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Abstract Computing directional distance functions for a free disposal hull (FDH) tech-
nology in general requires solving nonlinear mixed integer programs. Cherchye et al. (J
Product Anal 15(3):201–215, 2001) provide an enumeration algorithm for the FDH direc-
tional distance function in case of a variable returns to scale technology. In this contribution,
we provide fast enumeration algorithms for the FDH directional distance functions under
constant, nonincreasing, and nondecreasing returns to scale assumptions. Consequently, enu-
meration algorithms are now available for all commonly used returns to scale assumptions.

Keywords Directional distance function · Enumeration · Free disposal hull · CRS · NDRS ·
NIRS

1 Introduction

Traditionally, convexity of technology is a maintained axiom in the nonparametric approach
to production theory (see Afriat 1972; Charnes et al. 1978 or Diewert and Parkan 1983).1

Nevertheless, Afriat (1972)was probably the first tomention a basic nonconvex FreeDisposal
Hull (FDH) model imposing the assumptions of strong disposal of inputs and outputs solely.
This single output specification has been generalized to the multiple output case in Deprins
et al. (1984). While computing radial efficiency measures relative to convex technologies

1 One often uses the moniker Data Envelopment Analysis (DEA) when imposing convexity on technology.

We acknowledge helpful comments of three most constructive referees. The usual disclaimer applies.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10479-
018-2791-5) contains supplementary material, which is available to authorized users.

B Kristiaan Kerstens
k.kerstens@ieseg.fr

1 CNRS-LEM (UMR 9221), IESEG School of Management, 3 rue de la Digue, 59000 Lille, France

2 Research Unit MEES, KU Leuven, Warmoesberg 26, 1000 Brussel, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-018-2791-5&domain=pdf
http://orcid.org/0000-0003-3358-4332
http://orcid.org/0000-0002-4584-2784
https://doi.org/10.1007/s10479-018-2791-5
https://doi.org/10.1007/s10479-018-2791-5


1068 Ann Oper Res (2018) 271:1067–1078

normally requires solving a linear programming problem (LP) for each evaluated observation,
this becomes a binary mixed integer programming problem (BIP) for the nonconvex FDH
model. The use of enumeration for this basic FDH model has been around in the literature
since a while (see, e.g., Deprins et al. 1984; Fried et al. 1996; Tulkens 1993).

Though it is clear that this nonconvex FDH technology is nowhere as popular as its
convex counterpart, a rather substantial amount of studies have adopted this simple model. A
selection of empirical examples oriented towards some US sectors include: Alam and Sickles
(2000) explore the dynamics of technical efficiency in the deregulated airline industry; Fried
et al. (1993) assess the performance of credit unions; Walden and Tomberlin (2010) provides
convex and nonconvex plant capacity estimates in fisheries; etc.

An important extension on this basic FDHmodel has been proposed in Kerstens and Van-
den Eeckaut (1999) when specific returns to scale assumptions have been introduced and a
new goodness-of-fit method is defined to characterize returns to scale for nonconvex tech-
nologies. Computing radial efficiency measures relative to these extended FDH technologies
now requires solving a nonlinear binary mixed integer program (NLBIP). This initial state
of affairs triggered three distinctive solution strategies aimed at reducing this computational
complexity. First, Podinovski (2004) reformulates these nonconvex extended FDH technolo-
gies as binary mixed integer programs (BIP) using a big M technique. Second, starting from
an existing LP model for the basic FDH model (see Agrell and Tind 2001), Leleu (2006)
manages to formulate a series of equivalent LP problems. Third, Briec et al. (2004) propose
an implicit enumeration strategy for these nonconvex extended FDH technologies to obtain
closed form solutions for the radial input efficiencymeasure. Briec andKerstens (2006) refine
this analysis somewhat by developing enumeration also for radial output- and graph-oriented
efficiency measures, and furthermore indicate that the computational complexity of enumer-
ation is advantageous compared to all previous proposals. Kerstens and Van de Woestyne
(2014b) offer an empirical perspective on this computational complexity issue and obtain
that enumeration is by far the fastest approach, but that LP is even slower than BIP because
of the sheer size of the Leleu (2006) formulation.

Empirical examples of applications of these extended FDH technologies include: Cesa-
roni (2011) computes returns to scale for the case of the Italian driver and vehicle agency;
Destefanis and Sena (2005) investigate productivity change using an intersection of these
nonconvex technologies; De Witte and Marques (2011) determine optimal scale size for the
Portuguese drinking water sector; Mairesse and Vanden Eeckaut (2002) evaluate returns to
scale for museums in the Walloon region of Belgium2; etc.

