700 acres,
representing 72.9% of the sample. Färe et al. (1987) study US electric
utilities from the western states at the plant level over three years.
When aggregating results over plants and years they find that for three
out of nine firms congestion is the main source of inefficiency. When
aggregating results over years, 7 out of 22 plants have a main problem
with congestion. Flegg et al. (2004) analyse 45 British universities over
the academic years 1980–1981 till 1992–1993: for 8 out of 13 periods
congestion is the main source of underperformance.7 In a similar vein,
Flegg and Allen (2009b) study 41 new British universities (i.e., former
polytechnics becoming universities in 1992) over the period 1995–1996
to 2003–2004: congestion is now the main source of bad performance
for eight out of nine periods. Glass and McKillop (2000) report that the
change in input congestion is the most important source of efficiency
change in the input Malmquist index on average in the subperiod
1991–1993.

Finally, there is the possibility that congestion plays a negligible
role at the sample level or for specific parts of it, but that it is critically
important for some particular observations. For instance, evaluating
British building societies in 1985 and finding scale inefficiency as the
prime source of underperformance, Field (1990) observes that conges-
tion is most important for about 9.9% of observations (with amounts

7The same article also traces performance over time using a Malmquist produc-
tivity index and its components, including a congestion component: these static
results are duplicated in the dynamic results.
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between 0.48 and 0.78). Simões and Marques (2011) also report that
scale inefficiency dominates for 68 Portuguese hospitals. Nevertheless,
congestion inefficiency is critical for three hospitals (with amounts
between 0.57 and 0.86). Zeitsch and Lawrence (1996) analyse 10 base
load power plants over 7 time periods: focusing on a single period,
congestion is the dominant source of technical inefficiency for 4 plants
(with amounts between 0.86 and 0.96). Field and Emrouznejad (2003)
find congestion to be crucial for 4 out of 22 Scottish neonatal care units
in the period 1993–1994. Finally, re-analysing data on the Chinese
automobile and textile industries in the period 1981–1997, Flegg and
Allen (2009a) obtain in an intertemporal analysis that congestion is
critical for both sectors in a single year over this time horizon (1989
and 1995 for automobile and textile industries, respectively). Mulumba
et al. (2017) report that for the year 2012 congestion dominates for 5
out of 13 observations. Nasierowski and Arcelus (2003) find that the
innovation system in about 30% of countries suffers from congestion and
that it is a dominant source for some of these countries. Finally, Glass
et al. (1997) observe that the change in output congestion is the crucial
source of efficiency change in the Malmquist index for one and three
university departments in the subperiods 1989–1992 and 1992–1996,
respectively.

Notice that in all of the above except one, we have limited our-
selves to studies defining congestion in terms of a gap between strongly
and weakly disposable technologies with variable returns to scale (i.e.,
decomposition (9)). When imposing stronger assumptions (e.g., when
congestion is measured relative to strongly and weakly disposable tech-
nologies under constant (instead of variable) returns to scale), conges-
tion results may well worsen. For instance, Simões and Marques (2011)
report that average congestion inefficiency increases from 0.962 to 0.955
when imposing variable and constant returns to scale, respectively. In a
similar vein, Flegg and Allen (2009b) indicate that congestion remains
the main source of under-performance for eight out of nine periods, but
the congestion efficiency component under constant returns to scale is
lower in every single year compared to the one evaluated relative to
variable returns to scale.

Thus, from this literature review it is difficult to deny that congestion
may well play a serious role as a source of poor performance in a relatively
wide range of sectors. Furthermore, the sometimes high incidence of
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congestion seems to indicate that in these samples a lot of observations
are situated close to the isoquant and boundary of the input set, and
not that close to the weak or strong efficient subset as it is implicitly or
explicitly assumed. At first sight, this seems to imply that the amounts
of congestion measured are not artifacts created by just a few outlying
observations enveloped by a particular axiomatic structure imposed on
technology.

