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Abstract  The specification of a convex production technology is a potential is-
sue in estimating firm-level Johansen plant capacity utilisation rates and their
subsequent use in the short-run Johansen industry capacity model of the fishery.
There are different plant capacity utilisation estimates with convex and non-
convex technologies. When entered as parameters in the short-run Johansen
industry model, this leads to different distributions in the activity vectors. With
non-convex technology, more vessels remain active in the fleet, and there is no
longer an overestimation of the number of decommissioned vessels compared to
the use of a convex technology. A second methodological reflection involves a
way to trace the evolution of capacity over time and the possibility of formulat-
ing multi-period, short-run Johansen industry models using appropriate discrete
time Malmquist productivity indices. Danish vessels provide an illustration for
the convexity issue.
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Introduction

The short-run Johansen (1972) industry model has lately received attention as a
planning tool for fishery policies because it allows analysing industry structure on a
disaggregated basis for firms, inputs, resource stocks, and species. This model starts
from a putty-clay model of production: ex-ante firms choose among several produc-
tion activities, but ex post they face fixed coefficient technologies with capacities
that are conditioned by the investment decision. Following Dervaux, Kerstens, and
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Leleu (2000), the short-run Johansen industry model is typically computed starting
from mathematical programming specifications of production technology frontiers.
Applying the approach of Fare, Grosskopf, and Kokkelenberg (1989), estimates of
radial efficiency measures are computed relative to nonparametric frontier technolo-
gies (also known as Data Envelopment Analysis (DEA) models). This yields a
Johansen (1968) plant capacity measure for individual multi-product firms at the
production frontier and a measure of ray capacity utilization similar to the one de-
veloped in Segerson and Squires (1990). These individual firm-level frontier
measures of capacity output are used in the industry model to select the optimal
level of activity of firm capacities with the objective of minimising fixed inputs at
the industry level given the current total multiple outputs and firm-level capacities.

It is the purpose of this contribution to develop two main methodological reflec-
tions with regard to the above sketched static short-run Johansen (1972) industry
model. A first reflection concerns the assumption of convexity traditionally main-
tained on the technology when estimating plant capacity measures at the firm level.
We develop a variety of reasons to eventually drop this maintained hypothesis. The
second methodological suggestion reflects on proper ways of building multi-period,
short-run Johansen (1972) industry models by taking into account technological
change. This boils down to tracing the evolution of plant capacity and the short-run
Johansen industry model over time using appropriate discrete-time Malmquist pro-
ductivity indices. Strictly speaking, the issues raised are not necessarily limited to
the short-run Johansen (1972) industry model. These developments have the poten-
tial of being equally relevant for all industry-level production models focusing on
reallocations across units and/or across time. In this context, one can think about a
variety of reallocation models in the li terature developed by, for instance,
Athanassopoulos (1995), Färe and Primont (1984), and Korhonen and Syrjänen
(2004).

We first examine the issue of the maintained hypothesis of convexity in the
multi-product production set in estimation of plant capacities in the first stage of the
short-run Johansen (1972) industry model. From a theoretical position, this would
bring the model more in line with part of the fisheries literature discussed further
below. From a managerial and more pragmatic point of view, the utilisation of non-
convex frontier models in the first stage inevitably leads to lower maximal outputs
and hence higher rates of plant capacity utilisation. Higher rates of capacity utiliza-
tion, in turn, imply in the second-stage industry model that an equal number or more
firms remain active in the optimal solution. Furthermore, to remedy eventual techni-
cal inefficiencies, one can always point these firms to real observations that
dominate them in terms of inputs and outputs. This facilitates the learning and
implementation process.

The possibility of non-convexities in the set of technological choices open to in-
dividual producers has been discussed in the literature on fisheries management
(e.g. , Liski, Kort, and Novak [2001]).1 For instance, some studies, such as Bjørndal
(1987), indicate the possibility of increasing returns to scale in fishing with respect
to the number of boats operating on the same fishing ground (e.g. , because of infor-
mation sharing). The implications for fishery policies can be important:
non-increasing marginal cost can lead to cyclical harvesting strategies (known as
pulse fishing), which may well turn out to be optimal rather than a constant exploi-
tation rate (Clark 1976). Squires and Kirkley (1991) and others have encountered
potential non-convexity with multiproduct technologies.

