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Abstract

The purpose of this note is to de®ne a new and more general method to obtain qualitative information about returns

to scale for individual observations. The traditional methods developed for estimating returns to scale on non-para-

metric deterministic reference technologies (Data Envelopment Analysis (DEA) models) are reviewed. A new and more

general method that is suitable for all reference technologies is provided. Its usefulness is illustrated by considering

variations on an existing non-convex production model, known as the Free Disposal Hull (FDH). When di�erent

returns to scale assumptions are introduced into the FDH, then previous methods for determining returns to scale do

no longer apply. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years the measurement of e�ciency
and productivity has become a standard tool in the
empirical analysis of production. 1 In particular,
the possibility of ®tting multiple input, multiple
output correspondences using Data Envelopment

Analysis (DEA) techniques (see Charnes et al.,
1978) has led to an enormous amount of publica-
tions (reviewed in Seiford, 1996). In addition to
evaluating the productive or technical e�ciency of
decision making units (DMUs), it is also possible
to determine the amount of scale e�ciency (SCE).
Furthermore, conditional on a selected orientation
of measurement one can obtain for each DMU
qualitative information about scale economies.
This article aims to introduce a new way to as-
certain the exact source of SCEs evaluated relative
to non-parametric deterministic production tech-
nologies. It is more general than existing methods
since it is in fact suitable for all technologies.
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The layout of this note is as follows. Section 2
brie¯y reviews the traditional methods of esti-
mating the returns to scale for individual DMUs
for DEA models. In Section 3 a new and more
general method that is suitable for all reference
technologies is presented. In particular, when
several returns to scale assumptions are introduced
into a nonconvex production model, known as the
Free Disposal Hull (FDH) (see Deprins et al.,
1984), then the previous methods for determining
returns to scale can no longer be applied. Section 4
presents the conclusion.

2. Estimating returns to scale in DEA models

The analysis in this section requires the de®ni-
tion of production technologies based on k ob-
servations (DMUs) of inputs x 2 Rm

� and outputs
y 2 Rn

�. Technology is represented by its produc-
tion possibility or transformation set T � f�x; y�:
x can produce y}, i.e., the set of all feasible input±
output vectors.

Technologies di�er, among others, with regard
to returns to scale assumptions, i.e., the scaling of
existing activities. Global scale behaviour can be
de®ned in terms of the production possibility set T
(FaÈre et al., 1994, p. 33).

De®nition 1. Technology exhibits Constant Re-
turns to Scale (CRS) if dT � T ; d > 0; it displays
Non-Increasing Returns to Scale (NIRS) if
dT � T ; 0 < d6 1; and it exhibits Non-Decreas-
ing Returns to Scale (NDRS) if T � dT ;
0 < d6 1.

Returns to scale can alternatively be de®ned in
terms of individual feasible activities as follows:

De®nition 2. Technology T � � f�dx; dy�: d 2 C�s�;
dx can produce dyg includes the following re-
turns to scale possibilities:

(i) C�s� � fd: 0 < dg for s � CRS;
(ii) C�s� � fd: 0 < d6 1g for s � NIRS; and
(iii) C�s� � fd: d P 1g for s � NDRS:

Also the following de®nition is useful for in-
terpreting scale economies (FaÈre, 1988, p. 150).

De®nition 3. Technology exhibits Increasing Re-
turns to Scale (IRS) if it exhibits NDRS and not
CRS. It exhibits Decreasing Returns to Scale
(DRS) if it exhibits NIRS and not CRS.

Turning to the DEA models, the ®rst reference
technology, which is closest to Farrell (1957), is a
constant returns to scale non-parametric deter-
ministic production possibility set:

T DEA-CRS � f�x; y�: N 0z P y; M 0z6 x; z 2 Rk
�g;

where N is the k ´ n matrix of observed outputs, M
is the k ´ m matrix of observed inputs, z is a k ´ 1
vector of intensity or activity variables, and y and x
are n ´ 1 and m ´ 1 vectors of outputs, respectively,
inputs. This technology, that goes back to von
Neumann, imposes constant returns to scale, since
there is no restriction on the intensity vector z, and
it assumes strong input and output disposability.

