
* K. KERSTENS. LABORES, Université Catholique de Lille. We are grateful to two refe-
rees who provided most constructive criticisms. The usual disclaimer applies.

ANNALES D’ÉCONOMIE ET DE STATISTIQUE. – N° 54 – 1999

Decomposing Technical 
Efficiency and Effectiveness
of French Urban Transport

Kristiaan KERSTENS*

ABSTRACT. – This article determines the sources of observed techni-
cally inefficient behaviour among French urban transit companies using
non-parametric deterministic frontier specifications of technology.
Decomposing overall technical efficiency yields component-wise efficiency
measures reflecting scale, structural and technical inefficiencies. Also the
effectiveness of urban transit is evaluated in a similar way. Moreover, the
analysis investigates the effect of the selected orientation of measurement.
Finally, it is the first study to control for the effect of outliers on the decom-
position results.

The empirical results indicate that technical inefficiency is the major
source of poor performance, followed by inefficiencies due to inadequacies
in scale. Congestion only plays a minor role. The findings also lead us to
add some critical notes to this decomposition methodology.

Décomposition de l’efficacité technique et de l’effectivité
du transport urbain français

RÉSUMÉ. – Cet article cherche à mesurer l’inefficacité technique des
compagnies de transport urbain françaises en utilisant des technologies
non paramétriques déterministes. Dans un premier temps, nous utilisons
une décomposition permettant de distinguer l’inefficacité purement tech-
nique de l’inefficacité d’échelle et de la congestion. Nous analysons l’ef-
fectivité de manière similaire. Dans un second temps, nous apprécions l’in-
cidence sur les résultats de l’orientation de la mesure. Enfin, nous contrô-
lons pour la première fois l’impact des données aberrantes sur cette
décomposition.

Les résultats empiriques montrent que l’inefficacité technique constitue
la principale source d’inefficacité des compagnies de transport urbain fran-
çaises. A l’inverse, la congestion semble jouer peu. Cette étude amène
aussi à formuler quelques réserves sur la pertinence de la méthodologie
de décomposition de l’inefficacité technique.



1 Introduction

The public sector is under pressure to show it is making efficient use of its
resources. The relative efficiency of urban transit services is also the subject
of recent discussions in the literature. In particular, traditional state interven-
tion has been reassessed due to concerns about regulatory failures (see, e.g.
BERECHMAN [1993]). Knowledge of the sources and causes of inefficiency in
this area is useful in designing new short and long run policies.

This article focuses on the determination of sources of technically ineffi-
cient behaviour among urban transit companies in France using nowadays
popular non-parametric deterministic frontier specifications of technology.1 In
addition, it evaluates the effectiveness of the sector. In particular, the empi-
rical application distinguishes between technical and scale inefficiencies and
congestion. This refined measurement points to possible causes of inferior
and superior performance. Furthermore, these different sources determine the
time perspective for effective policy changes. Technical inefficiencies and
congestion mainly reflect managerial shortcomings and can be remedied in
the short run, while scale inefficiencies require a long run viewpoint.

More specifically, this contribution accomplishes four goals. It is the first
application of this decomposition methodology in transportation. Further-
more, unlike many other studies it controls for both efficiency and
effectiveness of current best practice. Second, this study illustrates for the
first time the potential divergence between sample level decomposition
findings and individual results. This is accomplished by complementing the
traditional sample level results by an analysis of size classes. Third, from a
methodological viewpoint it controls for the effect of the selected measure-
ment orientation on efficiency results and, in particular, on the qualitative
returns to scale information. Finally, it is, to the best of our knowledge, the
first study to assess the impact of outliers on the decomposition results. This
methodological concern is warranted. VALDMANIS [1992], for instance, shows
in a sensitivity analysis of technical and scale components that their relative
importance may well depend on input and output dimensions included in the
technology. Thus, our article also aims to critically explore the limits of a
frontier methodology that recently gained quite some popularity.

The article is structured as follows. In Section 2, overall efficiency is
decomposed into component-wise efficiency measures reflecting allocative,
scale, structural and technical inefficiencies (FÄRE, GROSSKOPF and LOVELL

[1983, 1985]). Details on the computation of this decomposition using non-
parametric deterministic frontier technologies are found in Section 3. In
Section 4 the data set of French urban transit operators, analysed earlier in
KERSTENS [1996], is briefly introduced and supply- and demand-oriented
production models are specified. All empirical performance results are
presented in Section 5. A final section concludes.
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1. In France, applications of these non-parametric deterministic frontier methods (also known as
DEA models) have been mainly limited to agriculture (e.g., PIOT [1994]) and health care (e.g.
LELEU and DERVAUX [1997]).



2 Decomposing Overall Efficiency:
Concepts

Various methodologies exist to reconstruct the boundary of the production
possibility set, or one of its value duals (see, e.g., LOVELL [1993]). The exten-
sive efficiency decomposition, presented here, has only been developed for
convex non-parametric deterministic technologies.2

First some preliminary definitions, a production technology is defined by
the production possibility set containing all feasible input/output vectors:
S = {(x,y) | x can produce y}. The input requirement set associated with this
technology denotes all input vectors x capable of producing a given output
vector y: L(y) = {x | (x,y) ∈ S}. Precise definitions for the non-parametric,
deterministic technologies used in the empirical part follow in Section 3.

Turning now to substantial analysis, FARRELL [1957] provided the first
measurement scheme for the evaluation of technical and allocative efficiency.
More recently, FÄRE, GROSSKOPF and LOVELL [1983, 1985: 3-5] offer a more
elaborate efficiency taxonomy and define operational measurement proce-
dures.3 As their proposals have become the standard way to decompose
efficiency (see, e.g., GANLEY and CUBBIN [1992]), this section presents their
taxonomy.

Overall efficiency (OE) is defined as a comparison between any production
combination and the situation satisfying its behavioural goal. This measure is
decomposed to provide information on possible sources of inefficiency. This
static decomposition differentiates between private and social goals.4

Among private goals – defined in the best interest of the producer – one
distinguishes between technical, structural and allocative efficiency and inef-
ficiency. Technical efficiency (TE) is defined as production on the boundary
of the production possibility set. A producer is technically inefficient if
production occurs in the interior of this set. Allocative (or price) efficiency
(AE) requires the specification of a behavioural goal and is defined by a point
on the boundary of the production possibility set satisfying this objective
given certain constraints on prices and quantities. A producer is allocative
inefficient if there is a divergence between observed and optimal costs,
revenue, profits of whatever objective the producer is assumed to pursue.5

Structural efficiency (STE) requires production in the uncongested or
“economic” region of production. Structurally inefficiency prevails when
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2. For parametric technologies no such detailed decomposition has yet been devised. For instance,
KUMBHAKAR, BISWAS and BAILEY [1989] only explore allocative, technical, and scale inefficiencies.

3. Other classifications include BANKER, CHARNES and COOPER [1984] and FØRSUND and
HJALMARSSON [1974, 1979].

4. In an intertemporal framework one can allow for technological change. FÄRE, GROSSKOPF and
LOVELL [1994], for example, integrate part of this static decomposition into the development of
Malmquist productivity indices.