1 This is based on the literature on non-convexities and optimal exploitation of renewable resources
(e.g. , Lewis and Schmalensee 1977, 1979).
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Non-convexities have also been the subject of extended theoretical debate in re-
lated fields. In the environmental economics literature, Baumol (1972), Bradford
and Baumol (1972), Starrett (1972), and Sandmo (2000) all analyze non-convexities
in the production possibility set associated with external diseconomies. In particular,
the first three contributions discuss non-convexities that may arise even if firm pro-
duction technologies are convex; i.e. , externally induced non-convexities or
non-convexities in the social production possibility set. Sandmo (2000) discusses
non-convexity arising from the marginal costs of abatement. The forestry literature
has an extensive, on-going discussion of non-convexity, due largely to non-divis-
ibilities, such as fixed costs and administrative constraints, as recently summarized
by Boscolo and Vincent (2003). There is a related discussion of non-convexity in
fisheries. For example, Clark (1976) formally develops nonconvex cost functions
and discusses non-divisibilities, such as large fixed capacity. In a recent article,
Dasgupta and Mähler (2003) survey the economic issues surrounding the economic
analysis of non-convexities in ecological systems. The Dasgupta and Mähler (2004)
book considers non-convex ecosystems on an extensive basis. In this article, we are
concerned with non-convexities in the private production possibility set.

In production theory, the assumption of convexity has repeatedly been dis-
cussed. Scarf (1981a,b, 1986, 1994), in a series of articles and book contributions,
stressed the importance of indivisibilities in production (mainly industrial). Mas-
Colell, Whinston, and Green (1995) extensively discuss convexity in microeconomic
theory, including production theory. Recently, non-convex nonparametric technolo-
gies and cost functions have been devised that provide an alternative to the more
traditional convex ones for the private production possibility set (see Briec,
Kerstens, and Vanden Eeckaut 2004). They show that cost functions estimated on
convex technologies are lower or equal to cost functions estimated on entirely non-
convex technologies.

Another unresolved issue is the development of multi-period, short-run
Johansen industry models. Starting from the initial literature on this model that
traced the evolution of the capacity distribution and the short-run industry model
over time using isoquant plotting techniques (e.g. , Førsund and Hjalmarsson 1983),
a second methodological reflection traces the evolution of capacity over time and
the possibility of formulating multi-period, short-run Johansen industry models us-
ing appropriate discrete-time Malmquist productivity indices. Since the latter
productivity indices have, meanwhile, become quite popular in applied empirical
work (see Färe, Grosskopf, and Roos 1998), we limit ourselves to outlining the main
ideas, but we refrain from an empirical illustration.

This short paper first reviews the basic convex and non-convex production mod-
els involved in the next section. The following section shows how one could easily
incorporate productivity growth in the estimation of both plant capacity and the
short-run Johansen industry models making use of recent developments in discrete-
time productivity indices. The next section empirically illustrates the impact of
dropping the maintained convexity hypothesis on the plant capacity estimation as
well as on the short-run industry model using a small sample of Danish vessels. A
final section concludes.

Firm and Industry Models: Basic Methodological Choices

Choice of Capacity Concept

Capacity is inherently a short-run rather than long-run concept, since capacity arises
due to fixity of one or more inputs. In the literature, it is customary to distinguish



Kerstens, Squires, and Vestergaard428

between technical and economic notions of capacity. Starting the discussion with a
technical concept, we thereafter treat a variety of economic capacity notions.

First, Johansen (1968) defined a primal notion of capacity, plant capacity, as the
maximal amount of output that can be produced per unit of time with the existing
plant and equipment without restrictions on the availability of variable inputs. Färe,
Grosskopf, and Kokkelenberg (1989) made this concept of plant capacity opera-
tional by estimating firm-level capacity levels using nonparametric frontier
approximations of technology. The approach postulates that firms cannot change
their fixed input utilisation, but that their use of variable factors is not constrained.
A best-practice technology is constructed, and the current output of each firm is
evaluated against the maximum potential output at full capacity utilization, giving
capacity output. Multiple products are incorporated by the specification of ray mea-
sures, keeping multiple outputs in fixed proportions as the output bundle expands
along a ray.

Second, it is conceivable to employ any of the economic (often cost based) ca-
pacity concepts existing in the literature instead of a technical capacity concept.
Segerson and Squires (1990) and Berndt and Fuss (1989) extended the economic
concept of capacity from single to multiproduct firms. Specifically, there are three
basic ways of defining a cost-based notion of capacity (see Morrison 1985, Nelson
1989). The purpose of each is to isolate the short-run excessive or inadequate
utilisation of the existing fixed inputs (e.g. , capital stock). The first notion of poten-
tial output is defined in terms of the output produced at short-run minimum average
total cost, given existing plant and factor prices (e.g. , Berndt and Morrison 1981).
The second definition corresponds to the output at which short- and long-run aver-
age total costs curves are tangent (see Chenery 1952; Klein 1960; Friedman 1963;
among others). A third definition of economic capacity considers the output deter-
mined by the minimum of the long-run average total costs (see Cassels 1937 or
Hickman 1964).2 These cost-based definitions presume exogenous outputs. The eco-
nomic notion of capacity was extended to (multiproduct) profit-maximizing firms by
Squires (1987) and Segerson and Squires (1993) to account for endogenous and
multiple outputs and variable inputs, and to revenue-maximizing firms by Segerson
and Squires (1993, 1995) and Färe, Grosskopf, and Kirkley (2000) to account for
endogenous outputs and all quasi-fixed or fixed factors. Finally, the economic no-
tion of capacity was extended to firms under regulatory constraints, specifically
rations and quotas, by Segerson and Squires (1993) and Weninger and Just (1997).