Technologies assuming NIRS (NDRS) require
restricting an additional constraint to be smaller
(larger) or equal to unity �I t

k z6 �P �1 where I t
k is a

k ´ 1 unity vector). 2 A ®nal production possibility
set allowing for variable returns to scale (VRS)
results from the previous de®nition by restricting
the intensity variables to sum to one (I t

k z � 1).
This technology in fact satis®es NDRS and NIRS
in di�erent regions (FaÈre et al., 1994).

Following Farrell (1957), e�ciency is tradi-
tionally measured in a radial or equiproportional
way. For the sake of convenience, attention in this
paper concentrates on the radial input e�ciency
measure:

DFi �x; y� � minfk: k P 0; �k x; y� 2 Tg:
This e�ciency measure is always situated between
zero and one. E�cient production on the isoquant
of the technology is indicated by unity.

Technical e�ciency is usually measured relative
to the variable returns to scale production tech-
nology (TDEA-VRS). Scale e�ciency is evaluated
relative to the constant returns to scale technology
(TDEA-CRS), since this technology provides a long

2 The NDRS DEA model has seldom been applied (see, e.g.

Seiford and Thrall, 1990, p. 16). The link between returns to

scale and the convex DEA production technologies is explored

further in the appendix (available upon request).

K. Kerstens, P. Vanden Eeckaut / European Journal of Operational Research 113 (1999) 206±214 207



run competitive equilibrium benchmark. E�ciency
measurement relative to the latter technology thus
con¯ates scale and technical e�ciencies. There-
fore, it is straightforward to de®ne scale e�ciency
as the ratio of two e�ciency measures: one calcu-
lated on a constant returns to scale technology
(DFi(x, y j CRS)), and one computed on a vari-
able returns to scale technology (DFi(x, y j VRS)).

De®nition 4. The input oriented scale e�ciency
measure (SCEi(x, y)) is

SCEi�x; y� � DFi�x; y j CRS� = DFi�x; y j VRS�:
This ratio indicates the lowest possible input

combination able to produce the same output in
the long run as a technically e�cient combination
situated on the variable returns to scale technolo-
gy. Since DFi�x; y j CRS�6DFi�x; y j VRS�; evi-
dently 0 < SCEi�x; y�6 1: 3

If SCEi�x; y� � 1; then the technology exhibits
constant returns to scale at the observation under
evaluation or at its input-oriented projection
point. If SCEi�x; y� < 1; then it is certain that the
evaluated observation is not located or projected
on a piecewise linear segment where constant re-
turns to scale prevail. In the latter case, it is pos-
sible to determine for each observation the exact
nature of the returns to scale of its bounding
hyperplane.

More precisely stated, three main methods have
been proposed to obtain qualitative information
regarding scale economies locally. 4 Each method
is discussed in turn.

One way of determining the returns to scale per
observation (locally) is based on summing the
optimal activity vector z� on a constant returns to
scale technology (Banker, 1984). As noted by
Chang and Guh (1991) and Ganley and Cubbin
(1992), this ®rst method is problematic when there
are alternative optimal solutions for this sum. This
basically happens if there are constant returns to
scale hyperplanes spanned by more than one ob-
servation. Banker and Thrall (1992) devised a
method to cope with alternative optimal solutions.
This method was further re®ned in Banker et al.
(1996a, b), and Zhu and Shen (1995) who essen-
tially try to minimise the computational burden
when checking the alternative optima in the dual
or multiplier LP problems.

The second method is based on inspecting the
intercept of the supporting hyperplane at the ref-
erence unit for a variable returns to scale DEA
technology (see Banker et al., 1984). This is simply
a matter of inspecting the sign of the shadow price
of the convexity constraint. Again Banker and
Thrall (1992) generalised this method to deal with
multiple solutions.

The third method ± ®rst proposed in FaÈre et al.
(1983) ± starts from the scale e�ciency measure. It
basically compares both components of the scale
e�ciency measure with a third e�ciency measure
evaluated on a technology imposing non-increas-
ing returns to scale �DFi�x; y j NIRS��. 5 Since
these three technologies are nested, the three input
e�ciency measures satisfy the following order:

DFi�x; y j CRS�6DFi�x; y j NIRS�
6DFi�x; y j VRS�:

On the one hand, if technical e�ciency on a
constant returns to scale model equals that on a non-
increasing returns to scale technology ��DFi�x; y j
CRS� � DFi�x; y j NIRS� < DFi�x; y j VRS��; then
the observation is scale ine�cient due to increasing
returns to scale. As the lower part of the conical hull

