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Based on non-parametric deterministic production technologies radial and non-radial mea-
sures of technical efficiency are evaluated using properties guaranteeing insensitivity to the
dimensionality of technology. These new axioms are important in empirical research and
may especially prevent manipulation of results when implementing these benchmark method-
ologies in private or public organizations. An empirical example illustrates to which extent
a series of radial and non-radial technical efficiency measures satisfies the proposed axioms.
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INTRODUCTION

For non-parametric, deterministic reference tech-
nologies it has been shown that radial input (out-
put) measures of technical efficiency cannot
decrease when computed on additional input (out-
put) dimensions, and cannot increase if computed
on less input (output) dimensions (Nunamaker,
1985; Thrall, 1989). This predictable property of
radial efficiency measures creates room for ma-
nipulating the results of any performance evalua-
tion. While this problem may seem to some extent
remote in academic work, small inaccuracies in
linear programming software, for instance, may
well induce wrong inferences when comparing
model specifications with different dimensionality.
Such predictability is clearly of crucial importance
when implementing these benchmarking method-
ologies in both private and public sectors. One
can expect a strong pressure to add as many
dimensions as possible on the one hand, and to
oppose any reduction in the dimensions analysed
on the other. It is, therefore, desirable that a

measure of technical efficiency is not sensitive to
the dimensionality of the production technology.
By contrast, there is no such problem in a para-
metric approach. For instance, in the stochastic
composed error framework the radial technical
efficiency measure is defined in terms of a residual
which by assumption is uncorrelated to all inde-
pendent variables (see Lovell, 1993).

If the insensitivity of technical efficiency mea-
sures to the dimensionality of production technol-
ogy is indeed a desirable property, an important
question is whether alternative efficiency measures
defined in the literature do any better in this
respect. The major aim of this paper is to verify
for a series of efficiency measures whether, and
under which conditions, they are insensitive to
certain alterations in the dimensionality of tech-
nology. The exact insensitivity envisioned and the
nature of the alterations considered are more
rigorously defined in the main part of the
contribution.

In the remainder of this introduction we moti-
vate how the dimensionality of a production tech-
nology can bring about problems in applied
production analysis, and in efficiency gauging in
particular. One can think about three economic
reasons why the dimensionality of technology
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may create important judgmental problems. We
expand on each of these in turn.

First, the notion of a production technology
involves decisions on inputs and outputs and am-
biguities may exist on what the proper input and
output dimensions are. This includes conceptual
problems on how to model a certain production
process. For instance, the definition and especially
the measurement of banking inputs and outputs is
a subject of debate in the literature (see Berger
and Humphrey, 1992, or Colwell and Davis, 1992,
for thorough discussions). Most popular are the
‘production’ and the ‘intermediation’ approaches.
The production approach regards banks as pro-
ducers of deposit and loan accounts using tradi-
tional inputs only. Outputs are measured by the
numbers of deposit and loan accounts of various
types, or by the numbers of transactions on each
of these accounts. Under the intermediation ap-
proach, by contrast, collected deposits and pur-
chased funds are intermediate inputs for the
various types of loans and other assets. Inputs
now include purchased funds in addition to the
traditional inputs, while outputs are specified as
monetary volumes. Thus, both approaches differ
especially in the way they measure banking
variables.

Furthermore, given the large number of differ-
ent products and services produced in most mod-
ern organizations, it is often inevitable, albeit for
data availability reasons alone, to aggregate some
input and/or output categories. The aggregation
problem is not only a difficult theoretical prob-
lem. Of equal importance is that the choice of a
proper aggregation level remains very hard to
answer in empirical applications (Chambers,
1988). Health care efficiency studies have, for
instance, been criticized for their inability to ac-
count for the vast heterogeneity of treatments,
due to a too high aggregation level. This also
causes their results to be of little relevance for
policy purposes (Newhouse, 1994).

Conceptual problems are not limited to the
specification of technology as such, but can also
relate to the goals of production analysis. Espe-
cially in evaluating public sector activities, one
often distinguishes between efficiency and effec-
tiveness.1 For example, in analysing hospital ser-
vices one ideally would like to evaluate the
effectiveness of certain interventions on the pa-
tient’s health status. But lacking proper informa-
tion on this final output, one is often obliged to

limit oneself to study efficiency. Efficiency studies
focus on direct outputs, like the number of treated
cases per diagnostic group (representing medical
services), number of patient days (reflecting ‘ho-
tel’ services), and number of beds (as a proxy for
the option demand) (see Cowing et al., 1983, or
Breyer, 1987).

A second economic reason is the distinction
between variable and fixed, and between endoge-
nous and exogenous inputs and outputs related to
an analysis of production and costs in the short
and in the long run (Chambers, 1988). Probably
uncontroversial examples of fixed inputs are of-
fices in banking, or hospital buildings and special-
ized medical equipment (surgery rooms, etc.) in
health care. But in many applications it may be
difficult to agree on the dimensions that are under
managerial control in the short run. The integra-
tion of quality dimensions into production analy-
sis provides a typical area for debate. For
instance, in health care one may assume that the
quality of the outputs is related to the quality of
the inputs utilized. Given limited and regulated
budgets, a hospital is able to adjust its number of
MD’s, but it has probably more difficulties ad-
justing their quality. If this view is agreed upon,
then the quantity of MD’s should be a variable
dimension in the efficiency analysis, while their
quality remains a fixed dimension. Furthermore,
linking this discussion to the first economic rea-
son, the aggregation problem may induce re-
searchers to culminate quantity and quality
dimensions, sometimes putting the usefulness of
the analysis at risk. Thus, it is often unclear which
dimensions are under managerial control in either
the short or the long run.