The renewed interest in the short-run Johansen industry model from Dervaux,
Kerstens, and Leleu (2000) focused in the first stage on the usage of the above tech-
nical (engineering) capacity notion estimated using nonparametric specifications of
technology. But, the short-run Johansen industry model is in no way limited either to
this capacity concept or to its estimation method.

Though we are unaware of such applications using frontier methods, the first
stage could, in principle, employ any of the economic capacity concepts proposed
above. Of course, one should realise that the first and second stages of the short-run
Johansen industry model are, to some extent, connected. While it is conceivable to
combine a cost-based notion of capacity in the first stage with a technical objective
of minimizing fixed input utilisation in the second stage, it is perhaps wise to main-
tain a minimal coherence in terms of behavioural objectives; i.e. ,  between
engineering and economic objectives in the first and second stages of the model. An
example of the use of economic objective functions in the short-run Johansen indus-

2 It has been little used, however, probably because it clearly is heavily intertwined with the notion of
scale economies.
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try model is the use of industry cost functions, as in Førsund and Hjalmarsson
(1983).3

Second, capacity notions can be estimated using any of the available estimation
strategies. For instance, the plant capacity notion can also be econometrically esti-
mated using parametric, stochastic frontier functions. Kirkley, Morrison Paul, and
Squires (2002), for example, review and empirically apply both nonparametric and
parametric stochastic frontier functions to obtain plant capacity estimates. In prin-
ciple, the same remarks apply to economic capacity notions.

In this paper, in line with Dervaux, Kerstens, and Leleu (2000), we opt for the
plant capacity concept for various reasons. First, this concept fits best with popular
notions among both managers and politicians (as reflected in survey responses to
enquiries about capacity utilisation and its widespread use in macroeconomics). Sec-
ond, the plant capacity notion is especially useful in natural resource industries, like
fisheries, where the cost and sometimes revenue data necessary to apply economic
capacity concepts are seldom available. The plant capacity concept, for example, is
now used by the Food and Agriculture Organization of the United Nations, the
United States, and the European Union for fishing industries. In fact, finding even
sufficient data for the plant capacity approach can represent a challenge, especially
at the disaggregated, firm level. Finally, given the drastic policies called for to ar-
rive at sustainable bio stock levels, the use of a capacity utilisation notion that tends
to err on the safe side may well prove advantageous.

The capacity estimates resulting from this first stage already have some limited
policy potential. For instance, horizontally summing these firm-level capacity out-
puts across firms gives a measure of aggregate industry capacity output. Comparing
this aggregate industry capacity output to current industry output provides a mea-
sure of the overcapacity of the industry.4 But, the plant capacity measure does not
allow reallocation of inputs and outputs across firms. This, in turn, does not allow
assessment of the industry’s optimal restructuring and configuration. The plant ca-
pacity measure implicitly assumes that production of capacity output is feasible and
that the necessary variable input is available. In renewable resource industries, such
as fishing industries, the resource stock(s) and notions of sustainable exploitation
must be incorporated, since total production of the fishery is constrained by the pro-
ductivity of the resource stock(s). Sustainable target yields, such as Total Allowable
Catch (TAC), are typically imposed to ensure a sustainable supply of fish and pro-
tect the resource stocks from overexploitation. The TAC thus imposes social
constraints on the activities of private firms.

Accounting for TACs in the approach of Dervaux, Kerstens, and Leleu (2000),
the optimal industry configuration is found by minimizing the total use of fixed in-
puts given that each firm cannot increase its use of fixed inputs, and the production
of the industry is at least at the TAC level. The output level of each firm in this
short-run Johansen sector model, extended to renewable resource industries, is the
capacity output estimated from the firm-level capacity model, conditional upon the
resource stocks and environmental parameters.