3 Note that this scale e�ciency estimate can be made part of

a more extensive e�ciency decomposition based on non-

parametric deterministic DEA-type models (see FaÈre et al.,

1983, 1985, 1994).
4 Another alternative, proposed in Fùrsund and Hjalmarsson

(1979, 1987) but little applied, infers the average scale property

of ine�cient observations from a comparison of input and

output e�ciency measures evaluated relative to a variable

returns to scale technology. The relation between scale

e�ciency and quantitative information regarding scale econo-

mies (i.e., scale elasticity) in multiple input multiple output

DEA models is extensively discussed in Fùrsund (1996) and

LoÈthgren and Tambour (1996). Recently, Banker (1996), pp.

148±151, has proposed hypothesis test statistics for testing

returns to scale on DEA models.

5 A third e�ciency measure evaluated on a non-decreasing

returns to scale technology could yield a similar classi®cation.

Note also that the same decomposition can be applied in a dual

framework under somewhat stronger conditions: see FaÈre and

Grosskopf (1985) and FaÈre et al. (1994).

208 K. Kerstens, P. Vanden Eeckaut / European Journal of Operational Research 113 (1999) 206±214



(line segment 0b) is in common, the di�erence
between the components of the scale e�ciency mea-
sure can only be attributed to the fact that the
observation is located or projected on an increasing
returns to scale part of technology. On the other
hand, if technical e�ciency on the non-increasing
returns to scale technology is equal to that on a
variable returns to scale model ��DFi�x; y j CRS� <
DFi�x; y j NIRS� � DFi�x; y j VRS��; then the ob-
servation is scale ine�cient due to decreasing returns
to scale (DRS). As the upper part of the convex hull
(line segment bc and beyond) is in common, the dif-
ference between the scale e�ciency measure compo-
nents reveals that the observation is situated or
projected on that part of technology characterised by
decreasing returns to scale.

Proposition 1. Using an input-oriented measurement
and conditional on the optimal projection point,
technology is characterised locally by:

CRS() DFi�x; y j CRS�
� DFi�x; y j NIRS� � DFi�x; y j VRS�6 1;

IRS() DFi�x; y j CRS�
� DFi�x; y j NIRS� < DFi�x; y j VRS�6 1;

DRS() DFi�x; y j CRS�
< DFi�x; y j NIRS� � DFi�x; y j VRS�6 1:

(See Lovell (1994), p. 199. As pointed out in FaÈre
(1997), FaÈre et al. (1985, 1994) in fact propose
slightly di�erent, but equivalent ways of charac-
terising returns to scale.)

This reasoning is illustrated in Fig. 1. Obser-
vation b and the input oriented projection of ob-
servation e are clearly characterised by constant
returns to scale. The observations c and f on the
one hand and a and d on the other hand are subject
to decreasing respectively increasing returns to
scale. To spell the correct interpretation of returns
to scale out in detail, we analyse observations d
and f in turn. For observation d, one observes:

DFi�x; y j CRS� � DFi�x; y j NIRS�
< DFi�x; y j VRS�:

While part of the conical hull is in common to
both CRS and NIRS technologies, the di�erence
with the VRS e�ciency score implies that the latter
technology ®ts best. Hence, the di�erence between
the components of the scale e�ciency measure can
only be attributed to the fact that point d is located
or projected on an increasing returns to scale part
of the VRS technology. In case of point f it is
observed that:

DFi�x; y j CRS� < DFi�x; y j NIRS�
� DFi�x; y j VRS�:

Thus CRS is rejected in favour of NIRS. Follow-
ing De®nition 3, one can infer that observation f is
subject to decreasing returns to scale.

Banker et al. (1996b) prove the equivalence of
all three methods. FaÈre and Grosskopf (1994)
stress that their method does not su�er from the
problems of alternative optimal solutions en-
countered in the ®rst two methods. Furthermore,
LoÈthgren and Tambour (1996), p. 4, emphasise
that the third method ± in contrast to the other
two methods ± is not restricted to non-para-
metric, deterministic technologies (DEA-like
models).