3.3 Congestion Measurement: Limitations of Radial Measures
and Remedies8

These amounts of congestion incidence are surprising if one realises
that the use of radial efficiency measures may actually underesti-
mate the prevalence of congestion. This is easy to illustrate with
the use of Figure 2. Only observations outside the cone spanned by
WEff L(y|WD,VRS ) can be subject to congestion when using radial
efficiency measures: this cone is represented by the rays Oc and Of
in Figure 2. Let us compare, for example, points g and i in Figure 2.
Point g is revealed as being congested, since it is efficient relative to
L(y|WD,VRS ) but not relative to L(y|SD,VRS ). However, point i,
which is identical to g in its use of x1 but using a higher amount of
x2 is not subjected to congestion, since the radial efficiency measure
projects observation i onto the efficient subset at point i2. Thus, the

0 
x1

x2

h

a 

c 

f 

b

d

e g 

i 

Cone spanned  
by WEff L(y)wd-vrs

g2 h2

a2

b2

i2

g3

L(y)sd-vrs

L(y)wd-vrs

Figure 2: Limitations of radial congestion measurement.

8This subsection builds and extends upon Briec et al. (2018, pp. 2944–2945).
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traditional radial way of measuring congestion may well underestimate
its empirical amounts and/or its incidence.9

Assuming that one is willing to accept the argument that one
should distinguish between the detection of congestion and summarising
its relative importance as a source of inefficiency within some kind
of static efficiency decomposition, then it is easy to understand that
some authors have proposed to measure congestion in a nonradial way.
Indeed, Färe et al. (1983b, p. 187) already stressed that their proposal
to measure congestion radially in essence is a way to capture a nonradial
phenomenon: input congestion emerges from the excessive usage of one
or a subset of inputs, and it need not affect all inputs simultaneously.

One candidate solution is to measure congestion per specific input
dimension. This procedure is illustrated on Figure 2 for observation i,
that remained undetected using the traditional radial efficiency mea-
sure. By contrast, measuring in the direction of the second input
allows detecting its congesting excessive utilisation of inputs. In par-
ticular, the distances g3g/g3i and the ratios of distances g3g2/g3g [=
(g3g2/g3i)/(g3g/g3i)] measure the amount of technical efficiency and
congestion in the direction of the second input respectively. Similarly,
observation b which remained uncongested using the radial measure may
now be detected as being congested in the direction of the first input.
Note that in addition to this component-wise approach, Dervaux et al.
(1998) propose several nonradial and almost nonradial decompositions
to summarise the relative importance of the congestion component.

To make this procedure introduced by Dervaux et al. (1998) explicit,
we need to introduce an asymmetric efficiency measure that just looks
for reductions in a single input. This asymmetric efficiency measure
goes back to Färe (1975) and can be defined as follows:

AF ji (x, y) = inf
λj
{λj : (x1, . . . , λjxj , . . . , xm) ∈ L(y), λj ≥ 0}

with j ∈ {1, . . . ,m}. (12)

Several remarks are in order. First, AF ji (x, y) ≤ 1, with unity indicating
efficiency. Second, there is an obvious relation with the radial efficiency
measure (5): AF ji (x, y) ≤ Ei(x, y). Third, while the relation between

9As pointed out by a referee, this analysis may require qualification in higher
dimensions.
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the radial efficiency measure (5) and the asymmetric efficiency measure
(12) can be signed, the input-oriented congestion measures (8) based
on a ratio of such two different measures cannot be signed. Fourth,
measuring efficiency using this definition (12) relative to the technologies
L(y|SD,VRS ) and L(y|WD,VRS ) leads to a nonlinear programming
problem. However, as shown in the Appendix, these programming
problems can be linearised.10 Note that the survey of input-oriented effi-
ciency measures of Russell and Schworm (2009) ignores this asymmetric
efficiency measure.