3 However, a coherent first and second stage procedure using economic objective functions in the short-
run Johansen industry model seems to be lacking.
4 Johansen-Färe plant capacity was extended to fisheries, giving fishing capacity, by Kirkley and Squires
(1999) and by the FAO (Greboval 1999; FAO 2000) by incorporating resource stocks into the stock-flow
production technology and accounting for regulatory conditions. Vestergaard, Squires, and Kirkley
(2003) examine multispecies (multi-product) issues associated with fishing capacity. Reid et al. (2005)
extend the model to incorporate environmental parameters, such as sea surface temperature, that serve
as technological constraints.
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Basic Firm Models: The Role of the Convexity Assumption

Starting with the details of the firm models, the empirical method estimates output-
oriented efficiency measures based upon nonparametric, deterministic production
frontiers (Färe, Grosskopf, and Lovell 1994). These efficiency measures are extre-
mum estimators that allow determining the best-practice frontier established by the
firms. The outputs of these best-practice firms are piecewise linearly enveloped to
establish the best-practice frontier or reference technology, which is an inner bound
approximation to the true, but unknown, production technology.

Production technologies are based on K observations using a vector of inputs
x ∈ℜ+

n  to produce a vector of outputs y ∈ℜ+
m . Technology is represented by its pro-

duction possibility set T = {(x,y): x can produce y}; i.e., the set of all feasible
input-output vectors. The n-dimensional input vector, x, is partitioned into fixed fac-
tors (indexed by f) and variable factors (indexed by v): x = (xv, xf). To determine the
capacity output and ray capacity utilization (CU), a radial output-oriented efficiency
measure is computed relative to a frontier technology providing the potential output
given the current use of inputs:

Eo (x, y) = max θ: (x, θy) ∈ T{ }.

Assuming strong disposal of inputs and outputs and variable returns to scale, a non-
parametric inner-bound approximation of the true technology can be represented by
the following set of production possibilities (see Färe, Grosskopf, and Lovell 1994
for details):

T Λ = (x, y): x ≥ xk zk
k=1

K

∑ , y ≤ yk zk
k=1

K

∑ , z k ∈ Λ
 
 
 

  

 
 
 

  
, (1)
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In this expression, the acronyms NC and C denote the non-convex and convex tech-
nologies, respectively. Following the activity analysis tradition, the vector of
intensity or activity variables, z, indicates the intensity at which a particular activity
is employed in constructing the piecewise linear reference technology or frontier by
constructing either non-convex or convex combinations of observations forming the
best-practice frontier (see Briec, Kerstens, and Vanden Eeckaut 2004 or Tulkens
1993). Notice that, in general, the non-convex technology is a subset of the convex
technology (TNC ⊆ TC).

An intuitive illustration about the essential differences between convex and non-
convex technologies is provided in figures 1 and 2. Starting from the same three
observations (denoted d1, d2, and d3), non-convex and convex technologies are illus-
trated in the three-dimensional figures 1 and 2, whereby two inputs generate a single
output. Clearly, the resulting non-convex technology is a subset from the convex
technology.
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Figure 1.  Non-convex Technology

Figure 2.  Convex Technology
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A short-run version of this production possibilities set is simply defined by
dropping the constraints on the variable input factors to form the technology under-
lying Johansen plant capacity, in which the availability of variable factors is not
restricted:

ˆ T Λ = (x, y): x f ≥ xk
f zk

k=1

K

∑ , y ≤ ykz k
k=1

K

∑ , zk ∈ Λ
 
 
 

  

 
 
 

  
, (2)

where Λ is again defined as in equation (1). Both of these technologies are, geo-
metrically speaking, non-convex or convex monotonic hulls enveloping all
observations.

To illustrate this notion of a short-run technology, starting from figures 1 and 2,
assume that one takes a section along the first input axis somewhere between obser-
vation d1 and d3. This implies that the second input dimension represents a fixed
production factor, while the first input dimension is a variable factor that is avail-
able in unlimited quantities. Then, the resulting non-convex and convex short-run
technologies could resemble something like figure 3. Clearly, the plant capacity out-
put; i.e. , the maximum output one can generate with unlimited variable input
amounts, is higher under the convex, rather than the non-convex, technology
(ymax

C ≥ ymax
NC ).

Figure 3.  Non-convex and Convex Short-run Technologies
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The output-oriented efficiency measure ˆ E o (x f , y) is found by solving the fol-
lowing linear programming problem for each firm k = 1,2,…,K relative to the
short-run production possibilities set:

ˆ E o (x f , y) = max ˆ θ : (x f , ˆ θ y) ∈ ˆ T Λ{ }. (3)

To remain consistent with the plant capacity definition of Johansen, in which only
the fixed inputs are bounded at their observed level, the variable inputs in the pro-
duction frontier model are allowed to vary and be fully utilized. The outcome of the
production frontier model is a scalar, indicating the amount by which the production
of each firm’s output can be expanded.