There are systematic informational similarities
and di�erences of the returns to scale determina-
tion based on either input or output radial e�-
ciency measures (see FaÈre et al., 1994, pp. 122,

Fig. 1. Returns to scale characterisation of individual obser-

vations on DEA.
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123). 6 Input and output measures of scale e�-
ciency (SCE) are related to each other. Since input
and output technical e�ciency measures calculated
on a strongly disposable constant returns to scale
technology are identical (equal in reciprocal
terms), the ratios de®ning the (SCE) measures are
only identical (equal in reciprocal terms) if input-
and output-based e�ciency measures relative to
the short run technology (TDEA-VRS) ± in the de-
nominator ± are identical (equal in reciprocal
terms). Otherwise, input and output measures of
SCE may provide di�erent results.

FaÈre et al. (1994), and more recently in Banker
et al. (1996a, b), point out that the determination
for each observation of the exact nature of returns
to scale at its bounding hyperplane may yield
con¯icting information too. Both orientations
predict constant, increasing and decreasing returns
to scale for all observations in certain regions of
the production possibility set. But for activities
located in the other regions input and output
projections yield contradictory information. The
latter qualitative di�erences are caused by the fact
that predictions with respect to the returns to scale
of ine�cient units are conditional on a move to the
frontier.

3. A new method to determine returns to scale

An important characteristic of production that
can be analysed are the determinants of returns to
scale. For both observations on the frontier and in
the interior of the production possibility set it is
possible to determine the returns to scale of the
e�cient observation or the projection on the
frontier. For ine�cient observations, this charac-
terisation of the returns to scale depends on the
selected orientation of measurement. This limita-
tion remains for the new method presented here.

The newly devised method is closely related to
the third procedure (FaÈre et al., 1983) mentioned
for convex production technologies in that it is

based on comparing several technologies, but it
systematically exploits the relationship between
e�ciency measures and goodness-of-®t measures
used for hypothesis testing (see, e.g. Chavas and
Cox, 1990; Varian, 1990). 7

Input e�ciency is computed on three di�erent
technologies imposing respectively constant, non-
increasing and non-decreasing returns to scale
while maintaining a common set of technological
assumptions. These three technologies are not
nested and embody respectively the null hypothesis
of constant, decreasing, and increasing returns to
scale. If the e�ciency measure evaluated relative to
any of these three technologies is unity, then the
embodied null hypothesis cannot be rejected. If
this e�ciency measure is smaller than unity, then it
indicates the relative strength of the evidence
against the null hypothesis. Therefore, selecting
the maximal e�ciency measure among the three
technologies amounts to minimising the strength
of rejection of the embodied null hypotheses.
Positively stated, it identi®es the null hypothesis
that is most compatible with the observations.

Formally, it is possible to infer for any single
observation whether it satis®es constant (CRS),
increasing (IRS), or decreasing returns (DRS) to
scale by simply identifying the technology yielding
the maximal input e�ciency score.

Proposition 2. Using an input-oriented measurement
and conditional on the optimal projection point,
technology is characterised locally by:

CRS() DFi�x; y j CRS�
� maxfDFi�x; y j CRS�;DFi�x; y j NIRS�;

DFi�x; y j NDRS�g;

IRS() DFi�x; y j NDRS�
� maxfDFi�x; y j CRS�;DFi�x; y j NIRS�;

DFi�x; y j NDRS�g; or

6 Similar remarks hold true for the less often utilised graph

e�ciency measures (that simultaneously aim to reduce input

usage and expand the level of outputs).

7 FaÈre and Grosskopf (1995) explore the relation between

goodness-of-®t tests and e�ciency measures in detail.
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DRS() DFi�x; y j NIRS�
� maxfDFi�x; y j NDRS�g:DFi�x; y j CRS�;

DFi�x; y j NIRS�:
(Note that all three input e�ciency measures co-
incide for observations subject to constant returns
to scale. Remark also that the same formulas ap-
ply for any e�ciency measure smaller than unity.
Obviously, for radial output e�ciency measures
de®ned to be larger than unity the max operator
should be replaced by a min operator.)

The maximal input e�ciency measure simply
re¯ects the best ®t of a speci®c technology for the
given observation and therefore serves to indicate
the most appropriate returns to scale assumption.
This procedure can be applied to any non-para-
metric, deterministic frontier model, including the
convex DEA models. In fact, it is applicable to any
speci®cation of technology (LoÈthgren and Tam-
bour, 1996). This new procedure is therefore more
general.