Finally, the choice between input, output and
graph-oriented measures of technical efficiency
may cause some controversy, as the goals of
organizations are not always evident. This choice
between different orientations of measurement is
linked to the goals of cost-minimization, revenue
maximization and profit maximization, respec-
tively (Färe et al., 1994).2 Other goals for organi-
zations have been formulated. These are often
compatible with one of the three traditional goals.
However, the choice of measurement orientation
affects not only drastically the efficiency results,
but it can also change estimates of production-re-
lated characteristics (scale economies, etc.). For
example, the vast majority of efficiency studies in
banking postulates cost-minimization. More re-
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cent papers focus on profit maximization and
sometimes yield different conclusions regarding,
for instance, scale economies and the role of risk
attitudes and risk-related regulatory constraints
(Berger et al., 1997; Färe et al., 1997).

After this extensive legitimization of the impor-
tance of the dimensionality issue in efficiency
analysis, we close this introduction by specifying
the structure of our contribution. First, the non-
parametric deterministic production technologies
and the radial and alternative, non-radial effi-
ciency measures are defined and illustrated in the
second and third sections, respectively. This back-
ground material clears the ground in the fourth
section to provide a clear formulation of the issue
from an economic point of view, and to specify
exactly new properties guaranteeing a minimal
insensitivity to the number of dimensions in the
analysis. Two propositions establish to which ex-
tent different efficiency measures are insensitive to
these particular modifications. In the fifth section,
an empirical example, based on a sample of
French urban transit operators, illustrates these
propositions. A final section concludes.

PRODUCTION TECHNOLOGIES

Assume there are m inputs (x= (x1,
x2, . . . , xm)�Rm

+) producing n outputs (y= (y1,
y2, . . . , yn)�Rn

+) for k observations. Production
technology is represented by an input correspon-
dence L : R+

n �2R+
m

that maps outputs y�Rn
+

into subsets L(y)¤Rm
+ of inputs. The input set

collects all input vectors x�Rm
+ that at least pro-

duce output vector y�Rn
+. This input correspon-

dence is assumed to satisfy the properties
discussed in Färe et al. (1994).

Alternatively, production technology is defined
by its output correspondence P : Rm

+�2R+
n

map-
ping inputs x�Rm

+ into subsets P(x)¤Rn
+ of

outputs. Finally, the graph of technology is the
set of all feasible vectors of inputs and outputs
(i.e., the transformation set): GR={(x, y)�
x�L(y), y�Rn

+}={(x, y)�y�P(x), x�Rm
+}. The

graph is derived from either the input or the
output correspondence, while the latter corre-
spondences can be derived from the graph. Thus,
these three definitions provide equivalent charac-
terizations of technology: x=L(y)Uy�P(x)
U(x, y)�GR.

This definition of technology allows for, among
others, non-parametric specifications of the pro-
duction technology. Imposing some basic regular-
ity assumptions, the latter construct a piecewise,
(most often) linear technology from observed in-
puts and outputs. These non-parametric technolo-
gies are considered as inner approximations of the
true production technology (Varian, 1984; Banker
and Maindiratta, 1988). Consequently, measuring
technical efficiency with respect to such an inner
bound reference technology provides an upper
bound on the technical efficiency that could be
measured on any other production technology
compatible with the data. Examples of this non-
parametric approach are the deterministic tech-
nologies, based on linear programming
approaches (known as Data Envelopment Analy-
sis models in especially the OR literature).

To provide the reader with an idea, we briefly
mention some of the more popular technologies
within this programming approach (see Färe et
al., 1994 for details). For instance, the input cor-
respondence of the variable returns to scale model
with strong disposability in both inputs and out-
puts is defined by:

L(y)sd−6rs={x �Ytz]y, Xtz5x, Ik
t z=1, z]0},

where Y and X are k×n and k×m matrices of
observed outputs respectively inputs, z is a k×1
vector of intensity or activity variables, y and x
are n×1 and m×1 vectors of outputs respec-
tively inputs, and Ik is a k×1 unity vector. Other
returns to scale assumptions result from appropri-
ate restrictions on z. Piecewise loglinear and CET-
CES generalizations are also available. The Free
Disposal Hull (FDH)—which imposes no convex-
ity—is obtained from the previous model by
restricting z to contain either zeros or ones:
z�{0, 1} (see Tulkens, 1993). Other partial relax-
ations of the convexity assumption have been
defined in, among others, Bogetoft (1996). Homo-
thetic piecewise technologies are discussed in Pri-
mont and Primont (1994).

Most often these non-parametric specifications
of the production technologies are deterministic in
nature, although recently stochastic versions have
been proposed (for contrasting approaches see
Varian, 1990; Ley, 1992; Simar, 1992; Land et al.,
1993; Simar and Wilson, 1998). In the remainder
of the article we allow for any non-parametric
technology based upon mathematical program-
ming approaches.
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TECHNICAL EFFICIENCY MEASURES:
DEFINITIONS

We consider four technical efficiency measures in
the inputs, earlier examined in Färe et al. (1983)
and in Zieschang (1984). A technical efficiency
measure in the inputs Ei(x, y) is defined as a
function mapping from the input and output
space onto the real line comparing an observed
input vector with a smaller feasible input vector
for a given output vector. It varies between zero
and one, with unity representing efficient
production.

Two important subsets denoting production
units on the boundary of the technology L(y) are
its isoquant (Isoq L(y)={x �x�L(y), lxQL(y) for
l� [0, 1)}), and its efficient subset (Eff L(y)=
{x �x�L(y), x %5x [x %QL(y)}. Obviously, Isoq L(y)
±Eff L(y).

The Debreu (1951)–Farrell (1957) radial input
measure of technical efficiency is defined:

DFi(x, y)=min{l �l]0, lx�L(y)}.

Guaranteeing that production of the same out-
puts remains feasible, it is the ratio of the smallest
feasible contraction of the inputs to the observed
input vector itself.