Another technical efficiency measure can be obtained by evaluating each firm
k = 1,2,…,K relative to the production possibilities set TL. The optimal value shows
by how much the production can be increased using the inputs in a technically effi-
cient way:

Eo (x, y) = max θ: (x, θy) ∈ T Λ{ }. (4)

A ray measure of plant capacity utilization (PCU) that removes the impact of techni-
cal inefficiency (see Färe, Grosskopf, and Kokkelenberg 1989) can be defined as:

PCUo (x f , x v , y) =
Eo (x, y)
ˆ E o (x f , y)

. (5)

Since Êo(xf,y) ≥ Eo(x,y) ≥ 1, it is clear that PCUo(xf,xv,y) ≤ 1. The major advantage of
this plant capacity utilisation factor is that any technical inefficiencies have been re-
moved by taking a ratio of efficiency measures, which is not possible with more
traditional measures.

Basic Industry Model

The short-run Johansen sector model allows reallocation of production between
firms by explicitly allowing improvements in technical efficiency and capacity utili-
zation rates. The short-run Johansen sector model is developed in two steps. In the
first step, model (3) provides an optimal activity vector, zk

* ,  for firm k. Using zk
* ,

capacity output and its optimal use of fixed and variable inputs can be straightfor-
wardly computed:

yk
* = ykz k

*

k=1

K

∑ , xk
f * = xk

f zk
*

k=1

K

∑ , xk
v* = xk

vz k
*

k =1

K

∑ . (6)

The second step employs these “optimal” firm-level, frontier measures of capacity
output and capacity variable and fixed inputs as parameters in the industry model. In
particular, the industry model minimizes industry use of fixed inputs in a radial way
such that total production is at least at the current total level (or at a quota level
when the renewable resource model is extended to incorporate TACs) by reallocat-
ing production among firms. These reallocation decisions are based on frontier
production and input use of each firm. In the short run, it is assumed that current
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capacities cannot be exceeded at both the firm and industry levels. Define Y as the
industry output level and Xf (Xv) as the aggregate fixed (variable) inputs available to
the sector; i.e. :

Y = yk
k =1

K

∑ , X f = x k
f

k=1

K

∑ , and X v = xk
v

k=1

K

∑ . (7)

The formulation of the input efficiency measure, which minimises the utilisation
of fixed inputs, in a multi-output, frontier-based, short-run industry model can then
be specified as:

ˆ E fi (X f , Y ) = min
λ ,z ,X v

λ

s.t. Y ≤ yk zk
k=1

K

∑ ,

λX f ≥ xk
f z k

k=1

K

∑ ,

0 ≥ xk
v zk

k=1

K

∑ − X v

0 ≤ z k ≤ 1, λ ≥ 0.

(8)

In this second step of the short-run Johansen industry model, the z variables indicate
whether and by how much a firm’s capacity will be utilized. The components of the
activity vector, z, are bounded above by unity and, as a consequence, the current ca-
pacities can never be exceeded. The first constraint in equation (8) ensures that the
total production by a combination of firm capacities is greater than or equal to the
current level. The second constraint in equation (8) ensures that the total use of
fixed inputs, given by the right-hand side of the constraint, is greater than or equal
to the use by a combination of firms. The third constraint in equation (8) calculates
the resulting total use of variable inputs, where the total amount of variable inputs is
a decision variable. The objective function is a radial input efficiency measure fo-
cusing solely on the fixed input dimensions. This fixed input efficiency measure has
a fixed cost interpretation at the industry level. From a geometric viewpoint, this
short-run industry model is a set consisting of a finite sum of line segments. The ac-
tivity vector, z, indicates which portions of the line segments representing the firm
capacities are effectively used to produce outputs from given inputs. To sum up, the
optimal solution to this simple linear programming problem gives the combination
of firms that can produce the same or more outputs with less than or the same use of
fixed inputs in aggregate. Extensive variations on this basic short-run industry
model for developing policy options to curb overcapacity in fisheries have been dis-
cussed in Kerstens, Vestergaard, and Squires (2004).
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Temporal Models of Capacity Distribution and Short-Run Industry Models

Over time, the dynamic evolution of a sector reveals itself as a succession of a series
of short-run industry models.5 These dynamics are determined by a succession of ex
ante  technologies and the rates of investments and depreciation. In the single-output
case, this has led various authors to trace the evolution of the capacity distribution
and the short-run industry model over time using isoquant plotting techniques. Ex-
cellent illustrations of this approach are found in Førsund and Hjalmarsson (1983),
Førsund, Hjalmarsson, and Summa (1996), and Wibe (1995), among others.