5. This definition can even be adapted to less common, behavioural goals. For instance, FÄRE and
LOGAN [1992] present a complete decomposition of efficiency for the rate of return regulated
firm.



production is organised in a congested production region, i.e., where some
inputs have negative marginal products.6

The social goal relates to a possible divergence between the actual and the
ideal size of production. The ideal, long run competitive equilibrium configu-
ration requires production at a point where constant returns to scale prevail. A
productive activity is scale efficient (SCE) if its scale of production corres-
ponds to that resulting from a long run zero profit competitive equilibrium; it
is scale inefficient otherwise.

This static efficiency classification is depicted in Figure 1. It presents three
input requirement sets and their boundaries all producing the same output
level. The first input set L(y)SD-CRS is characterised by constant returns to
scale (CRS) and it is uncongested. The second input set L(y)SD-VRS postu-
lates variable returns to scale (VRS) and is also congestion free. The final
input set L(y)WD-VRS assumes VRS, but allows for congestion.
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6. Modelling congestion requires the assumption of weak instead of strong disposability (see FÄRE,
GROSSKOPF and LOVELL [1985] for technical details).

FIGURE 1
Overall Efficiency: Taxonomy Illustrated on an Input Set

The efficiency concepts are illustrated by the positions of certain observa-
tions (indicated by squares). First, technical inefficiency (TE) is depicted by
observation i. As this observation uses more of both inputs to produce exactly
the same output vector as, e.g., observations d or e on the boundary of the
input set L(y)WD-VRS, it is technically inefficient. Second, structural ineffi-
ciency (STE) is represented by observation b. This unit is situated on a
backward bending part of the boundary of the input set L(y)WD-VRS, indica-
ting negative marginal productivity or congestion. Third, scale inefficiency
(SCE) is illustrated using observation d. This observation on the boundary of



the input set L(y)SD-VRS is scale inefficient because it needs more inputs to
deliver the same output level as, e.g., observations k or l on the boundary of
the CRS technology L(y)SD-CRS. Fourth, allocative efficiency (AE) is
discussed using observation h. Assuming cost minimisation, then for given
input prices total costs are minimised at the intersection of the input set
L(y)SD-CRS and the isocost line CC ′ (observation 1). Observation h is not
allocatively efficient, since it needs a higher budget to produce the same
output. Firth, overall efficiency (OE) is discussed using observation 1. This
observation is at the same time allocatively efficient, scale efficient (situated
on the boundary of a CRS technology), structurally efficient (not situated on a
backward bending part of technology), and technically efficient (not in the
interior of the input set). Obviously, all other observations can also be classi-
fied in terms of this efficiency taxonomy. For instance, observations j to l are
scale efficient, while observations a to c and e to i are not.

Assuming that organisations only control inputs, it is meaningful to
measure efficiency in the input dimensions. Efficiency is traditionally
measured in a radial or equiproportional way (FARRELL [1957]). The radial
input efficiency measure is defined as:

DFi (x,y) = min{λ | λ > 0, λx ∈ L(y)}.
DFi (x,y) varies between zero and one, with efficient production on the

boundary (isoquant) of the input set represented by unity, and it has a cost
interpretation. It can be used relative to different frontiers to operationalise
the above efficiency taxonomy.

The traditional way of measuring all five static input efficiency concepts is
illustrated on Figure 1 for observation a in the interior of input set
L(y)WD-VRS. First, technical inefficiency (TE) in the FARRELL [1957] sense
is represented by the ratio of distances Oa1/Oa relative to the weakly dispo-
sable technology L(y)WD-VRS. Second, structural inefficiency (STE) is
measured by the ratio Oa2/Oa1. Reducing the technically efficient vector a1
down to point a2 on L(y)SD-VRS guarantees congestion free production.
Third, scale inefficiency (SCE), defined as Oa3/Oa2, indicates the smallest
input vector a3 able to produce the same long run output as the technically
and structurally efficient combination a2. Fourth, allocative inefficiency (AE)
is captured by the ratio Oa4/Oa3. While the inputs of a4 cannot yield output
y on the boundary of L(y)SD-CRS, for the same cost the input vector 1 is avai-
lable that can produce this output level. Finally, overall efficiency (OE) is
defined in terms of the ratio Oa4/Oa.

A few remarks on this operationalisation of efficiency concepts are clari-
fying. First, this decomposition of static efficiency using radial efficiency
measures is mutually exclusive and exhaustive. An organisation is overall
efficient if it is at the same time technically, structurally, scale and allocati-
vely efficient. A producer can be inefficient in any of these respects. For
instance, observation c is scale and allocatively inefficient, though it is techni-
cally efficient and congestion free. Second, this taxonomy yields a
multiplicative decomposition (see FÄRE, GROSSKOPF and LOVELL [1985: 188-
191] for details). Overall efficiency is the product of the four composite
efficiency measures of technical, structural, scale and allocative efficiency:
OE = TE.STE.SCE.AE. Overall technical efficiency (OTE) differs from tech-
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nical efficiency (TE) in that it is always measured relative to a CRS techno-
logy (L(y)SD-CRS). Formally: OTE = TE.STE.SCE. The third remark is that
the entire distinction between the various inefficiency sources is to some
extent artificial. Theoretically in any case, production decisions are assumed
to be taken jointly, not separately. The decomposition is only a conceptual
tool to identify a diversity of potential sources generating the inefficiencies.7

Furthermore, these sources imply different time perspectives regarding orga-
nisational decision-making. For instance, technical inefficiency and
congestion reflect managerial failures that can be remedied in the short run,
while the correction of scale inefficiencies may involve adjustments and
investments in a long run perspective.

As a fourth remark, this overall efficiency decomposition presupposes that a
strongly disposable CRS technology is a meaningful production model for the
evaluated organisations. If this is not the case, then another technology can be
selected to provide the basis for an analogous, but simplified decomposition,
since one or more of its components equal unity (FÄRE, GROSSKOPF and
LOVELL [1994: 81-82]). Finally, the choice of an orientation of measurement
should be carefully considered. From an academic viewpoint, FÄRE,
GROSSKOPF and LOVELL [1994] and BANKER, CHANG and COOPER [1996]
stress that input- and output-based decompositions generate different informa-
tion. Since they adopt a different perspective, they may provide different
answers.8 From a policy perspective, it is arguable that the different parties
involved in organising urban transit are interested in distinct orientations. On
the one hand, bus companies probably favour input-based decomposition
results, as the outputs are fixed by the contract with the public organising
authority. On the other hand, public authorities are perhaps eager to learn
whether the public transport output can be increased for given inputs and
subsidies. The latter information is helpful when renewing contracts with the
companies. Since few comparisons of measurement orientations have yet
been reported (for an exception, see FUKUYAMA [1996]), the empirical part
illustrates the impact of both orientations.

3 Decomposing Overall Efficiency:
Computational Issues

The next section illuminates the sources of inefficient production behaviour
of French urban transit companies using the efficiency decomposition
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7. See BAUER [1990a: 44] and PESTIEAU and TULKENS [1990: 5].
8. The radial output efficiency measure is defined as: DF0(x,y) = max{θ | θ > 1, x ∈ L(θy)}.