Kerstens and Van de Woestyne (2014b, p. 10) mention that an obvious advantage of the
LP approach is that it is always available as an option. If a practitioner needs a specialized
version of these basic nonconvex production models (for example, a sub-vector radial input
efficiency measure defined on some of the input dimensions solely), then these needs are
unlikely covered in someof the available software packages (seeBarr (2004) for an overview).
Under these circumstances, it may be easier to program an LP in a standard optimization
software (e.g., Green 1996 or Olesen and Petersen 1996) rather than derive the required
implicit enumeration algorithm. In order to neutralize this convenience advantage of LP, one
would need to come up with a general formulation of these implicit enumeration algorithms
covering a wide variety of special production models (e.g., apart from different returns to
scale, also different measurement orientations of efficiency, different sub-vector cases, etc).
Such general formulation is currently lacking.

2 These same authors also innovate methodologically by adding lower and upper bound restrictions to scaling
in these extended FDH models.
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The purpose of this note is to come upwith the broadest possible formulation of an implicit
enumeration algorithm for extended FDH technologies by focusing on the most general effi-
ciency measure available in the literature. With the introduction of the shortage function,
Luenberger (1992a, b) has managed to generalize all existing distance functions and provides
a flexible tool to account for both input contractions and output improvements when measur-
ing efficiency. Luenberger (1992b, 1995) and Chambers et al. (1998) show that the shortage
function (or directional distance function in the terminology of Chambers et al. (1998)) is dual
to the profit function. While Cherchye et al. (2001) develop an enumeration algorithm for the
general directional distance function when assuming a basic FDH technology, nobody ever
developed the algorithm for extended FDH technologies. Therefore, we offer an implicit enu-
meration algorithm for the directional distance function for the extended FDH technologies.

Section 2 defines the extended FDH technologies as well as the directional distance func-
tion. It also contains the key proposition with the enumeration algorithm for the general
directional distance function for the extended FDH technologies. Two remarks treat, amongst
others, the special cases that can be deduced. Section 3 contains an empirical illustration con-
trasting computational times for enumeration versus LP.

2 Nonparametric technologies and directional distance functions

2.1 Basic definitions

In a production context, inputs x ∈ R
p
+ are transformed to outputs y ∈ R

q
+. The set T =

{(x, y) ∈ R
p
+ ×R

q
+ | x can produce y} of all possible input–output combinations is referred

to as the corresponding technology.
Consider available n observations (x1, y1), . . . , (xn, yn) ∈ R

p
+ × R

q
+. Let X =

(x1 . . . xn)t ∈ R
n×p and Y = (y1 . . . yn)t ∈ R

n×q denote the matrices holding all inputs
and outputs of these observations, with the superscript t referring to the transposition oper-
ation on matrices. Elements of these input and output matrices are referred to by a double
index indicating the row and column number of occurrence. For example, Xi, j denotes the
j th input for the i th observation and Yi,k denotes the kth output for this same i th observation.
Furthermore, x j represents the j th input for a given observation, and yk represents the kth
output for a given observation.

Following the unified nonparametric approach of Briec et al. (2004), technology can then
be represented algebraically by

T�,� = {
(x, y) ∈ R

p
+ × R

q
+ | δzX ≤ x, δzY ≥ y, z ∈ �, δ ∈ �

}
, (1)

with

(i) � = {δ ∈ R | δ ≥ 0} in the case of constant returns to scale (CRS),
(ii) � = {δ ∈ R | 0 ≤ δ ≤ 1} in the case of nonincreasing returns to scale (NIRS),
(iii) � = {δ ∈ R | δ ≥ 1} in the case of nondecreasing returns to scale (NDRS),
(iv) � = {δ ∈ R | δ = 1} in the case of variable returns to scale (VRS),

� = {z ∈ R
n | ∀i ∈ {1, . . . , n} : z1 = 1, zi ∈ R+} if convexity is assumed, or

� = {z ∈ R
n | ∀i ∈ {1, . . . , n} : z1 = 1, zi ∈ {0, 1}} if nonconvexity is assumed, and

1 = (1 . . . 1)t ∈ R
n .
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For a general technology T , the directional distance function DT : T × (R
p
+ × R

q
+) →

R∪{+∞} is defined by DT (x, y; gx , gy) = supθ {θ ∈ R | (x−θgx , y+θgy) ∈ T }.3 Applied
to the nonparametric technology T �,� defined in (1), this directional distance function now
becomes