Several studies are known to us that have implemented such uni-
dimensional measurement scheme for congestion: Färe et al. (1985b),
Flegg and Allen (2009b), Fukuyama (1997), and Zhengfei and Oude
Lansink (2003). For the sake of brevity, we look into the details of just
one of these studies. Focusing on the Zhengfei and Oude Lansink (2003)
study, while the radial input efficiency measure evaluated over all eight
input dimensions leads to on average an amount of 11.7% congestion
inefficiency, the use of a subvector measure per input dimension sepa-
rately leads to average congestion inefficiency levels at the sample level
from a minimum of 22.1% for “Other variable inputs” to a maximum of
45.6% for “Nitrogen fertiliser”. Using the radial input efficiency mea-
sure, the incidence of congestion is about 75%. The use of subvector
measures per input dimension leads to incidence levels varying between
a minimum 35% for “Other pesticides” to 59% for “Nitrogen fertiliser”.
One conclusion is obviously that the radial way of measuring congestion
may underestimate the amounts of congestion inefficiency relative to an
input-specific measurement scheme. Its effect on congestion incidence
is clearly not clear-cut.

Finally, more refined measurement schemes have been developed
looking for subsets of dimensions responsible for congestion (see, for
instance, Byrnes et al., 1988; Färe et al., 1994; Flegg and Allen, 2009b).
We deliberately ignore further issues in the recent literature like, for
instance, the use of directional distance functions and how the choice of
direction vectors may well affect congestion measurement (see Davutyan
et al., 2014). Therefore, it remains somewhat an open issue how to

10Dervaux et al. (1998) do not provide these programming problems. The pro-
gramming problems mentioned in the empirical application of Zhengfei and Oude
Lansink (2003, p. 471) are incorrect. Therefore, for the sake of clarity, we develop
these programming problems explicitly.
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best measure congestion efficiency and its incidence: radially, uni-
dimensionally, or still in some other way.

4 Empirical Illustration

In this section, we first briefly introduce the data sets adopted from
existing studies. Then, we present empirical results on technical effi-
ciency and especially congestion. We report descriptive statistics and
the level of incidence.

4.1 Secondary Data Sets Employed

To empirically illustrate these developments, we employ several existing
data sets that are publicly available.11 Table 2 summarises some key
features of each data set: sample size, number of inputs and outputs,
and the sector. These data sets have been sorted in Table 2 according
to their sample size. In the other tables we maintain this same order.

The main points to note are the following. There are three single
output samples, and one multiple-output sample. One sample is from
agriculture, two from industry, and one from a service sector. Sample
sizes vary from rather small to rather big. There is one small unbal-
anced panel (Färe et al., 1983a) and three cross-sections (Atkinson and

Table 2: Empirical data sources.

Article Sample #Inputs #Outputs Sector Remarks
Färe et al. (1983b) 86 3 1 Electricity Unbalanced

(T = 5)

Porembski et al.
(2005)

142 2 11 Banking

Atkinson and
Dorfman (2009)

192 3 1 Electricity Year of monthly
data

Fan et al. (1996) 471 3 1 Agriculture

11Färe et al. (1983a) publish their data in Table 2 (pp. 358–359). The data in
Porembski et al. (2005) are available upon request from these authors. The data
from Atkinson and Dorfman (2009) and Fan et al. (1996) are available from the
Journal of Applied Econometrics and Journal of Business & Economic Statistics
archives, respectively.
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Dorfman, 2009; Fan et al., 1996; Porembski et al., 2005).12 Note that
the time dimension in the panel data set is ignored: this amounts to
assuming that there is no technical change over the five time periods.

4.2 Descriptive Statistics

Basic descriptive statistics at the sample level for the decompositions
of pure technical efficiency under VRS (9) and under CRS (11) are
reported in Table 3. The following conclusions can be drawn with regard
to the amounts and incidence of pure and weak technical efficiency and
congestion using traditional radial efficiency measures. First, as to their
relative amounts, the amount of technical inefficiency is always larger on
average than congestion for a given returns to scale assumption. Second,
one can observe that technical inefficiency increases when moving from
VRS to CRS, while there is no clear relation when comparing congestion
under VRS and CRS. Third, the incidence of technical inefficiency is
always higher than that of congestion. Fourth, while the incidence of
technical inefficiency increases when moving from VRS to CRS, there is
no such relation when comparing the incidence of congestion under VRS
and CRS. Finally, the variation in incidence across samples is larger for
congestion than for technical inefficiency.