The Färe and Lovell (1978) input technical
efficiency measure is defined:

FLi(x, y)=min
! %

m

i=1

li/m �li� (0, 1],

(l1x1, . . . , lmxm)�L(y)
"

.

It minimizes the arithmetic mean of scalar reduc-
tions in each input dimension. Since each input
can be scaled in a different proportion, it is
non-radial rather than radial.

The Zieschang (1984) input measure of techni-
cal efficiency is specified as:

Zi(x, y)=FLi(x ·DFi
+(x, y), y) ·DFi

+(x, y)

where

DFi
+(x, y)

=min{l �l]0, lx�L+(y)=L(y)+R+
m }.

An inefficient observation is first rescaled radially
(using DFi(x, y)) to the isoquant of a technology
satisfying strong input disposal L+(y), and then
the resulting input vector is shrunk by means of

FLi(x, y) until the efficient subset of L(y) is
reached.

Finally, the asymmetric Färe technical effi-
ciency measure is defined as:

AFi(x, y)= min
j=1, . . . , m

{AFi
j(x, y)}

where

AFi
j(x, y)

=min{lj �lj]0, (x1, . . . , ljxj, . . . , xm)�L(y)}.

It involves a two-stage minimization process: it
takes the minimum over m components AFi

j(x, y),
and each component itself involves a minimiza-
tion where one input is scaled down holding all
other inputs fixed.

To illustrate the practical implications of using
these different efficiency measures, we illustrate
their impact for an inefficient observation d in
Figure 1. This figure is designed such that each
efficiency measure projects the inefficient observa-
tion to a different point onto the production
frontier. Evidently, the latter is no necessity. The
radial input efficiency measure computes technical
efficiency along a ray through the origin. This
clearly leaves an amount of unmeasured efficiency
measured by the distance cd % (this shows up as
positive slack in the mathematical programming
problem). The effect of using non-radial alterna-
tives can be summarized as follows. The Zi-
eschang efficiency measure eliminates any slack
starting from the radial projection point d % and
leads to point c. The Färe–Lovell measure scales
down the inefficient observation to point b. Fi-
nally, the asymmetric Färe efficiency measure se-
lects the minimum among the dimensionwise
partial measures projecting onto d¦ and d§. In

Figure 1. Technical efficiency: the use of different effi-
ciency measures.
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this example, the minimum is clearly a projection
onto point d§, though this still leaves an amount
of unmeasured inefficiency equal to the distance
d§a.

The following relation between these four
input efficiency measures has been established:
DFi(x, y)]Zi(x, y)]FLi(x, y)]AFi(x, y). Fur-
thermore, when evaluating efficiency over a single
input dimension, they all coincide. Other relations
between input-oriented, as well as between other-
wise oriented, efficiency measures are discussed in
De Borger et al. (1998).

Färe and Lovell (1978) suggested four proper-
ties that an input, and in general, any measure of
technical efficiency should satisfy, independent of
the technology on which it is applied:

(i) Input vectors are efficient if and only if they
belong to the efficient subset.

(ii) Inefficient input vectors are to be compared
with respect to vectors in the efficient subset.3

(iii) Homogeneity of degree minus one in the
inputs.

(iv) Strict negative monotonicity in the inputs.

Other desirable properties, such as unit invariance
or commensurability, have been added (see Färe
et al., 1994).

While the radial efficiency measure defines
technical efficiency relative to the isoquant of
L(y) and thus fails to satisfy properties (i) and
(ii), its three alternatives obey the Pareto–Koop-
mans definition of technical efficiency and do
focus on the efficient subset of L(y). Only the
radial and the Zieschang efficiency measures are
homogenous of degree minus one in the inputs.
None of the measures satisfies the fourth property
in a strict sense, with the Zieschang efficiency
measure even being non-monotonous in the
inputs.4

These four efficiency measures not only serve to
measure technical efficiency in a strict sense. They
can also be used for decomposing efficiency into
various sources. Färe et al. (1985, 1994) propose
the most elaborate static efficiency taxonomy in
the literature and define operational measurement
procedures to distinguish between technical, scale,
structural (congestion) and allocative efficiency.
Both radial and non-radial efficiency measures
can be employed to empirically distinguish be-
tween these efficiency components.5 An empirical
study disentangling technical, scale and structural
efficiency using a non-radial efficiency measure is

Viton (1997). In this respect our discussion on the
effect of the dimensionality of technology on dif-
ferent efficiency measures is relevant for the whole
domain of efficiency and productivity
benchmarking.

Our concern for the impact of the dimensional-
ity of technology is related but distinctive from
another literature taking a game-theoretic (see
Banker et al., 1989) or a principal agent perspec-
tive (see Bogetoft, 1994) on the efficiency evalua-
tion problem. These papers recognize that
strategic issues arise when organizations are
benchmarked on a regular basis by some central
authority using any of the existing approaches to
efficiency evaluation. Both presuppose a consen-
sus regarding the specification of technology. But
Banker et al. (1989) explicitly mention, among the
possible strategies that may arise in a game con-
text, the following possibilities. (i) Activities may
try to become extremely specialized, as this ren-
ders them difficult to compare to others. For
instance, observations with the minimum value in
an input dimension or the maximal value in an
output dimension are efficient on a convex pro-
duction model with variable returns to scale. (ii)
Organizations may move to the frontier in a way
that leaves them with some organizational slack
resources (that remain undetected by the radial
efficiency measure). In Figure 1, assuming point
d % on the isoquant were an observation, it would
appear as efficient when evaluated radially,
though there is still an excessive use of inputs
equal to the amount cd % in the first input dimen-
sion. (iii) Decision-making units may insist on the
introduction of new input and/or output dimen-
sions to alleviate the pressure of the efficiency
evaluations from the central evaluator. Our con-
tribution as such ignores explicit strategic issues,
which may especially occur in a repeated evalua-
tion context. But instead it mainly focuses on the
way efficiency is being measured, or on the way
different efficiency measures deal with changes in
the dimensionality of production technology. In
this limited sense it accommodates, among others,
the three strategies listed above.