DT (x, y; gx , gy) = max
θ,z

{θ ∈ R | δzX ≤ x − θgx , δzY ≥ y + θgy, z1 = 1, z ∈ �, δ ∈ �}.
(2)

2.2 Convexity is questionable

Though the axiom of convexity is traditionally maintained in economics and part of the oper-
ations research literature dealing with frontier methods, we develop three types of arguments
to question it. One argument is related to economic theory. One argument is pragmatic: in
empirical applications managers often object to convexity. A final argument is just empirical:
convexity simply matters because it affects the results of cost function estimates, technical
efficiency estimates, productivity growth, etc.

First, in economic theory convexity of technology is interpreted solely in terms of the time
divisibility of technologies.4 For instance, Hackman (2008, p. 39) is clear when discussing
the axiom of convexity in his textbook:

It does have the following “time-divisibility” justification. Suppose input vectors x1
and x2 each achieve output level u > 0. Pick a λ ∈ [0, 1], and imagine operating
100λ% of the time using x1 and 100(1 − λ)% of the time using x2. At an aggregate
level of detail, it is not unreasonable to assume that the weighted average input vector
λx1 + (1 − λ)x2 can also achieve output level u.

This time divisibility argument ignores setup and lead times that make switching between
underlying activities costly in terms of time. Thus, convexity is questionable when time
indivisibilities compound all other reasons for spatial nonconvexities (e.g., indivisibilities,
increasing returns to scale, economies of specialization, externalities, etc.).

Second, in remarks scattered in the literature, one finds evidence on the problems com-
municating the results of traditional efficiency measurement assuming convexity to decision
makers. For example, Epstein and Henderson (1989, p. 105) reports how managers sim-
ply question the feasibility of the hypothetical projection points resulting from convex
nonparametric frontiers when discussing an application to a large public-sector organisa-
tion:

The algorithm for construction of the frontier was also discussed. The frontier seg-
ment connecting A and B was considered unattainable. It was suggested that either
(1) these two DMUs should be viewed as abnormal and dropped from the model, (2)
certain key variables have been excluded, or (3) the assumption of linearity was inap-
propriate in this organization. It appears that each of these factors was present to some
degree.

3 Note that the directional distance function is more general than the graph-oriented efficiency measure
mentioned above. First, the direction vector can take any values. Second,while the directional distance function
is dual to the profit function, a graph-oriented (or hyperbolic) efficiency measure is only dual to the return to
the dollar function which measures profitability (see Färe et al. 2002).
4 Sometimes the motivation to maintain convexity is just analytical convenience (see, e.g., Hackman 2008, p.
2). This is an argument that can hardly be taken seriously.
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Finally, in empirical applications nonconvexity matters compared to traditional convex
analysis. In particular, we provide some evidence for a selection of four topics: (i) cost
functions, (ii) technical efficiency, (iii) productivity growth, and (iv) capacity utilisation.

In a study on Spanish municipalities, Balaguer-Coll et al. (2007) reveal that convex costs
are only 58.87% of nonconvex costs at the sample average. Analysing the U.S. life insurance
industry, Cummins and Zi (1998) even report that convex cost are about half of the nonconvex
costs. Analysing Belgian municipalities De Borger and Kerstens (1996) show that convex
costs are only 77.59% of convex costs.

Analysing the world’s major container ports and terminals, Cullinane et al. (2005) report
substantial differences between convex and nonconvex technical efficiency results (no sta-
tistical tests are reported). Similarly, evaluating UK economics departments Mayston (2014)
finds substantial differences in technical efficiency at the sample level (again no statistical
tests are reported).

Kerstens and Van de Woestyne (2014a) report empirical results for the Malmquist pro-
ductivity index as well as for the Hicks–Moorsteen Total Factor Productivity (TFP) index
under various specifications of technology. For both indices, it turns out that convex and
nonconvex results for both CRS and VRS yield different descriptive statistics, though no
formal tests are provided regarding the statistical significance of these differences. Kerstens
and Managi (2012) focus on the Luenberger productivity indicator and find that productivity
change is on average significantly smaller under nonconvexity, and that both β-convergence
and σ -convergence only occur under nonconvexity.