Furthermore, an analogous decomposition is possible in terms of graph efficiency measures
which simultaneously reduce inputs and expand outputs (see the formulations in FÄRE,
GROSSKOPF and LOVELL [1985, 1994] and the empirical application in BANNISTER and STOLP

[1995]). The graph orientation is ignored here because it is unlikely to detect much inefficiency
given the small sample and given the fact that the radial graph measure is always no smaller than
either the radial input or the inverse of the output efficiency measures (see FÄRE, GROSSKOPF and
LOVELL [1985: 136-137]).



discussed in the previous section. Since price information is lacking, however,
allocative efficiency cannot be evaluated and the analysis is restricted to
decomposing overall technical efficiency (OTE).9 This section first summa-
rises technical details of the necessary computations (closely following FÄRE,
GROSSKOPF and LOVELL [1985]). This review is limited to the input-based
decomposition, because the output decomposition is completely similar. Next,
the expected similarities and differences in the results from the input- and
output-oriented decompositions are commented.

3.1. Computing Overall Technical Efficiency

The theoretical analysis is defined in terms of a series of non-parametric,
deterministic input correspondences. The first technology, which is closest to
FARRELL [1957], is a CRS production model with strong disposability in both
inputs and outputs. Its input correspondence is constructed from observed
activities in the following way:

L(y)SD-CRS = {x | x ∈ <m+, Y ′z > y, X ′z 6 x, z > 0},

where Y is the k × n matrix of observed outputs, X is the k × m matrix of
observed inputs, z is a k × 1 vector of intensity or activity variables, and y
and x are n × 1 and m × 1 vectors of outputs respectively inputs. It imposes
CRS, since there is no restriction on the intensity vector z. This last assump-
tion is easily modified to allow for non-increasing returns to scale (NIRS) and
VRS by adding the constraint I t

k z 6 1 respectively I t
k z = 1 to this definition

(where Ik is a k × 1 unity vector).
To detect structural inefficiencies the technology must impose a theoretical

structure allowing observing congested production regions. This is accompli-
shed by imposing weak instead of strong disposal on the CRS input
correspondence:

L(y)WD-CRS = {x | x ∈ <m+, µY ′z = y, X ′z = δx, µ,δ ∈ (0,1], z > 0}.

As above, the CRS assumption can be altered.
Efficiency is calculated with respect to these technologies by means of

linear programming (LP) techniques (see FÄRE, GROSSKOPF and LOVELL

[1985, 1994] for details). First, overall technical efficiency (OTE = λsd-crs) is
computed on a strongly disposable CRS model (L(y)SD-CRS). For instance,
OTE in the inputs requires solving the following LP:

DFi (x◦,y◦) = min
λsd-crs,z

λsd-crs

s.t. Y ′z > y◦

X ′z 6 λsd-crsx◦

λsd-crs > 0, z > 0,
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9. To be precise, when costs and outputs are available, then this limited information can be used to
evaluate OE, but AE and TE can no longer be disentangled (see FÄRE and PRIMONT [1988]).



for each observation (x◦,y◦). Second, the measure of technical efficiency
(TE = λwd-vrs) is evaluated on a weakly disposable technology with VRS
(L(y)WD-VRS). Third, structural efficiency (STE = λsd-vrs/λwd-vrs) is a 
ratio of two efficiency measures. The efficiency measure in the numerator
(λsd-vrs) is calculated on a VRS technology that is congestion free by
assumption (L(y)SD-VRS); the denominator (λwd-vrs) is determined on a
VRS technology that allows for input congestion (L(y)WD-VRS). Since
λsd-vrs 6 λwd-vrs, 0 < STE 6 1.

Finally, scale efficiency (SCE = λsd-crs/λsd-vrs) is also a ratio of two 
efficiency measures, but both evaluated on strongly disposable technologies.
Its numerator (λsd-crs) is calculated on a CRS technology (L(y)SD-CRS); 
the denominator (λsd-vrs) on a VRS technology (L(y)SD-VRS). Because
λsd-crs 6 λsd-vrs, evidently 0 < SCE 6 1. If SCE = 1, then the technology
exhibits CRS at the observation under evaluation or at its projection point.
When SCE < 1, it is possible to obtain for each observation qualitative infor-
mation about returns to scale of its bounding hyperplane by comparing both
components with a third efficiency measure evaluated on a technology impo-
sing NIRS. (λsd-nirs).10 Since these three technologies are nested, the input
efficiency measures are ordered a priori (λsd-crs 6 λsd-nirs 6 λsd-vrs). On the
one hand, if technical efficiency on CRS and NIRS technologies are equal
(λsd-crs = λsd-nirs < λsd-vrs), then the observation is scale inefficient due to
increasing returns to scale (IRS). On the other hand, if technical efficiency on
the NIRS and VRS technologies are equal (λsd-crs < λsd-nirs = λsd-vrs), then
the observation is scale inefficient due to decreasing returns to scale (DRS).
This reasoning is illustrated on Figure 2 for observations 1 and 2.
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10. Alternative methods for determining returns to scale are discussed in KERSTENS and VANDEN

EECKAUT [1999].

FIGURE 2
Returns to Scale Characterisation of Individual Observations



Information on the congestion phenomenon can be refined. Following FÄRE

et al [1985], it is possible to develop specific models testing whether each
dimension separately contributes to congestion or not. To know the degree to
which each input dimension contributes to congestion, it suffices to compute
a radial efficiency measure relative to a VRS production model with strong
input and output disposability, except for a single input dimension for which
weak disposability is postulated. Repeating this computation for each input
dimension and computing ratios as above yields partial input measures of
structural efficiency.11

3.2. The Impact of Measurement Orientation

Obviously, input- and output-based decompositions may yield different
information regarding the relative importance of the different sources of
overall technical efficiency. For observation 3 in Figure 2, for example, the
projection in the inputs would indicate technical efficiency as the major
source (TEi 6 SCEi ), while when measuring into the output dimensions
scale efficiency is of about equal importance (TEo ∼= SCEo).

Systematic informational similarities and differences of the decomposition
of overall technical efficiency based on either input or output radial efficiency
measures can be summarised in the following remarks (see FÄRE, GROSSKOPF

and LOVELL [1994: 122-123]).
To start with the differences, input- and output-based measures of structural

efficiency (STE) are not comparable. They measure the amount of congestion
in the inputs and/or the outputs, depending on which dimensions are assumed
strongly or weakly disposable, in either the input or output orientation.