However, a geometric approach to the dynamics of the industry is no longer
possible in the multiple-output case. Therefore, we propose to take advantage of the
recent developments in discrete-time productivity indices to describe the evolution
of both the capacity distribution and the short-run industry model over time in the
multiple-output case (see Färe, Grosskopf, and Roos 1998). In particular, we first
define a Malmquist index of total factor productivity change to trace the evolution
in the short-run or plant-capacity technology. Furthermore, we also define another
Malmquist index relative to the short-run industry model over time. The main ad-
vantage of employing a Malmquist productivity index is that it allows distinguishing
between changes in technical efficiency on the one hand (i.e. , changes in the relative
positions of observation with respect to the evolving frontiers), and frontier changes
on the other hand (i.e. , changes in the relative position of the frontiers themselves).

We first define time-related versions of the earlier-defined efficiency measures.
The output-oriented efficiency measure, ˆ E ot (x f ,t , y t ),  in period t is found by solving
the following linear programming problem for each firm k = 1,2,…,K relative to the
short-run production possibilities set, ˆ T t,Λ ,  defined in period t:

ˆ E ot (x f ,t , y t) = max ˆ θ : (x f ,t , ˆ θ y t ) ∈ ˆ T t ,Λ{ }. (9)

Another technical efficiency measure can be obtained by evaluating each firm
k = 1,2,…,K relative to the production possibilities set, ˆ T t,Λ ,  in period t. The opti-
mal value shows by how much production can be increased using the inputs in a
technically efficient way:

Eo
t (x t , y t ) = max θ: (x t , θy t ) ∈ T t,Λ{ }. (10)

A discrete-time, output-oriented Malmquist productivity index computed relative to
the short-run technology defining the plant capacity frontier is then defined as:

Mo
t,t+1 (x f ,t , y t , x f ,t+1 , y t+1) =

ˆ E o
t (x f ,t , y t )

ˆ E ot+1 (x f ,t+1 , y t+1 )
.

ˆ E o
t+1 (x f ,t+1 , y t+1 )
ˆ E ot (x f ,t+1 , y t+1 )

.
ˆ E o

t+1 (x f ,t , y t )
ˆ E ot (x f ,t , y t )

, (11)

where the first part defines technical efficiency change relative to the plant capacity
technology, and the second term defines the technological change of the very same
technology. As a matter of fact, this Malmquist index is a geometric mean of a pe-
riod t and a period t + 1 index, in an effort to avoid an arbitrary choice of base

5 This is the conceptual basis for the economic approach to capacity and capacity utilization when firms
minimize the cost of production, where short-run and long-run average cost curves are tangent at the
capacity output level.
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period. If this output-oriented Malmquist is larger (smaller) than unity, this indicates
an improvement (deterioration) in productivity.6 A similar interpretation applies to
the separate components. This productivity index measures the evolution of total
factor productivity for each individual firm at the plant capacity level, and it thereby
provides a multi-output version of the plant capacity isoquant-tracing algorithms
mentioned before.

Based upon the input efficiency measure minimising the utilisation of fixed in-
puts in a multi-output, frontier-based short-run industry model, a similar discrete
time fixed input-oriented Malmquist productivity index can be specified at the in-
dustry level as:

M fi
t,t+1 (X f ,t , Y t , X f ,t+1 , Y t+1) (12)

=
ˆ E fi

t (X f ,t , Y t )
ˆ E fit +1 (X f ,t+1 , Y t+1 )

.
ˆ E fi

t +1 (X f ,t+1 , Y t+1 )
ˆ E fit (X f ,t +1 , Y t +1 )

.
ˆ E fi

t+1 (X f ,t , Y t)
ˆ E fit (X f ,t , Y t )

.

This index defines the technical efficiency change relative to the short-run industry
model on the one hand, and the technological change of the same industry technol-
ogy on the other. In the case of this fixed input-oriented Malmquist index, a value
smaller (larger) than unity indicates a productivity improvement (deterioration).
Again, the same interpretation is applicable to the separate components.

These productivity indices can be put to various uses when building short-run
industry models for policy purposes. The first productivity index could be used to
neutralise the eventual impact of technological change in terms of plant capacities.
Following Tauer and Stefanides (1998), a potential strategy is to adjust the capacity
data by using the technological change component of this Malmquist productivity
index. This would allow neutralisation of the time dimension when estimating ca-
pacity inputs and outputs and to build multi-period, short-run industry models. The
latter boils down to extending the static short-run industry model (see equation [8])
to include dated input and output constraints and look for a common reduction of
fixed inputs over a given time horizon.7 Eventually, one could add further con-
straints on the relation between activity vectors across time periods (e.g. , that they
should be identical across time).