Since the empirical example makes use of out-
put- and graph-oriented efficiency measures, we
briefly define radial output and graph efficiency
measures. Reasons of space preclude us spelling
out in detail analogous definitions for the non-ra-
dial efficiency measures. We refer the reader to
Färe et al. (1985) and De Borger et al. (1998).

Copyright © 1999 John Wiley & Sons, Ltd. Manage. Decis. Econ. 20: 45–59 (1999)
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First, the radial output measure of technical
efficiency is defined:

DFo(x, y)=max{l �l]1, ly�P(x)}.

Given a fixed vector of inputs, it measures the
ratio of the largest feasible expansion of outputs
to the observed output vector itself.

Finally, the radial graph-oriented technical effi-
ciency measure is:

DFg(x, y)=min{l �l]0, (lx, l−1y)�GR}.

It looks simultaneously for a proportional reduc-
tion in inputs and a proportional expansion in
outputs consistent with the graph of technology.6

NON-MONOTONICITY ACROSS
DIMENSIONS

The sensitivity of the widely used radial efficiency
measure DFi(x, y) to the dimensionality of the
production technology is a problem.7 Therefore,
we add another series of axioms relating to the
dimensionality of the production technology.

Introducing a minimum of additional notation,
the dimensions of a production technology are
elements of a set D. This set D can be partitioned
into a subset of respectively variable (V=
(xV, yV)) and fixed (F= (xF, yF)) dimensions.
Note that V may be an improper subset (V¤D)
but cannot be empty (V"{¥}), while F must be
a proper subset (F¦D). The properties are for-
mulated in terms of the relations between two sets
representing the dimensionality D respectively D %
and the corresponding partitions {V, F} and
{V %, F %}, where cD and cD % indicate the car-
dinality of the sets D and D %, and EV(x, y) and
EV%(x %, y %) are efficiency measures computed on
the variable input and output dimensions defined
by these respective partitions. As a regularity
condition, we furthermore suppose that there is
more than one output dimension and more than
one input dimension.

We restate the three economic reasons why this
dimensionality issue is important in the above
notation. First, the operationalization of the con-
cept of a production technology itself involves
decisions on the inputs and the outputs to include.
In other words, what are the dimensions to be
included in the set D? A second reason is the
possible distinction between variable and fixed, or
endogenous and exogenous inputs and outputs,

i.e. the issue of the variables under control of the
organization in the short or the long run. This
amounts to a partitioning of the set D. Input and
output vectors are, therefore, separated into fixed
and variable parts: x= (xF, xV), y= (yF, yV).
Technical efficiency is then evaluated relative to
the variable subvectors. A final cause for contro-
versy is the choice between input, output and
graph measures of technical efficiency. This
amounts to assuming that, respectively, no out-
puts are variable (yV={¥}), no inputs are vari-
able (xV={¥}), and at least some inputs and
outputs are variable (xV"{¥} and yV"{¥}).

Two new properties are proposed requiring that
the technical efficiency measure itself be insensi-
tive in specific ways to the total number of dimen-
sions in the production analysis and, in particular,
to the number of dimensions over which the
efficiency measure is evaluated. Two correspond-
ing propositions summarize which of the effi-
ciency measures reviewed satisfy the property
concerned.8

First, Non-Monotonicity Across Dimensions
Added or Discarded (NOMAD-AD) is a property
related to nested technologies where changes in
the dimensionality result in two comparable but
distinct sets D and D % and in two comparable
subsets V and V %.

Definition 4.1: NOMAD-AD

For (x, y)�R+
cD and (x %, y %)�R+

cD%:

if D¦D % and

(a) if (V¦V % and F¤F %) or

(b) if (V=V % and F¦F %),

then EV(x, y)iEV%(x %, y %).

The symmetrical case where D³D % can be
analogously treated. Observe that i denotes a
non-monotonic relationship, i.e., it should be logi-
cally possible that EV(x, y) is smaller, equal or
larger than EV%(x %, y %). Otherwise stated, when this
relation holds, then some property of solutions is
not preserved under some type of changes in
dimensionality.

Proposition 4.1:

FLV(x, y), ZV(x, y) and AFV(x, y)

satisfy NOMAD-AD Case (a);

Copyright © 1999 John Wiley & Sons, Ltd. Manage. Decis. Econ. 20: 45–59 (1999)
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None of the four efficiency measures respects
NOMAD-AD Case (b).

The first part (a) guarantees for an efficiency
measure its insensitivity to simultaneous changes
in the total number of input and output dimen-
sions and the total number of variable dimensions
over which efficiency measures are evaluated (V
and V % are comparable and proper subsets), irre-
spective of eventual changes in the number of
fixed dimensions (F and F % need not be proper
subsets). A plausible reason in empirical studies is
separability of a production process into several
subprocesses (see Chambers, 1988 for a general
discussion or Banker, 1992, 1996 for a specific
discussion in the context of non-parametric tech-
nologies). The second part (b) is of great practical
relevance. If the change in the total dimensional-
ity results solely from a change in the fixed dimen-
sions (V is identical to V %; F and F % are
comparable and proper subsets), then none of the
four efficiency measures remain insensitive to the
dimensionality of technology. A typical case is the
addition of a series of environmental variables to
a given production technology. Practitioners
should be aware of its consequences on the result-
ing efficiency distributions to avoid erroneous
conclusions.9 It raises questions about the validity
of any inferences based on a one-stage approach
to explaining technical efficiency.10

Second, Non-monotonicity Across Dimensions
Evaluated (NOMAD-E) is for two identical sets D
and D % related to a change in the dimensionality
of the partitions {V, F} and {V %, F %}.