To explicate the relation between our new
method and the procedure of Proposition 1 we
®rst note the following preliminaries. The DEA
constant returns to scale technologies can be seen
as the union of its non-increasing and non-
decreasing returns to scale technologies (TDEA-CRS

�TDEA-NIRS [ TDEA-NDRS). Likewise, the DEA
variable returns to scale model equals the inter-
section of its non-increasing and non-decreasing
returns to scale counterparts (TDEA-VRS

�TDEA-NIRS \ TDEA-NDRS).
To ®x our ideas we relate the second lines of

both formulas. Under the initial method

DFi�x; y j CRS� � DFi�x; y j NIRS�
< DFi�x; y j VRS�6 1

allows to conclude that the observation considered
is subject to IRS. Since input e�ciency measured
relative to TDEA-CRS(�TDEA-NIRS [ TDEA-NDRS)
equals input e�ciency measured relative to
TDEA-NIRS, it is clear that TDEA-NDRS does not add
anything to the construction of TDEA-CRS locally.
In Fig. 1 we are at that part of the boundary where
TDEA-CRS and TDEA-NIRS coincide. Furthermore,
since input e�ciency measured relative to

TDEA-NIRS is smaller than input e�ciency
measured relative to T DEA-VRS�� T DEA-NIRS \
T DEA-NDRS�; we infer that TDEA-NDRS determines
the intersection locally. In terms of Fig. 1, we are
situated at that part of the boundary where
TDEA-VRS and TDEA-NDRS coincide. Hence we
conclude that input e�ciency measured relative to
TDEA-NDRS (which in this case equals
DFi(x, y j VRS)) yields the maximum e�ciency
score and thus the observation is situated at the
IRS part of technology.

Thus, in the FaÈre et al. (1983) method the
comparison with the TDEA-NDRS technology is
implicitly (by means of the TDEA-VRS model), while
our method makes this comparison explicitly.

The use of the new method is illustrated by
considering a series of non-convex technologies
some of which have been proposed in Bogetoft
(1996). He convincingly argues that it may be
useful to deconvexify the production possibility set
to model the advantages of specialisation in the
production of output or in the use of inputs. He
therefore proposed, among others, several gener-
alisations of an existing non-convex frontier
known as the FDH. We ®rst specify the traditional
FDH technology, as de®ned in Deprins et al.
(1984) and applied in Bauer and Hancock (1993),
Fried et al. (1995), Kerstens (1996), Lovell (1995),
among others. Then the alternative non-convex
production models imposing additional returns to
scale assumptions are de®ned. 8

First, the FDH technology can be represented
by its production possibility set

T FDH � �x; y�: N 0z P y; M 0z6 x; I 0kz � 1;
n

zi 2 f0; 1g
o
:

FDH only imposes strong disposability assump-
tions. It is worth stressing that FDH does not
impose any speci®c returns to scale hypothesis,
de®ned previously. 9 Radial technical e�ciency

8 Properties of some of these technologies are discussed in

Bogetoft (1996), p. 464.
9 In particular, FDH does not impose VRS as de®ned above,

despite the super®cial similarity with the VRS DEA model (i.e.,

the common constraint Ik
tz� 1).
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measurement requires solving a mixed integer lin-
ear programming problem for each DMU. 10 As
shown in Tulkens (1993), enumeration algorithms
based upon vector dominance reasoning can be
used.

It is possible to add to the previous production
model a particular returns to scale assumption:
i.e., constant, non-increasing, and non-decreasing
returns to scale. Modelling constant returns to
scale results in the following technology:

T FDH-CRS � �x; y�: N 0w P y; M 0w6 x; I 0kz � 1;
n

zi 2 f0; 1g; wi � dzi; dP 0
o
:

There is now one activity vector z operating sub-
ject to a non-convexity constraint and one rescaled
activity vector w allowing for any scaling of the
observations spanning the frontier. The scaling
parameter (d) is free.

Non-increasing returns to scale is imposed by
adding an additional restriction on the scaling
parameter d to the previous non-convex constant
returns to scale technology:

T FDH-NIRS � �x; y�: N 0w P y; M 0w6 x;
n

I 0kz � 1; zi 2 f0; 1g; wi � dzi; 06 d6 1
o
;

where the scaling parameter d is constrained to be
smaller than or equal to unity. Non-decreasing
returns to scale results from restraining the scaling
parameter d to be larger than or equal to unity:

T FDH-NDRS � �x; y�: N 0w P y; M 0w6 x;
n

I 0kz � 1; zi 2 f0; 1g; wi � dzi; dP 1
o
:

Non-increasing and non-decreasing returns to
scale allow for a lower respectively an upper pro-
portionality of observed activities by means of the
scaling parameter (d).