It is also possible to simply maintain annual production plans and to employ
both these productivity indices to trace the evolution in both the capacity distribu-
tion and the short-run industry model over time. This leads to a two-year time
window sliding over the data across time. The productivity index of each period is
simply based upon comparisons composed of measuring efficiency with respect to
essentially static production models.

In summary, based upon recent developments in discrete-time productivity indi-
ces estimated with respect to frontier technologies, it is straightforward to add a
time dimension to the currently static short-run industry model. These indices offer

6 The technical efficiency change component has been further decomposed into variations in technical
efficiency, scale efficiency, and congestion (Färe, Grosskopf, and Lovell 1994). The important issue of
identifying scale effects in the technical change component has led to a discussion from which no con-
sensus has yet emerged (see Balk 2001; Färe, Grosskopf, and Roos 1998). The technological change
component has also been the subject of further decompositions in terms of input and output biases,
amongst others (see Färe et al. 1997).
7 More details on the development of temporal efficiency measures, including time discounted ones, can
be found in Briec, Comes, and Kerstens (2006) and Färe and Grosskopf (1996).
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a general solution for tracing the evolution of multiple input and output technology
specifications over time, instead of using the earlier isoquant tracing methods that
are only valid in the single-output case. The first Malmquist index yields an indica-
tion of the total factor productivity development of plant capacity inputs and outputs
for each firm. The second Malmquist index characterises the evolution of total fac-
tor productivity at the aggregate industry level. Furthermore, for both productivity
indices, one can distinguish between technical efficiency change and technological
change at the frontier. Of course, it goes without saying that the first Malmquist in-
dex could be measured with respect to both convex and non-convex technologies,
though empirical applications on the latter are rather sparse to date.

Empirical Illustration: The Impact of Convexity

The sample data set consists of observations of outputs of different fish species
(catches in kilo), two variable inputs (labour and fishing days), and one fixed input
(gross registered tonnes [GRT]) for individual trawlers operating in the North Sea in
1991. In total, 398 trawlers are included in the sample and they have, on average,
the North Sea as their most important catch area. The trawlers vary in terms of catch
composition during the year, but they are flexible in selecting fisheries and, hence,
output mix. Descriptive statistics for the outputs and fixed and variable inputs are
reported in table 1. For each vessel, the fixed input was subsequently transformed
into a flow variable by multiplying it by the number of fishing days. This specifica-
tion guarantees a more balanced picture of the efficiency of fishing firms, because firms
are rather heterogeneous in terms of their fishing effort and service flow; i.e., the num-
ber of fishing days (normal operating conditions) varies substantially. Traditionally,
production models in other industries assume that firms operate in a similar environment
during normal working time (depending on how this is defined). Total catch per species
is used as the basic output in the model. The number of observed outputs (caught spe-
cies) has been reduced from 25 to 9. This aggregation of outputs is partly necessary to

Table 1
Summary Statistics for the Trawl Fishery in the North Sea (1991)

Average Standard Deviation

Tonnage 133 119
Crew Size 4 1
Fishing Days 120 78
Catch per Vessel (kg)

Cod 7,796 11,828
Other cod fish 4,771 9,270
Plaice 19,283 57,325
Sole 136 590
Pelagic species 107,755 463,631
Lobster 1,467 4,132
Shrimp 1,047 6,726
Other species 2,299 5,516
Industrial fishery 2,393,392 3,478,853

Source: Danish Directorate of Fisheries (unpublished data).
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escape the curse of dimensionality that is inherent to nonparametric methodologies.
Each of the remaining nine outputs represents either a species or a group of species.

Comparing the effect of the convexity assumption on the industry models, one
observes that the efficiency measure in the non-convex case (0.906) is substantially
higher than in the convex case (0.619) of table 2. In terms of the activity vectors, it is
clear that more vessels remain active in the fleet when plant capacity is estimated using
the more conservative non-convex estimator (89.70% compared to 82.91% in the con-
vex case). The average value of activity vectors computed over all observations
indicates a rather substantial difference. But, this difference almost disappears when
the same average value of activity vectors is computed over only the non-zero ob-
servations.

We also provide a more formal test of these alleged differences by using non-
parametric test statistics. We first compare the distributions on the plant capacity
utilisation based upon convex and non-convex technologies. A nonparametric
Wilcoxon signed ranks test (see Siegel and Castellan 1988) shows that we can reject
the null hypothesis that these distributions are identical (the Wilcoxon’s W statistic
equals 4,027). This is also clear when visually comparing the shapes of the densi-
ties. Figures 4 and 5, below, show their distributions estimated using kernel density
estimators. The density of plant capacity utilisation based on the non-convex tech-
nology is clearly far more skewed to the right.