Walden and Tomberlin (2010) report average output-oriented plant capacity estimates
that vary between 52 and 84% in the cases of basic convex and nonconvex technologies,
respectively. Cesaroni et al. (2017) define an alternative input-oriented plant capacity notion
and report numbers of 120 and 121% for the convex and nonconvex technologies, respec-
tively: these apparent small differences reflect distributions that are statistically significantly
different.

The upshot is that convexity is questionable from a theoretical, a pragmatic as well as
from an empirical point of view.

2.3 Computational issues and main results

Obviously, the optimization model determined by (2) contains nonlinear constraints. Under
the assumption of convexity, the optimizationmodel (2) can be straightforwardly transformed
into an LP (see, e.g., Briec and Kerstens 2006). Under nonconvexity, Leleu (2009) provides
alternative linear programs (LPs) for computing these directional distance functions. These
LPs allow for computing the directional distance function using any of the widely available
LP solvers. In the case of FDH, Cherchye et al. (2001) provide an enumeration algorithm for
the general directional distance function when assuming a VRS technology. This algorithm
outperforms the corresponding LP solution and does not require any high level optimizer.
Simple operations such as finding the minimum or maximum of finite lists suffice.

We now determine enumeration algorithms for the FDH directional distance function in
the cases of CRS, NIRS and NDRS that—to the best of our knowledge– are missing in the
literature. As in the case ofVRS, these enumeration algorithms outperform the LP equivalents
of Leleu (2009) and only require finding minima and maxima of finite lists.
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Proposition 2.1 For an observation (xo, yo) ∈ T and a direction (gx , gy) ∈ R
p
+ × R

q
+

realizing a feasible FDH directional distance function, this function can be obtained by

DT (xo, yo; gx , gy) = max
i∈{1,...,n}

⎛

⎝ min
j∈{1,...,p}
k∈{1,...,q}

θi, j,k

⎞

⎠

with

(a) θi, j,k = Yi,k xoj − Xi, j yok
Yi,k(gx ) j + Xi, j (gy)k

in the case of CRS;

(b) θi, j,k =

⎧
⎪⎪⎨

⎪⎪⎩

Yi,k xoj − Xi, j yok
Yi,k(gx ) j + Xi, j (gy)k

if
yok (gx ) j + xoj (gy)k

Yi,k(gx ) j + Xi, j (gy)k
≤ 1

Yi,k − yok
(gy)k

else
in the case of NIRS;

(c) θi, j,k =

⎧
⎪⎪⎨

⎪⎪⎩

Yi,k xoj − Xi, j yok
Yi,k(gx ) j + Xi, j (gy)k

if
yok (gx ) j + xoj (gy)k

Yi,k(gx ) j + Xi, j (gy)k
≥ 1

xoj − Xi, j

(gx ) j
else

in the case of NDRS.

Proof Since FDH is assumed, the activity vector z in (2) must have binary components
summing up to one. Hence, only the n vectors (1, 0, . . . , 0) to (0, . . . 0, 1) of the standard
basis ofRn can act as z. Consequently, (2) can be rewritten as DT (xo, yo; gx , gy) = max{θi |
i ∈ {1, . . . , n}} with

θi = max{θ ∈ R | δXi, j ≤ xoj − θ(gx ) j , δYi,k

≥ yok + θ(gy)k, δ ∈ �, j ∈ {1, . . . , p}, k ∈ {1, . . . , q}}. (3)

(a) Consider the case of CRS. Then δ ≥ 0 and for each i ∈ {1, . . . , n}, expression (3) can
be seen as an LP problem with pq linear inequality constraints in the two variables δ and θ .
The optimal solution of such an LP must be reached at the intersection of two straight lines
corresponding with two of these inequality constraints. But since all input related constraints
(i.e., δXi, j ≤ xoj − θ(gx ) j ) have a negative slope while all output related constraints (i.e.,
δYi,k ≥ yok + θ(gy)k) have a positive slope, the optimal solution θi can only be found at the
intersection of an input and an output related straight line. Indeed, assume the optimal solution
θi is found at the intersection of two input related straight lines. Then, given the negative
slopes of both straight lines, further improvement of θi must be possible which contradicts
the optimality assumption. The same reasoning can be applied to the combination of two
output related straight lines.