Definition 4.2: NOMAD-E

For (x, y)�R+
cD and (x %, y %)�R+

cD%:

if D=D % and

(a) if (V¦V % and F³F %) or

(b) if (V�V % and F�F %),

then EV(x, y)iEV%(x %, y %).

Proposition 4.2:

FLV(x, y) and ZV(x, y)

satisfy NOMAD-E Case (a);

FLV(x, y), ZV(x, y) and AFV(x, y)

satisfy NOMAD-E Case (b).

The first part (a) guarantees for a production
technology of given total dimensionality that an
efficiency measure be insensitive to the relative
number of variable input and output dimensions.
This case includes, for instance, the change from
an input or an output to a graph orientation of
measurement, or the reverse; and changes in the
dimensions evaluated due to the short or long run
nature of the analysis (i.e. evaluating efficiency on
the whole vector or on a subvector). For a pro-
duction technology of given dimensionality, the
second part (b) requires an efficiency measure to
be insensitive to changes in specification resulting
in non-comparable subsets of variable and fixed
dimensions. A typical example for this second
part is a switch from an input to an output
orientation of measurement (V=F % and V %=F),
or the reverse. The effect of switching the orienta-
tion of measurement depends on the position of
the observation relative to the frontier. This posi-
tion depends, among others, on the maintained
returns to scale assumption. Since radial input
and output efficiency measures are identical when
evaluated with respect to constant returns tech-
nologies (see Färe and Lovell, 1978, or Førsund
and Hjalmarsson, 1979), the radial measure in
general does not satisfy NOMAD-E but is
invariant.

For the case of non-nested or distinct produc-
tion technologies—characterized by two non-
comparable sets D and D %—all efficiency
measures are in general non-monotonic with re-
spect to any changes in dimensionality. This triv-
ially holds true since efficiency measurement
relative to distinct production technologies in-
volves solving distinct programming problems.

This last case also includes problems of aggre-
gation and disaggregation over variable input or
output dimensions. Färe and Lovell (1988) have
proven that the radial input efficiency measure is
invariant with respect to input aggregation when
the cost function is separable in outputs and the
corresponding input price indexes. In addition,
for this invariance property to hold, the subvec-
tors of input quantity and input price vectors
should have been transformed into economic in-
put quantity and input price indexes satisfying
certain properties. This invariance result does not
apply to any non-radial efficiency measure.

However, if these stringent conditions are not
met and aggregation procedures are applied that
amount to elementary transformations on the

Copyright © 1999 John Wiley & Sons, Ltd. Manage. Decis. Econ. 20: 45–59 (1999)
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constraints of the associated linear programming
problems, whereby the dimensions concerned are
variable in both disaggregated and aggregated
models, then in general the radial efficiency
measure is monotonously affected while all non-
radial efficiency measures satisfy non-
monotonicity.11 If, by contrast, the same types
of aggregation procedures are applied to fixed
dimensions, then all efficiency measures are
monotonously affected. Ahn and Seiford (1993)
illustrate these trivial results for the radial effi-
ciency measure.

EMPIRICAL EXAMPLE

The empirical illustration uses a sample of
French urban transit firms analysed earlier in
Kerstens (1996). This sample is selected for illus-
trative purposes only, because the transport sec-
tor offers ample possibilities to document all
aspects of the dimensionality issue.

A brief description of the sample follows.12

The data set contains 114 single mode urban
transport companies operating in 1990 outside
the Paris region. All operators drive buses only
(any other mode has been excluded). The insti-
tutional environment is briefly summarized.
During a certain period, an urban transport op-
erator supplies transport service within a trans-
port perimeter agreed upon with a public
organizing authority (a municipality or group
thereof). This authority often owns infrastruc-
ture, equipment and rolling stock. The transport
perimeter is not limited by territorial
boundaries, and only distinguishes urban from
interurban transport.

To illustrate how dimensionality issues also
affect the specification of transport technologies,
we first systematically document how the three
economic reasons, mentioned before, play a role
in the transportation literature. Then we develop
empirical strategies to exemplify our two propo-
sitions presented in the previous section.

Technology Specifications in Urban Transport

The very notion of a production technology is a
source of some controversy in transportation.
Traditional outputs used to model transport
technology are: vehicle kilometres; seat kilome-
tres; the number of passengers; and passenger

kilometres (see Berechman, 1993). To limit the
discussion to the first two and last two outputs:
the first two outputs are classical units times
distance per unit time concepts and are pure
supply indicators; while the last two outputs are
demand-related output measures reflecting the
effective use of the offered services. This induces
some authors (e.g., Chu et al., 1992) to gauge
the effectiveness of urban transit instead of its
efficiency. Among the traditional inputs are: the
number of vehicles; the number of employees;
fuel consumption; etc.

In the traditional parametric literature, the
above output specifications are often comple-
mented with variables accounting for spatial,
temporal and quality characteristics of urban
transit services (Jara Dı́az, 1982). Following
Spady and Friedlaender (1978), this hedonic ap-
proach includes additional dimensions (e.g., net-
work length, peak to base ratios, breakdowns,
etc.), representing these network characteristics,
into the technology specification. However, the
non-parametric deterministic reference technolo-
gies, relevant to our study, have serious prob-
lems to account for these characteristics. In
particular, there is no general way to determine
sign and significance of any additional dimen-
sions (see Lovell, 1994, or Kerstens and Vanden
Eeckaut, 1995b).

In some parametric frontier studies, like the
one by Kumbhakar and Bhattacharyya (1996), a
variable cost function is being estimated. Other
authors (e.g., Fazioli et al., 1993) opt for a total
cost frontier. Non-parametric studies, by con-
trast, assume most of the time that all dimen-
sions of the input or output vector are under
managerial control. Few have implemented a
subvector efficiency approach.