Note that these results may well be affected by our rounding rules.
For instance, for the Färe et al. (1983a,b) article we obtain an incidence
of 0.919 under CRS when rounding at three decimals. Thus, from the
86 observations, 79 units are congested and only 7 are uncongested.
However, when we round at six decimals, then only four observations
are uncongested. This issue of rounding when measuring congestion
probably deserves further investigation (but, it may equally so affect
the measurement of scale efficiency and the like).

Furthermore, we have also tested for the differences in distribution
between technical efficiency and congestion relative to VRS versus CRS
technologies. We employ a formal test statistic proposed by Li (1996),

12In fact, Atkinson and Dorfman (2009) is an unbalanced panel of monthly data
between April 1986 to December 1997. However, we just employ the single year 1997
for which the panel is balanced. By ignoring the time dimension over this single year,
we assume that technical change can be safely ignored.
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which is valid for both dependent and independent variables.13 The null
hypothesis of this Li-test states that both distributions are equal for
a given efficiency score and its underlying returns to scale assumption.
The test statistics are reported in the last line of each part of Table 3.
While pure and weak technical efficiency clearly differ under VRS and
CRS, congestion levels only differ significantly under VRS and CRS for
two out of four databases.

While the incidence of technical inefficiency is in line with widespread
results in the frontier efficiency literature and the recognition of the huge
heterogeneity in firm-level performance measures elsewhere (see, e.g.,
Syverson, 2011), the incidence of congestion is a bit baffling and seems
to have gone unnoticed in the literature. It varies between a negligible
1.4% to a staggering 91.9%. Thus, these numbers are perfectly in line
with our review of the evidence in Subsection 3.2.

In addition, we also report the results of the component-wise
approach using the asymmetric efficiency measure (12) applied to each
input dimension separately. Tables 4 to 7 contain the empirical results
for the four data sets. The structure of these tables is identical to the
previous one. We do not discuss these tables separately, but try to
draw some general conclusions.

The following conclusions can be drawn with regard to the amounts
and incidence of technical efficiency and congestion using traditional
radial efficiency measures in contrast to the asymmetric efficiency mea-
sure (12). First, while the incidence of technical inefficiency is equal
or higher compared to the radial measurement, the incidence of con-
gestion is on average equal or substantially higher compared to the
radial measurement, though sometimes it is also lower for a particular
input dimension. For instance, looking at the Porembski et al. (2005)
data set, one notices that the incidence of technical inefficiency remains
constant under VRS and CRS, but the incidence of congestion moves
from 11.4% under VRS to between 16.9% and 32.4%, and under CRS
from just 1.4% to between 18.3% and 26.8%. Second, compared to the
radial measurement technical efficiency remains sometimes constant
but it also decreases quite often, though sometimes it also increases for

13Note that efficiency measures based on frontier estimators are not independent:
efficiency levels depend, among others, on sample size, the number of input and
output dimensions, etc.
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a particular input dimension. However, structural efficiency tends to
decrease, sometimes rather substantially. For example, looking again
at the Porembski et al. (2005) data set, technical efficiency declines
from 0.834 to between 0.799 and 0.857 under VRS, and from 0.834 to
between 0.746 and 0.765 under CRS, while structural efficiency declines
from 0.997 to between 0.982 and 0.995 under VRS, and from 1.000 to
between 0.993 and 0.995 under CRS.

Furthermore, we have again tested for the differences in distribution
between technical efficiency and congestion relative to VRS versus CRS
technologies. Again, pure and weak technical efficiency clearly differ
under VRS and CRS. Now, congestion levels differ significantly under
VRS and CRS for two out of four databases, and only marginally so for
the other two databases.