Cramer’s rule for solving the system of linear equation when combining the j th input
constraint with the kth output constraint leads to the solution

δi, j,k = yok (gx ) j + xoj (gy)k

Yi,k(gx ) j + Xi, j (gy)k
and θi, j,k = Yi,k xoj − Xi, j yok

Yi,k(gx ) j + Xi, j (gy)k
. (4)

Obviously, from the basic assumptions, δi, j,k ≥ 0 which is needed in the case of CRS.
By taking θi = min{θi, j,k | j ∈ {1, . . . , p} and k ∈ {1, . . . , q}}, it is guaranteed that
all inequality constraints in (3) are satisfied simultaneously hence leading to the requested
result.

(b) Assuming NIRS, the additional constraint δ ≤ 1 needs to be added to constraints already
present in (3). As in case (a), the optimal solution θi of (3) is realized by intersecting two
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corresponding straight lines. Combining the j th input and kth output constraint leads to the
same solution δi, j,k and θi, j,k as the one presented in (4). If δi, j,k ≤ 1, then the combination
with the corresponding θi, j,k is feasible. However, if δi, j,k > 1, then the combination with
the corresponding θi, j,k is not feasible. Consequently, the input related constraint leading to
the infeasibility should now be replaced by the limiting constraint δ ≤ 1. The intersection of
the remaining output related constraint and this limiting constraint then yields

δi, j,k = 1 and θi, j,k = Yi,k − yok
(gy)k

. (5)

Note that, indeed, the input related constraint should be replaced with δ ≤ 1 and not the
output related constraint. Assuming the latter, then the intersection of the remaining input
related constraint with the limiting constraint δ ≤ 1 can impossibly yield the optimal solution
θi since further improvements can be realized due to the negative slope of the input related
constraint. Hence, we obtain the desired result.

(c) If NDRS is assumed, the constraint δ ≥ 1 needs to be included to constraints already
present in (3). Again as in case (a), the optimal solution θi of (3) is the result of intersecting
two corresponding straight lines. Combining the j th input and kth output constraint realizes
the same solution δi, j,k and θi, j,k reported in (4). If δi, j,k ≥ 1, then the combination with
the corresponding θi, j,k is feasible. However, if δi, j,k < 1, then the combination with the
corresponding θi, j,k is not feasible. Therefore, the output related constraint leading to the
infeasibility should be replaced by the limiting constraint δ ≥ 1. The intersection of the
remaining input related constraint and this limiting constraint now yields

δi, j,k = 1 and θi, j,k = xoj − Xi, j

(gx ) j
. (6)

Similar to (b), note that, indeed, the output related constraint should be replaced with δ ≤ 1
and not the input related constraint. Assuming the latter, then the intersection of the remaining
output related constraint with the limiting constraint δ ≥ 1 cannot realize the optimal solution
θi since further improvements are possible due to the positive slope of the output related
constraint. The desired result now follows directly. 	


Since it is our explicit intention with this most general formulation of the implicit enu-
meration algorithm for extended FDH technologies to contribute to neutralise what we have
called the convenience advantage of LP in Sect. 1, we add the following remarks.

Remark 2.1 Note that Proposition 2.1 even holds true if for some i, j, k combination, the
denominators occurring in the expression of θi, j,k equal zero. In these cases, simply set
θi, j,k = −∞. This negative value will eventually be driven out by other positive values when
taking the final maximum.

Remark 2.2 Proposition 2.1 not only completes the list of enumeration algorithms for com-
puting efficiencies in the case of FDH, it also unifies several of these separate algorithms
to a single algorithm. Obviously, this unification simplifies a practical implementation. The
following list provides some commonly used choices:5

• The radial input efficiency measure for (xo, yo) ∈ T equals

DFi (x
o, yo) = 1 − DT (xo, yo; xo, 0).

5 Other measures (e.g., plant capacity utilization measures) can easily be derived from the choices mentioned
here.
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Fig. 1 Python 3.6 implementation of the enumeration algorithm suggested in Proposition 2.1

• The radial output efficiency measure for (xo, yo) ∈ T equals

DFo(x
o, yo) = 1 + DT (xo, yo; 0, yo).

• Denote by Sv and S f = {1, . . . , p}\Sv the index sets containing the indexes referring
to the variable and fixed inputs, respectively. Then, the sub-vector radial input efficiency
measure (also called the short-run (SR) input efficiency) reducing only the variable inputs
determined by Sv and leaving the fixed variables determined by S f unchanged, equals

DFSR
i (xo, yo) = 1 − DT (xo, yo; gx , 0),

with

(gx ) j =
{
xoj if j ∈ Sv

0 if j ∈ S f
.
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3 Numerical application

To test the performance of the algorithm laid out in Proposition 2.1, we provide in Fig. 1
an implementation in Python 3.6 by means of the function dirDistEnum. This function
assumes the data structures x and y to be of the type NumPy array, hence, allowing the usage
of double indexes. Obviously, this function can easily be adapted to using only lists (of lists)
instead, therefore, not needing additional Python modules.