Most often urban transit studies postulate
cost-minimization as a behavioural goal and
consequently measure efficiency in the input ori-
entation (e.g., Levaggi, 1994). Cost-minimization
is traditionally conceived as a goal for public or
private regulated urban transit operators com-
patible with any other objective pursued by
these transport firms (Berechman, 1993). Other
papers opt for an output orientation and look
for service improvements for given resource con-
straints (e.g., Kerstens, 1996). Some authors
(e.g., Viton, 1997) report both input- and out-
put-oriented efficiency results.
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Empirical Strategies

To provide a systematic illustration of the two
new properties, we first define a standard specifi-
cation of technology. Then we develop for each
part of the NOMAD-AD and the NOMAD-E
definitions a representative case. These scenarios
are contrasted against the standard specification
to control whether the four efficiency measures
indeed can increase, decrease or remain constant.
These illustrations are, obviously, to some extent
limited by the variables available to us. Except for
one scenario (see below), our technology is a
non-convex FDH.

The standard specification follows closely the
traditional outputs and inputs used to model an
urban transit production technology. The output
is the number of vehicle kilometres. This pure
supply indicator is combined with the following
four inputs: average number of vehicles in use;
average number of drivers; average number of
other employees; and total fuel consumption. This
definition of inputs closely follows tradition in the
transportation literature. Efficiency is evaluated
over all four input dimensions.

The alternative scenarios can be summarized as
follows. To illustrate NOMAD-AD part (a), we
assume that the production process actually con-
sists of two subtechnologies: one for driving, and
another for other activities (administration,
maintenance, etc.). Since we have incomplete in-
formation on the other activities (some inputs and
all outputs are missing), we concentrate on bus
driving. Therefore, we eliminate the non-driving
personnel dimension from the technology (SCE-
NARIO 1). Efficiency is measured over all three
remaining input dimensions. The scenario devel-
oped for the (b) part of this axiom is to add an
environmental variable to the standard specifica-
tion (SCENARIO 2). In particular, following
Levaggi (1994) and Viton (1997) among others,
we include the total length of the network (all
lines) in the production model and treat this
variable as an input. In this case, efficiency is
measured over all four traditional input dimen-
sions, but not with regard to this environmental
characteristic. Since the network is part of the
agreement between operator and public organiz-
ing authority, it is normally outside the compa-
ny’s control.

NOMAD-E part (a) is exemplified by focusing
on subvector efficiency in the standard specifica-

tion (SCENARIO 3). We assume that in the short
term only labour and fuel are under managerial
control. The stock of vehicles, by contrast, is a
fixed dimension. Part (b) is illustrated in two ways
(SCENARIO 4a & 4b). The first subscenario con-
sists of a mixture of modifying the measurement
orientation and the subvector efficiency scenario.
We opt for a graph orientation, looking for a
simultaneous reduction of inputs and expansion
of outputs, but part of the input vector of the
standard specification is excluded from the effi-
ciency evaluation. Again vehicles are considered
as an exogenous input dimension. The second
subscenario considers a switch of measurement
orientation, from input to output, on a constant
returns to scale version of the FDH technology
(see Bogetoft, 1996; Kerstens and Vanden Eeck-
aut, 1998).13 But since our standard specification
has only one output, it follows that all four
output-oriented efficiency measures coincide
(DFo(x, y)=Zo(x, y)=FLo(x, y)=AFo(x, y)).
Combined with the fact that 1]DFi(x, y)]
Zi(x, y)]FLi(x, y)]AFi(x, y)]0, this would
induce monotonicity for the non-radial efficiency
measures. To make the example illustrative we,
therefore, add another output dimension: the
number of passengers. This is not uncommon in
transport models (see, e.g., Viton, 1997).

Empirical Results

Table 1 presents the input efficiency results for the
standard specification. Next to descriptive statis-
tics, the number of efficient and inefficient obser-
vations is reported for each efficiency measure.
Tables 2–6 present the same results for the alter-
native scenarios, but indicate in addition the num-
ber of observations for which the efficiency score
increased, remained constant respectively de-
creased. The latter information is of course crucial
to assess the two propositions.

The standard specification in Table 1 yields
means between different efficiency measures re-
flecting the order between them indicated before.
The distributions are highly skewed with a long
tail to the left. In this sample, FLi(x, y) and
Zi(x, y) do not differ, though this is no necessity
(see, e.g., De Borger et al., 1998, or Ferrier et al.,
1994, for empirical evidence). The number of effi-
cient observations for the radial efficiency score is
higher than for the three other measures, because
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Table 1. Technical Efficiency for the Standard Specification of Technology

DFi(x, y) FLi(x, y) Zi(x, y) AFi(x, y)

0.9858 0.9492 0.9492Mean 0.9108
1.0000 1.0000Median 1.0000 1.0000
0.9903 0.9552 0.9552Trimmed mean* 0.9204
0.0478 0.1108S.D. 0.1108 0.1923

−4.3921 −2.0673 −2.0673 1.9742Skewness
0.6667 0.5457Minimum 0.5457 0.2400

c Efficient observations 99 91 91 91

* 5% trimmed observations.

it is defined relative to the isoquant, not to the
efficient subset.

As can be seen from Table 2, imposing separa-
bility and concentrating on driving activities
(SCENARIO 1) leads to an downward shift in the
mean of all efficiency distributions. The skewness
becomes less pronounced. Also the relative num-
ber of efficient observations decreases. The exam-
ple makes clear that, except for the radial
efficiency measure that cannot increase, all three
non-radial efficiency measures do satisfy
NOMAD-AD case (a). This example also indi-
cates that seemingly uniform changes in distribu-
tions may hide diverging underlying movements
at the individual level.