Interpreting congestion as a particular extreme form of technical inef-
ficiency, it is hard to come up with reasons for its widespread prevalence.
In the particular case of fertiliser and pesticides in agriculture, some
research suggests that the excessive use relative to agronomic optimal
amounts is due to uncertainty, perception biases, and the fact that the
cost of over-application is low compared to the cost of under-application
(e.g., see Rajsic and Weersink, 2008). In general, we are unaware of
research having revealed any common causes for the observed amounts
of congestion and their incidence.

5 Research Agenda

We have found in the published literature evidence that congestion is a
major source of inefficiency and that the incidence of congestion can be
very substantial. This hypothesis was confirmed in our own empirical
analysis. It is now time to think about developing a research agenda in
order to corroborate or reject our current findings in future research.
We develop this agenda around a few topics. The way in which these
methodological refinements may affect the amount of congestion and
its incidence remains to be explored in detail: some may detract from
the issue; some may amplify the phenomenon.

A first issue is that congestion is a special form of technical ineffi-
ciency that can seem hard to justify at all. However, it is important
to realise that also technical inefficiency in itself — while abundantly
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estimated and its amounts and incidence being accepted in part of the
literature — is hard to justify at all. We develop two reflections on this.

A first reflection is about how one can think the existence of techni-
cal inefficiency when firms are supposedly operating under a high degree
of competition. While traditionally technical inefficiency is conceived
as incompatible with competitive markets, the framework developed by
Allais (1977) and later on reformulated by Luenberger (1995) at least
allows to think of the dynamics of market exchanges out of equilibrium
and it considers Walrasian equilibria as limiting states where inefficien-
cies in consumption and production converge to zero. In this view,
inefficiencies and surpluses in the economy determine the dynamics of
exchange and the battle to extract surpluses. If workers and firms have
some monopoly power, then workers can bargain low effort and high
wages while firms strive for high effort and low wages (see, e.g., Haskel
and Sanchis (2000) for such a bargaining model). In addition, incom-
plete contracts, poor incentives, and a variety of other explanations
have been invoked to explain the existence of technical inefficiency (see,
e.g., the survey in Frantz (1988), among others).

A second reflection centers on how one can think about the causes
of congestion in general and for specific industries in particular. The
existence of congestion is sometimes related to the law of diminish-
ing returns: this has been presented as both a law and a statistical
regularity. In agriculture, crop response models relating crop yields
to essential single nutrients or combinations thereof reveal an initial
phase with positive marginal product, then the existence of a maximum
plateau with zero marginal product, and finally a declining phase with
negative marginal products (in soil science, the latter phase is called
the toxic range of nutrients).14 In hospitals, simulation models have
determined a variety of causes contributing to facility congestion (e.g.,
poor scheduling practices (e.g., Johnson and Happ, 1977)), congested
emergency departments due to bottlenecks in long-term care facility
(Patrick, 2011, etc.). From this scant evidence from the agricultural and
hospital sectors, it is clear that while the existence of the congestion
phenomenon is beyond doubt, its causes seem to be industry specific.

14For soil science: see Jones (2001, pp. 216–221), while for agricultural economics:
see the survey in Paris (2008).
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A second issue is that we have so far limited ourselves to some lim-
ited form of congestion. This form of congestion is known as monotone
output-limitational (MOL) congestion (see Färe and Svensson, 1980).
But, following Färe et al. (1987), the presence of congestion can also
be interpreted as a violation of the weak disposability assumptions.
Observations that are inefficient with respect to a weakly disposable
technology then simply suggest a lack of fit between the data and the
weak disposal assumption. To the extent that the goodness-of-fit with
the weak disposal assumption is low this may lead to the search for
alternative and weaker axioms and resulting technology specifications
yielding an even closer fit with the data. When there is an upper
bound to the wasting of inputs in certain directions, then one can model
“hypercongestion” phenomena leading to the complete destruction of
outputs (known as output prohibitive (OP ) congestion (Färe and Svens-
son, 1980)). Briec et al. (2016) develop a new axiomatic approach
allowing for the definition of more general multi-output technologies
capable of revealing all congestion concepts, including “hypercongestion”.
In fact, these authors introduce a weaker axiom of S-disposability —
a kind of limited strong disposal — that allows to model more gen-
eral forms of congestion. A first empirical application of this new
approach is found in Briec et al. (2018). The impact of these new
models on the amount of congestion and its incidence remains to be
explored.