The function dirDistEnum is self-contained for easy implementation in existing
projects. In lines 2 to 4, the row and column dimensions of the data structures x and y
are read. Note that these data structures represent the input and output matrices X and Y ,
respectively. Lines 6 to 27 contain the function theta. This function computes θi, j,k as
determined in Proposition 2.1 depending on the returns to scale set via the input string rts.
Note that the case of the denominator being zero is implemented as well by setting the return
value to a large negative number (i.e., -1E+10). In lines 29 and 30, the list of size n con-
taining the minima of θi, j,k over the indexes j and k is created. Finally, the maximum of this
list is returned in line 31.

Clearly, when fixing the input and output dimensions p and q , the implementation in Fig. 1
has linear time complexity in n if finding the maximum in line 31 is done by a linear search.
The time complexity can even be improved by using a binary heap (e.g., a max-heap in this
case) rather than a simple list.

As mentioned earlier, following Leleu (2009), the FDH directional distance function can
also be computed by means of solving an LP. Obviously, all currently known algorithms for
solving LPs have a time complexity higher than linear time complexity (see e.g., Chong and
Zak 2001; Eiselt and Sandblom 2007). Consequently, the enumeration approach outperforms
the LP approach.

To further test this enumeration algorithm, we create in Python 3.6 an artificial data set of
2000 observations with five inputs producing three outputs.6 Thus, the overall input matrix
X ∈ R

2000×5 and overall output matrix Y ∈ R
2000×3 consist of uniformly distributed random

numbers between 0 and 100. From these overall matrices, sub-matrices containing the first
50i rows, with i ∈ {1, . . . , 40}, are taken to represent the technology. This allows inflating
the size of the technology in 40 steps of size 50. Considering the first observation (xo, yo),
the FDH directional distance function is then computed in the position dependent direction
(i.e., g = (xo, yo)) using both enumeration and the LP approach. The corresponding LPs are
solved by means of the GNU Linear Programming Kit (GLPK), linked to Python. For each
technology increasing in size, the computations of both FDH directional distance function
implementations are timed. The results of this timing are visualized in Fig. 2.

Although the transfer of the LP problem to GLPK demands a certain overhead, especially
notice the nonlinear increase in time of the LP approach contrary to the linear increase of
the enumeration method. This observation confirms the theoretical comparison made earlier.
Figure 2 also shows that the enumeration method can be applied to large data sets in very
reasonable times. Note that Python is actually an interpreter. Hence, additional time gains
can be achieved by implementing the algorithm with high performance compilers instead.

The convenience advantage of LP, already mentioned in the Sect. 1, inspired us to come
up with a more general formulation of the enumeration approach for extended FDH tech-
nologies. While implementing an LP may also require some programming expertise, coding
and debugging time depending on the environment being used, one should acknowledge

6 Empirical data sets of this size are rarely publicly available [e.g., in the Journal of Applied Econometrics
Data Archive (http://qed.econ.queensu.ca/jae/)] for the purpose of our illustration.
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Fig. 2 Evolution of time for computing the FDH directional distance function of one observation in relation
to the total number of observations n in the technology

that using enumeration algorithms requires on average programming expertise, coding and
debugging time slightly exceeding the one required from the LP approach. Therefore, the
proposed algorithm may in practice be most useful in situations when the set-up time is a
relatively unimportant consideration. Examples may include dealing with large data sets or
even so-called big data (e.g., see Dulá 2008), repetitive computations in, e.g., data mining
(e.g., see Akçay et al. 2012 or Zhu 2010), coding the algorithm in software intended for
distribution, etc. Finally, note that enumeration has also been employed as a preprocessor
to estimate traditional convex frontier models using special LP algorithms (for instance,
Sueyoshi 1992).

4 Conclusion

The purpose of this note has been to come up with the broadest possible formulation of an
implicit enumeration algorithm for extended FDH technologies for the directional distance
function, the most general efficiency measure currently around in the literature. A formal
proposition establishes a proof for the implicit enumeration algorithm. A remark treats the
special cases that can be easily deduced. An empirical illustration has contrasted computa-
tional times for implicit enumeration versus the use of traditional LP: implicit enumeration
is the clear winner.
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