Table 3 reveals that adding an environmental
dimension that remains exogenous to the effi-
ciency evaluation (i.e., SCENARIO 2) shifts all
efficiency distributions up and increases the
amount of efficient observations. Compared to
the standard specification, none of the efficiency
measures is able to decrease under these circum-
stances. Hence, all efficiency scores change in a
monotonous way and violate NOMAD-AD case
(b).

As evidenced in Table 4, SCENARIO 3 (i.e., a
change in the subvector of dimensions under eval-
uation for a given total number of dimensions)
leads to a downward shift in the efficiency distri-
butions, except for the asymmetric Färe indicator.
The number of radially efficient observations de-
creases slightly, but the numbers of efficient
DMUs relative to the efficient subset remains
constant. Clearly, the radial and the asymmetric
Färe efficiency measures are unable to meet the
NOMAD-E case (a), though they move in oppo-
site directions. Only the Färe–Lovell and Zi-
eschang efficiency measures are capable of
moving in a non-monotonous way. In fact, they
again coincide for this particular sample.

Table 5 shows that in SCENARIO 4a all effi-
ciency distributions are slightly shifted upwards.
At the individual level, however, all measures
meet the requirement of Definition 4.2 (b). Again
the number of efficient observations relative to
the efficient subset stays the same, while it de-
creases in the radial case.

SCENARIO 4b is illustrated on a technology
with two outputs and four inputs. The four input
efficiency measures reported in the first part of

Table 2. Technical Efficiency under SCENARIO 1

DFi(x, y) FLi(x, y) Zi(x, y) AFi(x, y)

0.9395 0.9078Mean 0.9740 0.9395
1.0000 1.0000Median 1.0000 1.0000

0.94490.9449 0.91510.9784Trimmed mean*
0.0652 0.1118 0.1118 0.1672S.D.

−1.6957 −1.6957Skewness −2.7735 −1.6283
0.40740.53820.6667 0.5382Minimum

82 82c Efficient observations 90 82
1216160c Obs. with increasing efficiency

82 82c Obs. with constant efficiency 104 92
16 16c Obs. with decreasing efficiency 10 10

* 5% trimmed observations.
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Table 3. Technical Efficiency under SCENARIO 2

FLi(x, y)DFi(x, y) Zi(x, y) AFi(x, y)

Mean 0.9981 0.9866 0.9866 0.9750
1.00001.00001.00001.0000Median

0.99150.9995Trimmed mean* 0.98460.9915
S.D. 0.0110 0.0535 0.0535 0.1019
Skewness −6.9211 −4.3367 −4.3367 −4.4402
Minimum 0.9048 0.6864 0.6864 0.4000

106110 106 106c Efficient Observations
c Obs. with increasing efficiency 11 17 17 16
c Obs. with constant efficiency 989797103

0c Obs. with decreasing efficiency 0 0 0

* 5% trimmed observations.

Table 6 should be compared to the corresponding
output measures in the second part of this table.
Clearly, the radial efficiency measure is invariant
when changing measurement orientation, while all
non-radial efficiency measures can vary in a non-
monotonous way. In this scenario, a non-convex
constant returns to scale technology was em-
ployed. But the same would hold true under a
more conventional convex constant returns to
scale production model.

CONCLUSIONS

This article looks at the issue of the effect of the
dimensionality of technology specifications on ef-
ficiency measurement. Defining the traditional ra-
dial efficiency measure as well as a series of
alternative non-radial efficiency measures, we sys-
tematically investigated the dimensionality issue
on non-parametric (mathematical programming)
technologies. We defined two new axioms guaran-
teeing a non-monotonicity across dimensions

added and discarded respectively across dimen-
sions evaluated. The first definition relates to
specification changes resulting in nested technolo-
gies, while the second applies to technologies of
identical dimensionality. The first definition re-
quires for an efficiency measure its insensitivity
to: (a) changes in the total number of variable
dimensions irrespective of eventual changes in the
number of fixed dimensions; (b) changes in the
total number of fixed dimensions given no
changes in the variable dimensions. The second
definition requires for an efficiency measure its
insensitivity to: (a) the relative number of variable
input and output dimensions; (b) changes in speci-
fication resulting in non-comparable subsets of
variable and fixed dimensions.

As an overall conclusion, insensitivity for
specific changes in the dimensionality of the pro-
duction technology cannot be guaranteed for all
technical efficiency measures. It turns out that the
Färe–Lovell and the Zieschang technical effi-
ciency measures perform best in this respect, while
the traditional Debreu–Farrell is least satisfac-

Table 4. Technical Efficiency under SCENARIO 3

FLi(x, y) Zi(x, y)DFi(x, y) AFi(x, y)

0.94230.9423 0.91230.9681Mean
1.0000 1.0000Median 1.00001.0000
0.9495 0.9495Trimmed mean* 0.9752 0.9219

0.19010.13000.13000.0947S.D.
−2.2386 −2.0053Skewness −3.2877 −2.2386

0.4723 0.4723Minimum 0.5198 0.2400

91 91 9197c Efficient observations
6 6c Obs. with increasing efficiency 30

91 111c Obs. with constant efficiency 102 91
17 17c Obs. with decreasing efficiency 12 0

* 5% trimmed observations.
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Table 5. Technical Efficiency under SCENARIO 4a

DFg(x, y) FLg(x, y) Zg(x, y) AFg(x, y)

Mean 0.9924 0.9535 0.9535 0.9108
Median 1.00001.0000 1.00001.0000

0.92040.95920.95920.9947Trimmed mean*
S.D. 0.0238 0.1031 0.1031 0.1914

−1.9610−2.1784−2.1784Skewness −3.9702
0.8532 0.5893 0.5893Minimum 0.2400

c Efficient observations 97 91 91 91
c Obs. with increasing efficiency 10 17 17 2

99 91c Obs. with constant efficiency 91 111
5 6 16c Obs. with decreasing efficiency

* 5% trimmed observations.