As to the similarities, the input and output measures of overall technical
efficiency (OTE) and of scale efficiency (SCE) are related to each other. First,
input and output measures of overall technical efficiency (OTE) are identical,
since they are calculated on the same strongly disposable CRS technology
L(y)SD-CRS.12

Second, since input and output technical efficiency measures calculated on
a strongly disposable CRS technology L(y)SD-CRS are identical, the ratios
defining the scale efficiency measures (SCE) are only identical (or better,
equal in reciprocal terms) if their denominators are identical (i.e., if input- and
output-based efficiency measures relative to the short run technology
(L(y)SD-VRS are identical (equal in reciprocal terms)). Figure 3 displays a
section in input-output space of technologies with CRS respectively VRS.
Input and output based efficiency measures relative to the short run techno-
logy (L(y)SD-VRS) are equal (reciprocally) if, either observations are
projected on a part of this technology exhibiting CRS (the region CC), or
input and output efficiency measures both equal unity along the upward
sloping segments of this VRS frontier (line segments AB and CD).
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11. Further refinements are proposed in BYRNES et al. [1988] and FÄRE, GROSSKOPF and LOVELL

[1994].
12. More precisely, DFi (x,y) = 1/DFo(x,y) on CRS technologies (see FÄRE, GROSSKOPF and

LOVELL [1985], or FØRSUND and HJALMARSSON [1979]).



Also the determination for each observation of the exact nature of returns to
scale at its bounding hyperplane may yield conflicting information. Referring
to Figure 3, both decompositions predict CRS, IRS and DRS for all observa-
tions in respectively regions CC, II, and DD.13 But for activities located in
other regions input and output projections yield contradictory information.
These decompositions predict respectively IRS and CRS for region IC, IRS,
and DRS for region ID, and CRS and DRS for region CD. These qualitative
differences result from the fact that returns to scale of inefficient units are
conditional on a move to the frontier (FÄRE, GROSSKOPF and LOVELL [1994],
BANKER, CHANG and COOPER [1996]).

3.3. Conclusions

Concluding, implementing these decompositions of overall technical effi-
ciency results in detailed information regarding its possible sources.
Furthermore, contrasting the results of input-based and output-based decom-
positions sheds light on the similarities and differences in the information
generated.
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13. Adapted from Figure 4.10 in FÄRE, GROSSKOPF and LOVELL [1994: 124].

FIGURE 3
Input-based and Output-based Measures of Scale Efficiency (SCE)



4 Description of the Sample: Urban
Transit in France

The empirical analysis is based on a date set of French urban transit firms
that operate outside the Paris region. The institutional environment is aptly
sketched as follows (MITRIC [1988]).14 During a certain period, an urban
transport operator supplies transport services within a transport perimeter
agreed upon with a public organising authority (a municipality or group of
municipalities). This authority most often owns the infrastructure, the equip-
ment and the rolling stock. The transport perimeter is not limited by territorial
boundaries, and only serves to distinguish urban from interurban transport.
The operator can be a private, public or mixed company. In France the private
sector plays an important role in urban transit. It is one of the few countries
where transit ridership has grown in the last two decades through a strategy of
expanding both the range and quality of the transit services supplied. This
success required only a moderate increase in subsidy levels relative to costs
(see PUCHER [1988]).

Recently, urban transit performance has been evaluated using frontier
methodologies. The studies of CHU, FIELDING and LAMAR [1992], GATHON

[1989], KERSTENS [1996], OBENG [1994], TONE and SAWADA [1990], TULKENS

[1993], and VITON [1997] among others, are based on non-parametric deter-
ministic production models. KERSTENS [1996] analysed the same sample, but
focused on causally explaining technical efficiency only. This study decom-
poses overall technical efficiency into its sources. To the best of our
knowledge, no urban transit study has so far reported such extensive decom-
position results.15

The sample contains 114 single mode urban transport companies in 1990
driving buses (all other modes are excluded).16 Two types of outputs and
three traditional inputs are selected to specify two separate models of produc-
tion technology. The output is the number of vehicle kilometres in one model
(in 1000), and the number of passengers in another model (in 1000).17 The
first output, which is a pure supply indicator, is a classical units times distance
per unit time concept. The second, demand-related output measures the utili-
sation of the services being offered. This specification reflects the economic
motive for providing the services. Ideally, one would like to evaluate the allo-
cative efficiency of transit operators, but this is very difficult for a regulated
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14. The institutional organisation of French urban transport is summarised in greater detail in
KERSTENS [1996].

15. VITON [1997] is the first urban transit study aiming to decompose OTE into all its components. It
uses nonradial instead of radial efficiency measures to obey the Koopmans instead of the Farrell
definition of efficiency. But this requires specific modifications to capture congestion properly
(see DERVAUX, KERSTENS and VANDEN EECKAUT [1998]). A methodological error prevents VITON

[1997] to detect any congestion at all. Thus, no urban transit study properly accounted for the
possibility of congestion.

16. Note that some observations were discarded: see KERSTENS [1996] for details.
17. KERSTENS [1996] only used pure supply indicators. BERECHMAN [1993: 97, 152-153] argues

against the use of demand-related outputs.



industry. Furthermore, the lack of adequate price information prevents
pursuing this possibility. The second output specification can therefore be
interpreted as a short-cut for a more extensive evaluation. It is sometimes
referred to as effectiveness (see CHU, FIELDING and LAMAR [1992]), COSTA

[1998] and TONE and SAWADA [1990] in the transport literature). Following
BRADFORD, MALT and OATES [1969], another way to classify both models is to
distinguish between direct outputs (D-output) and consumer related outputs
(C-output).

Each of these two outputs is combined with the following inputs to yield
two specifications of technology: average number of vehicles used over the
year; average number of employees over the year; and yearly total fuel
consumption (in m3). This definition of the inputs closely follows tradition in
the transportation literature.

In the traditional parametric literature, the above output specifications are
often complemented with variables accounting for spatial, temporal and
quality characteristics of urban transit services (JARA DÍAZ [1982]). Some
non-parametric deterministic efficiency studies (e.g., VITON [1997]) include
additional dimensions representing these network characteristics. However,
these reference technologies have serious problems to account for these
characteristics (see KERSTENS and VANDEN EECKAUT [1995] for details). In
particular, there is no general way to determine sign and significance of any
additional dimensions. Therefore, we refrain from adding any network
characteristics to the inputs and outputs in the technology. Consequently, we
cannot distinguish between economies of scale, of traffic density, and other
scale notions often estimated in parametric urban transit studies (see
BERECHMAN [1993]).

5 Decomposing Overall Technical
Efficiency: Results

5.1. The Impact of Outliers and the Structure of Results

The technologies used for the decomposition are specified in a deterministic
way, disregarding any measurement error in the data. As argued by, among
others, WILSON [1993] it is important to control for the effect of outliers. Also
recall that the scale efficiency measure and the determination of scale econo-
mies for the individual observations are based on, among others, a CRS
technology. It is intuitively clear that this envelopment of observations by a
conical hull (i.e., L(y)SD-CRS) is relatively more sensitive to outliers than
other model specifications. If this intuition turns out to be correct, then the
efficiency decomposition results could well be unreliable. Consequently, it is
useful to check for outliers.

The analysis of outliers in this contribution relies on robust Mahalanobis
distances. The classical Mahalanobis distance measures how far a random
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vector is situated from the centre of its distribution taking account of the
shape of the multivariate cloud. To avoid a bias introduced by groups of
outliers (masking effect) the first two moments – needed to compute the
Mahalanobis distance – are estimated for each model specification separately
using a robust minimum volume ellipsoid (MVE).18 It turns out that for both
model specifications 3 out of the 4 (respectively 5) efficient observations
characterised by CRS (see fourth line in Table 2) are diagnosed as outliers. In
addition, 40 (respectively 33) inefficient observations are potential outliers.
Judgements on the main sources of inefficiency, based on sample averages,
could well be affected by their presence.