Fig. 2 shows the graph of these three non-
convex technologies together with the traditional
FDH in a single input single output space. Notice
that TFDH-NIRS and TFDH-NDRS are related to
technologies proposed in Petersen (1990), except
that this author maintains the convexity assump-
tion in input space and in output space. In the
single input single output case, however,
TFDH-NIRS and TFDH-NDRS are identical to the Pe-
tersen (1990) technologies.

Crucial is that the traditional methods to de-
termine returns to scale no longer apply. The ®rst
two methods for the obvious reason that duality
relations break down for mixed integer program-
ming problems. The third procedure only works in
case the variable returns to scale model in fact
incorporates all information contained in the non-
increasing and non-decreasing returns to scale
technology. While the FDH constant returns to
scale technology is still the union of non-increasing
and non-decreasing returns to scale FDH tech-
nologies �T FDH-CRS � T FDH-NIRS [ T FDH-NDRS�; it
is not true that the traditional FDH model equals
the intersection of its non-increasing and non-de-
creasing returns to scale technologies
�T FDH � T FDH-NIRS \ T FDHÿNDRS�: This can be il-
lustrated by contrasting observations d and f.
While in the case of d the projection point on the
constant and non-increasing returns to scale
technologies coincide, for observation f all three
projection points are di�erent and no conclusion is
possible.

10 Since the radial e�ciency measure evaluates performance

relative to the isoquant, and not to the much smaller e�cient

subset, it has been argued that non-radial e�ciency measures

provide a better alternative (see, e.g. De Borger and Kerstens,

1996).

Fig. 2. Returns to scale characterisation of individual obser-

vations on non-convex non-parametric deterministic frontiers.
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Illustrating our new approach it is clear that
observation b and the projection of e are com-
patible with the constant returns to scale hypoth-
esis, while observations c and f on the one hand
and observations a and d on the other hand are on
the decreasing respectively increasing parts of the
technology. Again, changing the measurement
orientation may lead to diverging conclusions for
DMUs. Unit d, for instance, enjoys increasing and
decreasing returns to scale under input respectively
output measurement, while observation g experi-
ences constant and decreasing scale economies
under the same orientations.

While the new method implies a higher com-
putational cost compared to existing methods, it is
evident that it is attractive in both its generality
and clarity.

These non-convex reference technologies again
yield a series of models allowing to determine scale
e�ciency (SCEi(x, y)). The relation between con-
vex and non-convex scale e�ciencies requires some
clari®cation. Observe that the non-convex tech-
nologies are nested in the convex technologies
constituting the SCE measure:

T FDH � T DEA-VRS;

T FDH-CRS � T DEA-CRS:

While it follows that the underlying e�ciency
measures can be ordered, it is impossible to order
the ratios between these e�ciency measures.
Consequently, there is no a priori ordering be-
tween both SCE measures. 11 Furthermore, any
di�erence between e�ciency measures evaluated
relative to convex and non-convex technologies
with otherwise identical returns to scale assump-
tions can be completely attributed to the convexity

assumption. This provides a perfect base to com-
pare the impact of the convexity assumption.

We close with a suggestion to reduce the e�ect
of measurement orientation. One could check for
ine�cient observations (x�,y�) the returns to scale
of all elements in their set of dominating obser-
vations �B�x�; y�� � f�xk; yk�: xk 6 x�; yk P y�g�:
If all dominating observations in the non-convex
case or all faces in the convex case are subject to
the same returns to scale, then the stability of the
conclusions increases.

4. Conclusion

Starting from a review of existing ways of es-
timating SCE and in particular returns to scale
using convex (DEA) non-parametric production
models, a new and more general way of deter-
mining returns to scale for both e�cient and in-
e�cient observations has been proposed. This new
method exploits the relation between e�ciency
measures and goodness-of-®t tests. It is indis-
pensable, since traditional methods cannot be ap-
plied to a series of non-convex production models
with di�erent returns to scale assumptions. Inevi-
tably, the returns to scale determination remains
conditional on the choice of a measurement ori-
entation.
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