A third issue is that by focusing on the input space solely, we have
ignored the issue of measuring congestion and its incidence in the output
space or in the input–output space. There are three related reflections
to this.

A first reflection is that we could have used a more general weakly
disposable technology. While our technology (7) assumes weak input
disposal and strong output disposal, there is also a technology with
both weak input and output disposal (e.g., Färe et al., 1985c, p. 128)
though it has rarely been empirically applied.

A second reflection is that we have not established a link with
a related literature in operational research focusing on alternative
approaches to measure congestion without necessarily invoking the
axiom of weak disposability (see, e.g., Cooper et al. (1996) for the
seminal alternative proposal and Kao (2010) for a recent overview). As
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summarised by Kao (2010), these alternative approaches are distinct in
terms of their focus on input space, output space, or input–output space.
The relation to the above literature on measuring “hypercongestion”
remains to be explored.

A third and final reflection is that we have limited ourselves to
measuring congestion on a technology with weak input disposal solely
using radial input-oriented efficiency measures on the one hand and a
nonradial, asymmetric input-oriented efficiency measure on the other
hand. Intuitively, it is clear that there is potentially a link between the
specification of the technology allowing for congestion and the choice of
orientation of measurement for some corresponding efficiency measure.
A priori one could think that one should ideally evaluate congestion
and its incidence in input–output space with the help of a so-called non-
oriented efficiency measures in the full space of inputs and outputs.15

In the recent literature, for instance, there is some discussion on the
use of directional distance functions and how the choice of direction
vectors affect congestion measurement (e.g., Davutyan et al. (2014) or
the discussion in Briec et al. (2016, 2018)).

A fourth issue is that our technology (7) assuming weak input
disposal and strong output disposal may well not be specified in an
axiomatically correct way. In a series of articles it has been argued that
this traditional specification does not satsify the convexity axiom (see,
e.g., Mehdiloozad and Podinovski (2018) for a recent statement).

A fifth issue is that our technology (6) assuming strong input and
output disposal may well contribute to miss-classifying non-congested
observations as congested if the boundary of the input set is estimated
with no or few interior facets. The reader is referred to Thrall (1996) for
the definitions of interior and exterior facets and to Olesen and Petersen
(2015) for an up-to-date analysis.16

A sixth and final issue is that our specifications of technologies may
suffer from small sample bias and that no proper statistical test seems
to exist to evaluate congestion. Olesen and Petersen (2016) summarise
the recent literature on statistical inference for nonparametric frontier
models and Kneip et al. (2016) provide an example of how to test

15For a survey of these non-oriented efficiency measures: see Russell and Schworm
(2011).

16We thank both reviewers for making this basic point.
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specific production hypotheses like convexity or constant returns to
scale. It is urgently needed to have such a test for congestion and its
incidence.

6 Conclusions

This contribution has offered an empirical perspective on the amounts
and incidence of congestion as found in the applied frontier estimation
literature. This paper has started out by describing the axiomatic
production literature leading to the definition of a radial input-oriented
congestion measure. This measure is capable to capture the differences
between a strongly and a weakly disposable technology, whereby the
latter allows for “backward bending” isoquants. Starting from studies for
which congestion was the main source of inefficiency, some conclusions on
the incidence of congestion at the sample level were drawn. Additional
studies illustrating the importance of congestion incidence for parts of
a sample and for specific individual observations were also discussed.
Having discussed the intrinsic limitations of a radial measurement
scheme for detecting congestion, it was proposed to detect in addition the
presence of congestion and to measure its incidence using an asymmetric
efficiency measure.