Once outliers are detected several options remain open: data can be re-
examined and eventually corrected, models can be reformulated, observations
can be discarded, etc. In our situation, only the latter, more radical response
was feasible. To limit the impact on both the determination of the frontier and
average sample sources of inefficiency, all potentially outlying observations
are excluded from the sample. Both decompositions are then recomputed.
This leaves us with an adjusted sample size of 71 and 78 observations for
respectively the vehicle kilometres and the passengers  output specifications.
Since both samples without outliers have 70 observations in common, the
determination of outliers does not seem to depend on the selected production
model.

Table 1 offers descriptive statistics for both model specifications and for
both the complete sample and the sample without outliers. Since the latter
sample differs in size for the two model specifications, the second part of the
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18. Details on this methodology are outlined in KERSTENS [1996] and especially in SEAVER and
TRIANTIS [1995].

TABLE 1
Descriptive Statistics on Inputs and Outputs

Mean Standard Minimum Maximum
Deviation Value Value

Full sample (N = 114)
Vehicle Kms (y1) 2416.1 3290.7 110 213.5E+02
Passengers (y2) 8195.8 12235.3 124 67726
Vehicles (x1) 63.44 85.46 4 521
Employees (x2) 149.82 248.44 5 1662
Fuel (x3) 972.37 1433.3 39 8986

Observations without Outliers (N = 71 & N = 78)
Vehicle Kms (y1) 728.70 527.82 110 2570
Passengers (y2) 8392.18 13158.52 124 67726
Vehicles (x1)* 21.11 14.40 4 70

62 90.69 4 521
Employees (x2)* 41.02 31.84 5 135

154.44 272.86 5 1662
Fuel (x3)* 283.77 224.47 39 1020

1002.76 1548.21 39 8986

* Numbers on the first and the second line refer to the y1 respectively y2 output specifications.
Source: Ministère de l’Equipement, du Logement, des Transports et de l’Espace (1991) Annuaire
Statistique sur les Transports Collectifs Urbains: Statistiques 1983-1990, Paris, Direction des
Transports Terrestres.



table reports two lines for each input. Clearly, French transit companies differ
widely in size. Give these size differences, it is useful to determine the precise
impact of both technical and scale efficiencies. This is exactly the aim of the
overall technical efficiency decomposition. Comparing averages between full
and adjusted sample, however, reveals that mean vehicle kilometres fall dras-
tically. This indicates that especially the larger companies with a relative low
passenger loading have been eliminated as outliers. While the 70 observations
in common are supplemented with some large companies in the passengers
model, the latter operators seem to be missing in the other model. Though a
priori more weight should be given to the analysis without outliers, the diffe-
rent composition of both samples should make us extremely cautious when
discussing matters regarding size.

Empirical results are based on two model specifications and on output and
input efficiency measures. Furthermore, findings are reported on the initial
sample of 114 operators and on the samples without outliers. Moreover, all
output oriented efficiency measures are defined to be no larger than unity to
facilitate the comparison of both decompositions.19

First, decomposition results are analysed at the sample level. Attention
focuses on the amount of efficient and inefficient observations, the resulting
distributions and correlations among the different model variants. Then, more
detailed results are discussed over size classes. Finally, our results are related
to the existing body of evidence on urban transit performance.

5.2. Decomposition Results at the Sample Level

First, as this decomposition is based on the computation of four efficiency
measures for each observation (i.e., λsd-vrs, λsd-crs, λsd-nirs and λwd-vrs), it is
instructive to analyse the impact of different disposability and returns to scale
assumptions on the elementary classification of efficient versus inefficient
observations. Table 2 reports the number of efficient observations for the four
postulated production models. Three comments can be made. First, compa-
ring the models with weak and strong disposability, there is evidence of
congestion since the number of efficient observations more or less doubles.
This not only implies that almost half of the efficient observations operate in
a congested way, but also that there is ample score for projecting inefficient
observations on these backward bending parts of technology. Second, the
number of efficient observations spanning the technology decreases as the
returns to scale assumptions become more restrictive. Third, eliminating
outliers has a large, positive impact on the relative number of efficient obser-
vations for all reference technologies. A notable exception is the CRS vehicle
kilometers model where technology is spanned by barely 4% of the sample.

Next, these decompositions of overall technical efficiency are applied for
both sample sizes of urban transit companies. Table 3 reports the following
detailed results in both orientations at the sample level: overall technical effi-
ciency (OTE), scale efficiency (SCE), technical efficiency (TE), and
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19. For this purpose, the radial output efficiency measure is redefined as:
DF∗

o(x,y) = min{θ∗ | θ∗ > 0, x ∈ L(y/θ∗)}. Hence, the relations between both decompositions
mentioned earlier hold with identity, not reciprocally.



structural efficiency (STE). Furthermore, the sources of scale efficiency are
determined by reporting for each observation the returns to scale of its boun-
ding hyperplane: increasing (IRS), constant (CRS) and decreasing (DRS)
returns to scale. Each first line in the table contains the following information:
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TABLE 2
Efficient Observations Spanning the Different Production Models

Vehicle kilometres Passengers

Full sample (N = 114)
wd ∧ vrs 20 17.54% 25 21.93%
sd ∧ vrs 11 9.65% 14 12.28%
sd ∧ nirs 7 6.14% 9 7.89%
sd ∧ crs 4 3.51% 5 4.39%

Adjusted sample (N = 71) (N = 78)
wd ∧ vrs 29 40.85% 25 32.05%
sd ∧ vrs 18 25.35% 13 16.67%
sd ∧ nirs 14 19.72% 7 8.97%
sd ∧ crs 3 4.23% 6 7.69%

wd = weak input and output disposability; sd = strong input and output disposability; vrs = variable
returns to scale; nirs = non-increasing returns to scale; crs = constant returns to scale.

TABLE 3
Decompositions of Overall Technical Efficiency: Sample Level

OTEo SCEo TEo STEo IRSo CRSo DRSo
OTEi SCEi TEi STEi IRSi CRSi DRSi

Vehicle kilometres
Full sample 0.682(4) 0.916(4) 0.780(20) 0.970(31) 58 4 52
(N = 114) 0.921(4) 0.775(21) 0.970(27) 65 4 45

x1 0.999
x2 0.998
x3 0.984

Adjusted sample 0.748(3) 0.847(3) 0.911(29) 0.974(45) 12 3 56
(N = 71) 0.858(4) 0.903(29) 0.971(45) 31 3 37

x1 0.999
x2 0.984
x3 0.979

Passengers
Full sample 0.669(5) 0.916(5) 0.778(25) 0.954(40) 53 5 56
(N = 114) 0.887(5) 0.799(26) 0.955(46) 63 5 46

x1 0.999
x2 0.977
x3 0.995

Adjusted sample 0.714(6) 0.923(6) 0.821(25) 0.957(42) 51 6 21
(N = 78) 0.898(6) 0.835(24) 0.964(47) 57 6 15

x1 0.996
x2 0.991
x3 0.980

IRS = increasing returns to scale; CRS = constant returns to scale; DRS = decreasing returns to scale.



average output efficiency measures, number of efficient observations
(between brackets) and returns to scale determination. Each second line does
the same for the input orientation, and in addition provides congestion
measures per input component. The second line in the first column reports the
number of observations in the sample or size class (between brackets). A
single number is reported for overall technical efficiency (OTE), as both
orientations are by definition identical.