Table 2
Industry Models (1991)

Convex Non-convex

Sub-vector Fixed Input Efficiency 0.619 0.906
Non-zero Activity Vectors 330 357
Active Vessels (%) 82.91 89.70
Average Activity Vector (non-zero obs.) 0.989 0.994
Average Activity Vector (all obs.) 0.820 0.892

Figure 4.  Density of Plan Capacity Utilisation Estimated on a Convex Technology
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Turning to the optimal activity vectors obtained from the industry model, we
again perform a nonparametric Wilcoxon signed ranks test to compare their distribu-
tions when using the plant capacity utilization adjusted inputs and outputs from the
first stage resulting from either convex or non-convex technologies. We can once
more reject the null hypothesis that these distributions are identical (the Wilcoxon’s
W statistic now equals 1,685.5).

Clearly, these empirical results underscore the importance of considering the
hypothesis of convexity more seriously when estimating plant capacity utilisation
rates. They also show that the impact of this choice on the short-run Johansen indus-
try model is non-negligible.

Conclusions

Convexity of the production possibility set is a maintained hypothesis in the emerg-
ing fisheries literatures on Johansen plant capacity and the short-run Johansen
industry model. Convexity is usually considered a desirable property for a well-be-
haved production technology, and it is particularly critical to applications of duality
theory in order to obtain a well-behaved model. However, non-convexity of the pro-
duction set has important policy implications in renewable resource economics,
including fisheries, allowing for increasing returns to scale, pulse fishing, etc.  As
observed by Clark (1976), non-convexities in fisheries can arise due to
indivisibilities, such as lumpy fixed factors. Because fixed factors also lead to the
capacity issue, non-convex production possibility sets may be a recurring feature in
empirical analyses of Johansen plant capacity and the short-run Johansen industry
model in fisheries. Convexity of technology is ultimately an empirical issue, and nu-
merous (especially dual and multiproduct) empirical analyses of fishery production
frequently fail to establish convexity. Failure to empirically establish convexity may
arise simply due to reasons of model specification or aggregation methods (see
Wales 1977), but as noted, non-convexity may also be an underlying, inherent fea-
ture of some harvesting technologies, due, for example, to indivisibilities and

Figure 5.  Density of Plan Capacity Utilisation Estimated on a Non-Convex Technology
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disaggregated vectors of inputs and outputs, the latter of which is especially impor-
tant in multiproduct harvesting technologies.

When non-convexity of the production set is empirically established in a fish-
ery, important implications emerge for estimating Johansen’s plant capacity and
short-run industry model. Allowing for non-convexity in the frontier models of plant
capacity in the first stage of the Johansen industry model inevitably leads to lower
maximal outputs and higher rates of plant capacity utilisation. When these non-con-
vex estimates enter into the second stage, short-run industry model, this leads to
higher rates of capacity utilization, which, in turn, allows at least as many firms to
remain active in the optimal solution than would occur when convexity is main-
tained. Furthermore, not only are there more vessels under non-convexity than under
convexity in the solution, but in some cases there are other vessels than those found
in the convex solution; i.e. , the fleet composition differs. Even analyses and pro-
grams predicated upon simply fishing capacity (Johansen’s plant capacity extended
to fisheries), and not relying upon Johansen’s short-run industry model, can be af-
fected by the maintenance of convexity (see Walden, Kirkley, and Kitts 2003). For
example, the number, and even composition, of vessels remaining in the fleet under
vessel decommissioning programs (such as vessel buybacks) can differ depending
on whether or not convexity of technology is maintained.

As a second contribution, this paper spelled out a way to extend the short-run
Johansen industry models to include several time periods simultaneously using ap-
propriate discrete-time Malmquist productivity indices. This is of some importance
when developing consistent, multi-period planning models for policy purposes, as
well as for the simpler fishing capacity models. In the latter case, given the fixed
capital and resource stocks and the state of the environment, capacity output mea-
sures can differ among firms due to variations in technical efficiency and variable
input use as discussed by Färe, Grosskopf, and Lovell (1994), but when evaluated
over multiple time periods, fishing capacity can vary due to productivity fuelled by
technological innovations, such as vessel electronics or fish aggregator devices.
Similarly, given the critical importance of productivity growth in fishing industries,
multi-period planning models are also subject to the effects of productivity growth.
Indeed, productivity growth rather than capital stock growth per se may well be the
single most important factor contributing to growth in fishing capacity and resulting
pressures on resource stocks.

The brevity of this methodological note does not allow expanding on all details.
For instance, the practical use of multi-period planning models may well require
taking account of dynamic incentive issues. It suffices here to point out that prob-
ably many of these incentive–related implementation problems have already—at
least partially—been tackled in the literature (see Agrell, Bogetoft, and Tind 2002).
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