In the empirical section, four secondary data sets have been analysed.
We apply both the traditional radial input-oriented congestion measure
and the one based on the asymmetric efficiency measure. The key
result is that very substantial to almost staggering congestion levels and
incidence is found in these data. Furthermore, imposing constant rather
than variable returns to scale does have a significant impact on the
distributions of congestion levels in some, but not all, cases. Therefore,
both in the empirical literature surveyed and in the samples analysed,
one cannot but conclude from the congestion incidence levels that a lot
of observations are situated closer to the isoquant and boundary of the
input set than to the weak or strong efficient subsets.

We end with an additional concluding remarks for future research.
First, it is well known that if monotonicity conditions are violated, then
second-order conditions for optimizing behavior are not satisfied and
duality relations break down (see, for instance, Barnett, 2002).17 For

17Note that violations of curvature conditions have the same impact.
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instance, Sauer (2006) surveys eight parametric frontier studies from
agriculture and finds that only three articles fulfill monotonicity in
all inputs. Violations of monotonicity occur as follows: for a single
input in two studies; for two inputs in two articles; and even for five
out of eight inputs in one study. One obvious candidate to explain
these monotonicity failures is the existence of congestion. Therefore,
it seems like a good idea to employ nonparametric tests of conges-
tion in conjunction with tests of monotonicity conditions within a
parametric framework to explore this potential relationship in more
depth.

Second, when congestion is confirmed to be an issue, then a possible
managerial implication for this finding is that this inefficiency should
be removed as soon as possible, since currently it cannot be justified
by any theoretical argument. Obviously, the proviso applies that our
theoretical understanding of congestion as well as technical inefficiency
for that matter is still in its infancy.

Appendix: Computing the Asymmetric Efficiency Measure

The computation of the asymmetric efficiency measure (12) for the
evaluated observation (xo, yo) relative to the technology L(y|WD,VRS )
in (7) leads to the following nonlinear programming problem:

AF ji (xo, yo) = min
θ,δ,zk

θ

subject to
K∑
k=1

yknzk ≥ yon n = 1, . . . , N,

K∑
k=1

xkmzk = θδxom m = j,

K∑
k=1

xkmzk = δxom m ∈ {1, . . . ,M}\{j},

K∑
k=1

zk = 1,

zk ≥ 0, θ ≥ 0, δ ∈ (0, 1] k = 1, . . . ,K.

(A1)
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Note that this model is nonlinear: it may be difficult to linearise. Instead,
we can write the problem as follows:

AF ji (xo, yo) = min
θ,γ,zk

θ

subject to
K∑
k=1

yknzk ≥ yon n = 1, . . . , N,

K∑
k=1

γxkmzk = θxom m = j,

K∑
k=1

γxkmzk = xom m ∈ {1, . . . ,M}\{j},

K∑
k=1

zk = 1,

zk ≥ 0, θ ≥ 0, γ ≥ 1 k = 1, . . . ,K.

(A2)

This model is nonlinear, but it can be linearised: put z′k = γzk, then
zk = z′k/γ. This leads to the following linear program:

AF ji (xo, yo) = min
θ,γ,z′k

θ

subject to
K∑
k=1

yknz
′
k ≥ γyon n = 1, . . . , N,

K∑
k=1

xkmz
′
k = θxom m = j,

K∑
k=1

xkmz
′
k = xom m ∈ {1, . . . ,M}\{j},

K∑
k=1

z′k = γ,

z′k ≥ 0, θ ≥ 0, γ ≥ 1 k = 1, . . . ,K.

(A3)
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Computing the same asymmetric efficiency measure (12) relative to
the constant returns to scale technology L(y|WD,CRS ) amounts to
dropping the following constraint from the above linear programming
problem (A3):

K∑
k=1

z′k = γ.
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