For the initial samples the major source of deviations from overall technical
efficiency (OTE) is technical efficiency (TE), followed by deviations from
scale efficiency (SCE), and finally structural efficiency (STE). Differences
between output and input orientations are minor, except for the amount of
scale efficiency in the passengers model. For the sample without outliers the
level of overall technical efficiency (OTE) is higher in both specifications.
The ordering of the efficiency sources remains the same for the passengers
model. By contrast, scale efficiency (SCE) becomes the primary source of
poor performance for the vehicle kilometres specification. Output-based and
input-based decompositions diverge little, again with exception of scale effi-
ciency in the passengers specification.

In addition to these sample averages, it is important to check how many
observations are actually affected by these inefficiencies. In the original
sample, under both models and both orientations, about 20 to 26 observations
are technically efficient (TE), between 27 and 46 observations are efficient
from the viewpoint of congestion (STE), but only 4 to 5 observations are
scale efficient (SCE). This last outcome is due to the fact that CRS conical
hulls are often spanned by few observations. For the adjusted samples, irres-
pective of models and orientations the relative number of efficient
observations for technical efficiency (TE) and congestion (STE) components
increases substantially, while scale components (SCE) change barely.

Having discussed averages and one extreme side of the distribution, i.e., the
efficient observations, it is useful to represent the complete distribution of the
four components. For the adjusted samples, the distributions of components
for both decompositions are shown on Figure 4 to 7. Reasons of space
preclude showing the complete sample distributions. All distributions are
highly skewed to the right. For the samples without outliers, for instance,
about 65 observations have structural efficiency scores situated in the (0.90-l)
interval whereas about 4 units have scores in the (0.70-0.80) interval. The
apparent strong similarities between these distributions require qualification.
Non-parametric Wilcoxon signed-ranks test statistics reveal that input and
output orientations yield different distributions, except for congestion compo-
nents and, sometimes, scale efficiencies.20 The same test statistics also
indicate that both output specifications in general do follow a common distri-
bution on the initial samples. The same is true for the reduced samples (70
common observations), except for the technical and scale efficiency compo-
nents.
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20. For reasons of space, details of all non-parametric test statistics are suppressed. Results are
always reported at the 5% significance level. As noted by a referee, selecting proper statistical
test procedures is not evident, since the traditional independence assumption between observa-
tions within each set of measurements is invalid. Lacking a consensus on this issue, we adopt the
tests discussed in GROSSKOPF’s [1996] review of statistical inference in the area.



Although the relative importance of congestion is small, the results never-
theless imply that an important number of transit companies provides
transportation services in a somehow congesting way. Additional information
on the contribution of each input dimension separately is available. Although
the amounts are minor, the second labour input and the third energy input
clearly contribute most to congestion. Repeating this detailed analysis for the
adjusted sample confirms the full sample results. A Friedman test for related
samples reveals that the global and partial congestion measures do not share a
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FIGURE 4
Output-based OTE Decomposition: Vehicle Kms. (N = 71)

FIGURE 5
Input-based OTE Decomposition: Vehicle Kms. (N = 71)



common distribution. Pairwise Wilcoxon signed-ranks test confirm this result,
except for the second and third input pair in the original samples.

The determination of returns to scale at the bounding hyperplanes of each
observation provides qualitative information about the origin of any scale
inefficiencies. For the original samples, slightly more than half of the obser-
vations are characterised by IRS. These differences can be considered in
greater detail: 7 and 10 observations have a different classification under
output- and input-based decompositions for respectively the vehicle kilo-
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FIGURE 6
Output-based OTE Decomposition: Passengers (N = 78)

FIGURE 7
Input-based OTE Decomposition: Passengers (N = 78)



metres and the passengers specification. In terms of Figure 3, they are
situated in region ID. The samples without outliers show less coherence. For
the passengers model, the majority of observations are again classified as
experiencing IRS, but the revere holds true for the vehicle kilometres output.
Hence, it is difficult to formulate firm conclusions regarding returns to scale.
Furthermore, the choice of measurement orientation has a relative large effect
on this classification in the vehicle kilometres case: 19 observations have a
different classification. For the passengers output, both orientations yield
conflicting suggestions for only 6 observations. All are situated in the ID
region. Non-parametric tests confirm that both measurement orientations
always yield different classifications. These differences are in line with the
findings of FUKUYAMA [1996].

To explore the similarities between both output specifications further,
SPEARMAN rank correlations are reported in Table 4 for both output- and
input-based decompositions. While for the original sample size the similari-
ties in ranking are fairly acceptable (with the notorious exception of OTE),
the 70 common observations in the samples without outliers diverge widely in
their rankings. There is almost no correlation and for scale efficiency the
correlations even turn out to be mildly negative. Correlations between the
vehicle kilometres model in input orientation and the passengers model in
output orientation – of potential interest from a policy viewpoint – are not
much better. This clearly indicates that all conclusions are conditional on the
type of output specified. In other words, assessing efficiency and effective-
ness need not coincide, at least in our sample. These conflicting results for the
reduced sample, in line with the results at the sample level and the returns to
scale information, may be due to the relatively small number of remaining
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TABLE 4
Spearman Rank Correlation Analysis

OTE SCE TE STE

Correlation between Vehicle Kms. and Passengers OTE Decompositions

Output orientation
Full sample (N = 114) – 0.010 0.674 0.499 0.298
Adjusted sample (N = 70) 0.049 – 0.106 0.172 0.341

Input orientation
Full sample (N = 114) – 0.010 0.557 0.485 0.310
Adjusted sample (N = 70) 0.049 – 0.137 0.110 0.342

Vehicle Kms: Input orientation/Passengers: Output orientation

Full sample (N = 114) – 0.010 0.681 0.478 0.301
Adjusted sample (N = 70) 0.049 – 0.160 0.146 0.292

Correlation between Output and Input OTE Decompositions

Vehicle kilometres
Full sample (N = 114) 1.000 0.829 0.966 0.912
Adjusted sample (N = 71) 1.000 0.937 0.994 0.614

Passengers
Full sample (N = 114) 1.000 0.803 0.877 0.781
Adjusted sample (N = 78) 1.000 0.937 0.915 0.827



observations. As noted earlier, the few observations spanning the CRS tech-
nology in the vehicle kilometres case may also partially explain these results.

Taking a closer look to the similarity between output and input decomposi-
tions, we compute the number of observations for which output- and
input-based components are identical and assess the similarities in their
rankings.