Table 6. Technical Efficiency under SCENARIO 4b

DFi(x, y) Zi(x, y) Afi(x, y)FLi(x, y)

Mean 0.9352 0.8528 0.8528 0.7279
0.83560.83560.9733Median 0.7023

0.9388Trimmed mean* 0.8575 0.8575 0.7335
S.D. 0.0810 0.1444 0.1444 0.2621
Skewness −1.2970 −0.5653 −0.5653 −0.3872

DFo(x, y) FLo(x, y) Zo(x, y) AFo(x, y)

0.14200.41630.41630.6194Minimum
0.89500.9352 0.8950Mean 0.8433
0.9161 0.9161 0.8880Median 0.9733

0.85160.89920.89920.9388Trimmed mean*
0.16860.1115 0.1115S.D. 0.0810

−1.0564−0.8272 −0.8272Skewness −1.2970
Minimum 0.6194 0.5266 0.5266 0.1886

c Efficient observations 46 46 46 46
11 70c Obs. with increasing efficiency 11
46 46c Obs. with constant efficiency 46114

0c Obs. with decreasing efficiency 57 57 61

* 5% trimmed observations.

tory. It is crucial that practitioners are aware of
their choice of efficiency measure when bench-
marking the performance of organizations. To
illuminate this dimensionality issue, the impact of
a series of scenarios, relevant for applied produc-
tion analysis, has been illustrated on a sample of
French urban transit companies.

As a closing remark, while it seems to us that
insensitivity for changes in the dimensionality of
production technology is a desirable property in
the efficiency evaluation context, it may well be
that in other areas of economics, the same does
not hold true. Unaware of any discussion on this
topic, we sincerely hope that this article would
contribute to a debate as to whether a sensitivity
of solutions to the dimensionality of decision-
making problems is desirable.
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NOTES

1. These goals traditionally translate into different
output specifications: direct outputs (D-output)
versus consumer related outputs (C-output) (see
Bradford et al., 1969). Effectiveness reflects the
economic motive for providing services. Ideally,
one could evaluate allocative efficiency, but this is
very difficult for the public sector or for regulated
industries. Furthermore, it is often hampered by a
lack of adequate price information. Effectiveness
can, therefore, be interpreted as a shortcut to a
more extensive evaluation.
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2. As indicated in Färe et al. (1985), the profit inter-
pretation of graph-oriented efficiency measures is
only approximate. Only the recent introduction of
directional distance measures (also see endnote 6)
has led to proper profit interpretations when using
non-parametric technologies.

3. Russell (1985) shows how this property can be
made redundant.

4. See Russell (1985), Lovell (1993) and Kerstens and
Vanden Eeckaut (1995a) for details. Kerstens and
Vanden Eeckaut (1995a) indicate that these non-ra-
dial measures include a wide range of alternatives
presented in the OR literature.

5. An exception is that the congestion component
cannot be straightforwardly evaluated using non-
radial efficiency measures (see Dervaux et al.,
1998).

6. Recently, Chambers et al. (1998) provided an alter-
native basis for efficiency measurement using
proper distance concepts instead of ratio measures.
Their use of the directional technology distance
function leads, among others, to a normalized
profit interpretation and contains all known effi-
ciency measures as special cases (the latter is shown
in Färe and Grosskopf, 1997). However, since the
directional distance measures, like the radial ratio
measures, also imply scalar objective functions in
the corresponding linear programming problems,
everything stated in our paper with regard to the
radial efficiency measure also applies to these inno-
vative contributions.

7. The problem is exacerbated in the non-parametric
approach by the lack of general test procedures to
which a practitioner can turn. Some tests, like the
one developed by Brockett and Golany (1996) to
evaluate the differences between treatment and con-
trol groups, are very specific. Kittelsen (1993) pro-
poses a test procedure based on statistics presented
in Banker (1993). The latter assume specific
monotone one-sided distributions for the underly-
ing technical inefficiency. Two points are worth
stressing. First, only under these specific assump-
tions can the deterministic non-parametric method-
ology be interpreted as yielding estimates resulting
from a ML estimator. Second, in applications the
Kittelsen (1993) procedure seems to have little dis-
criminatory power. Recently, Banker (1996) ex-
tended these procedures to test, among others,
model specification (e.g., variables to be added at
the margin). However, it is fair to say that there is
no consensus in the literature and that develop-
ments have hardly affected practitioners in the
field.

8. Proofs are based on maximal value properties of
the programming problems used to compute the
technical efficiency measures on the non-parametric
production technologies. They are outlined in an
appendix that is available upon request.

9. Obeng (1994) is an example of a study making
wrong inferences from a comparison between tech-
nologies without and with environmental variables
(see Kerstens and Vanden Eeckaut, 1995b).

10. See Lovell (1993) for a discussion of one-stage
versus two-stage formulations of explanatory mod-
els. Yu (1998) reports Monte Carlo simulation re-
sults comparing one-stage and two-stage
approaches for both non-parametric and paramet-
ric frontier methods. Her results suggest that para-
metric methods deliver more reliable efficiency
estimates when environmental variables can be
properly specified. Furthermore, one-stage and
two-stage approaches deliver extremely poorly for
non-parametric frontiers when the magnitude of
the effect of the environmental variables on bridg-
ing the gap between the kernel production function
and the frontier is high.

11. Elementary transformations in linear programming
are discussed in Goldman and Tucker (1956).

12. For all details the reader is referred to Kerstens
(1996).

13. For the ease of comparison, all output efficiency
measures are redefined to be smaller or equal to
unity.
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