First, we illustrate the number of identical observations in terms of output-
and input-based components for the adjusted sample only. The number of
observations with an identical efficiency measure for technical (TE), struc-
tural (STE) and scale efficiency (SCE) components equals for both models
respectively 29, 42 and 18, and 13, 41 and 23. For the technical (TE) and
structural efficiency (STE) components all these observations are efficient.
For the scale efficiency measure (SCE) 15 and 7 observations in both specifi-
cations have an identical, though not unity ratio.21

Second, the similarities in rankings are evaluated by Spearman rank corre-
lations between the respective components of both orientations. These
correlation coefficients, also reported in Table 4, show two major findings.
First, correlations in the passengers model are much lower than in the vehicle
kilometres case. Second, correlation results are lowest for scale efficiency
(SCE) and congestion (STE) components, depending on the model specifica-
tion. Unity correlations for overall technical efficiency (OTE) merely reflect
the fact that both orientations yield, by definition, identical efficiency
measures.

5.3. Decomposition Results over Size Classes

Next, findings at the sample level are complemented with a detailed
analysis over output size classes. Table 5 is structured very similar to Table 3.
To facilitate comparisons, the size classes of the passengers model follow the
vehicle kilometres classification. The sample without outliers in the vehicle
kilometres case contains no more big operators, resulting in the three largest,
but empty size classes being eliminated from the table.

Table 5 yields the following major conclusions. First, the ordering of
sources of overall technical efficiency varies considerably over the size
classes. There are, for example, size classes for which scale efficiency (SCE)
is the major source of poor performance instead of technical efficiency (TE)
at the sample level. Second, measurement orientation clearly matters for
specific size classes. For the smallest class in the vehicle kilometres specifica-
tion without outliers, for instance, output measurement indicates that scale
efficiency is the major source while input-based decomposition points to tech-
nical efficiency being most important. The orientation of measurement also
affects the returns to scale determination for specific observations. Finally, the
pattern of returns to scale over the size classes starts with the majority of
observations being subject to IRS and ends with a major importance of DRS.
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21. Their input and output efficiency measures relative to the short run technology (Lsd-vrs(y)) are
identical since they are projected on a CRS part of this technology. In terms of Figure 3, they are
situated in region CC or along the line segments AB or CD.
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TABLE 5
Decompositions of Overall Technical Efficiency: Size Classes

OTEo SCEo TEo STEo IRSo CRSo DRSo
OTEi SCEi TEi STEi IRSi CRSi DRSi

Vehicle kilometres
Full sample

<100 0.667(1) 0.949(1) 0.742(9) 0.962(10) 41 1 9
(51) 0.931(1) 0.756(10) 0.964(11) 41 1 9

100-200 0.681(0) 0.993(0) 0.713(1) 0.964(0) 16 0 7
(23) 0.994(0) 0.707(1) 0.971(0) 19 0 4

200-300 0.729(2) 0.927(2) 0.790(2) 0.991(5) 1 2 11
(14) 0.979(2) 0.757(2) 0.981(2) 4 2 8

300-400 0.732(0) 0.893(0) 0.870(0) 0.949(0) 0 0 4
(4) 0.931(0) 0.851(0) 0.935(0) 1 0 3

400-500 0.791(0) 0.871(0) 0.923(1) 0.984(0) 0 0 3
(3) 0.893(0) 0.911(1) 0.974(0) 0 0 3

500> 0.661(1) 0.735(1) 0.911(7) 0.989(16) 0 1 18
(19) 0.764(1) 0.885(7) 0.985(14) 0 1 18

Adjusted sample
<100 0.767(3) 0.885(3) 0.899(21) 0.969(34) 12 3 35
(50) 0.897(4) 0.891(21) 0.965(34) 25 3 22

100-200 0.698(0) 0.755(0) 0.937(7) 0.985(10) 0 0 20
(20) 0.765(0) 0.929(7) 0.983(10) 6 0 14

200-300 0.745(0) 0.745(0) 1.000(1) 1.000(1) 0 0 1
(1) 0.745(0) 1.000(1) 1.000(1) 0 0 1

Passengers
Full sample

<100 0.603(2) 0.883(2) 0.745(12) 0.941(23) 48 2 1
(51) 0.804(2) 0.812(14) 0.937(24) 48 2 1

100-200 0.707(1) 0.992(1) 0.732(2) 0.979(5) 4 1 18
(23) 0.992(1) 0.733(2) 0.976(11) 13 1 9

200-300 0.705(1) 0.957(1) 0.746(1) 0.987(4) 1 1 12
(14) 0.985(1) 0.730(1) 0.983(3) 2 1 11

300-400 0.738(0) 0.937(0) 0.808(0) 0.976(1) 0 0 4
(4) 0.958(0) 0.791(0) 0.980(0) 0 0 4

400-500 0.674(0) 0.928(0) 0.821(1) 0.904(1) 0 0 3
(3) 0.943(0) 0.815(1) 0.899(0) 0 0 3

500> 0.759(1) 0.874(1) 0.934(9) 0.936(6) 0 1 18
(19) 0.886(1) 0.897(8) 0.962(8) 0 1 18

Adjusted sample
<100 0.646(1) 0.870(1) 0.804(12) 0.950(23) 37 1 0
(38) 0.817(1) 0.843(13) 0.956(23) 37 1 0

100-200 0.752(0) 0.993(0) 0.775(1) 0.982(9) 12 0 2
(14) 0.986(1) 0.779(1) 0.982(9) 12 0 2

200-300 0.767(2) 0.995(2) 0.789(2) 0.977(4) 1 2 5
(8) 0.994(2) 0.786(2) 0.982(5) 5 2 1

300-400 0.817(0) 0.996(0) 0.834(0) 0.980(1) 0 0 2
(2) 0.998(0) 0.824(0) 0.991(1) 0 0 2

400-500 0.731(0) 0.995(0) 0.827(1) 0.908(1) 1 0 2
(3) 0.995(0) 0.827(1) 0.908(2) 2 0 1

500> 0.820(3) 0.932(3) 0.935(9) 0.948(4) 0 3 10
(13) 0.945(3) 0.906(7) 0.964(7) 1 3 9

Size classes for vehicle kilometres: in 10,000 kilometres; for passengers: same as for vehicle kilo-
metres. IRS = increasing returns to scale; CRS = constant returns to scale; DRS = decreasing returns
to scale.



This analysis of size classes indicates that there can be a wide variation in
results at the individual level. Looking solely at sample averages may yield
misleading conclusions for specific operators. It is precisely one of the
strengths of these decomposition techniques to provide detailed information
on the performance of individual organisations. This allows formulating
operator specific policy conclusions, though the potential effect of measure-
ment orientation should induce carefulness in this matter.

5.4. Relation to Existing Literature

There are not that many studies reporting a similar decomposition of overall
technical inefficiency. Illustrations from different economic sectors include:
the BYRNES and VALDMANIS [1994] analysis of hospitals; the BYRNES et al.
[1988] study on surface mining of coal; the FÄRE, GROSSKOPF and PASURKA

[1989] investigation on electric utilities; the work of ÇAKMAK and ZAIM

[1992] and FÄRE, GRABOWSKI and GROSSKOPF [1985] on agriculture; the
analysis of Polish industrial sectors by KEMME and NEUFELD [1991]; and the
study of FIELD [1990] on building societies. Most of them employ an output-
oriented decomposition. Their results can be summarised as follows. The
main source of overall technical inefficiencies (OTE) is purely technical inef-
ficiency (TE) for BYRNES and VALDMANIS [1994]; scale inefficiency (SCE) for
FÄRE, GRABOWSKI and GROSSKOPF [1985], FIELD [1990] and KEMME and
NEUFELD [1991]; and congestion (STE) in the BYRNES et al. [1988] the
ÇAKMAK and ZAIM [1992], and the FÄRE, GROSSKOPF and PASURKA [1989]
cases. As to the cause of scale inefficiency, the BYRNES et al. [1988], the
FÄRE, GRABOWSKI and GROSSKOPF [1985], the FIELD [1990] and the KEMME

and NEUFELD [1991] studies on the one hand, and the FÄRE, GROSSKOPF and
PASURKA [1989] work on the other hand, reveal respectively DRS and IRS for
the majority of the observations. It is evident that organisations follow a wide
variety of patterns as to the sources of their overall technical inefficiency.
Given this diversity of reported results, it is clear that French urban transit
companies are in no way emulating a peculiar pattern of inefficiencies.

Although our findings regarding efficiency and effectiveness may seem
extreme, they are not unrelated to results reported in urban transport frontier
studies. CHU, FIELDING and LAMAR [1992] also find, for smaller U.S. samples,
the possibility of a divergence. SCHINNAR [1993: 178] cites a study of 145
public bus companies reporting a negative association between efficiency and
effectiveness. TONE and SAWADA [1990: 363] describe exactly the same trade-
off. COSTA [1998] considers a single operator over a small time span and finds
a temporal pattern of simultaneous improvement in efficiency and effective-
ness after the introduction of organisational reforms. TULKENS and WUNSCH

[1994], by contrast, find a temporal pattern of improving efficiency and dete-
riorating effectiveness. Given that all frontier studies we are aware of (except
one) yield a negative relation between efficiency and effectiveness, this appa-
rent paradox requires further investigation. One implication for regulatory
policies is that the choice between input and output monitoring may require
reconsideration.

The results on returns to scale for individual operators can also be linked to
traditional studies of urban transit production. BERECHMAN [1993: 137],
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summarising mainly average practice studies, states that “results concerning
economies of scale are rather inconclusive. The empirical evidence seems to
suggest that the bus industry as a whole operates under conditions of constant
scale economies”. He adds that probably small firms are facing IRS, medium-
sized firms enjoy small or constant scale economies, and large bus systems
operate under DRS. There are also a few parametric frontier studies of urban
transit reporting estimates for economies of scale (FAZIOLI, FILIPPINI and
PRIONI [1993], FILIPPINI, MAGGI and PRIONI [1992], THIRY and TULKENS

[1992], VITON [1986], among others). Typically, they find IRS – although
VITON [1986] is an exception – indicating that urban transit is a natural mono-
poly.

Results reported in this study have the advantage of directly focusing on the
individual operators. The size classes results are certainly in line with the
BERECHMAN [1993] conjecture. However, several remaining problems prevent
us from making solid conclusions regarding French operators. First, overall
conclusions regarding returns to scale for the analysis without outliers rely on
the output specification. Another major difficulty is that for specific cases
(and size classes) the results may depend on the selected orientation of
measurement. Finally, these findings are subject to the further proviso that the
exclusion of network characteristics does not bias our computations of scale
economies. The non-parametric VITON [1997] study, by contrast, consistently
finds about 70% of observations situated in the CRS region, independent of
measurement orientation. This study also confirms the rather monotonous
relation between scale and size in our sample.

The economic consequences for public policy are potentially important. If
IRS prevail for smaller operators, then only these urban transit companies
must be considered natural monopolies, at least assuming that they supply a
single output.22 Consequently, these small companies are bound to incur
losses under marginal cost pricing and appropriate regulatory regimes, e.g.,
subsidy schemes, must be developed. For the larger companies there may not
be a natural monopoly problem at stake. However, given the above limita-
tions, additional studies are required focusing on the determination of
operator-specific returns to scale information.

6 Conclusions and Directions for
Future Research

This contribution has focused on the sources of observed technically ineffi-
cient behaviour among French urban transit companies. Efficiency
measurement requires frontier specifications of technology. Production tech-
nologies in this article are so-called non-parametric, deterministic reference
technologies.
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22. The conditions for the existence and sustainability of a natural monopoly in the multiple output
case are spelled out in detail in NADIRI [1982: 483-487].



In the theoretical sections, overall efficiency has been decomposed into its
sources following FÄRE, GROSSKOPF and LOVELL [1983, 1985]. This decom-
position results in component-wise efficiency measures reflecting allocative,
scale, structural and technical inefficiencies. Also computational details have
been provided.

The empirical analysis yields several policy conclusions for the data set of
French urban transit companies. First, technical inefficiency and inefficien-
cies due to inadequacies in scale are the major sources of poor performance,
depending on sample size and output specification (see also VALDMANIS

[1992]). Congestion only plays a minor role, and is mainly situated in the
labour and energy inputs. The technical inefficiencies, due to managerial
failures or an adverse environment, can be remedied in the short run. The
determinants of technical inefficiencies found in KERSTENS [1996] may be of
help in formulating improvement strategies. Second, about half of the obser-
vations – mainly small operators – are situated on an IRS part of technology.
By contrast, large operators experience DRS. However, the mixed results for
the analysis without outliers should make us prudent to formulate too bold
policy conclusions. Therefore, whether network (scale) adjustments in the
long run yield sufficient benefits given the likely minor cost reductions or
revenue gains remains an open issue. Third, the performance of operators
depends strongly on the output specification selected. In particular, enhancing
efficiency and effectiveness may well be two different things. This finding
underscores the importance of obtaining appropriate specifications of techno-
logy. It also may lead to reconsider the objectives of urban transit operators
and their monitoring in regulatory policies. Fourth, sample level results may
hide wide variations in results for individual companies. One of the main
advantages of the methodology is that it allows formulating operator specific
policy conclusions.

There are also important methodological conclusions. First, our study is the
first to show that outliers may well affect decomposition results, since refe-
rence technologies are deterministic. The samples accounting for possible
outlier bias yield probably the most credible results. Second, measurement
orientation can have a major impact on the sources of efficiency and on the
local returns to scale for individual observations, irrespective of the sample
size retained. These weaknesses of the overall technical efficiency decompo-
sition using non-parametric, deterministic technologies should make us
cautious about this methodology in general and in interpreting our own results
in particular.

The major drawbacks of this decomposition methodology invite further
research. Sticking to non-parametric technologies, the following avenues may
turn out promising. First, it may prove useful to allow for measurement error
using resampling methods (see GROSSKOPF [1996] for a survey). Second, it
would be desirable to have statistical test procedures when specifically infer-
ring local scale information (see BANKER [1996] and SIMAR and WILSON

[1998] for recent proposals). Finally, instead of remedying the deterministic
nature of these technologies one could weaken the underlying assumptions.
KERSTENS and VANDEN EECKAUT [1998], for instance, develop a more limited
decomposition (without congestion component) based upon non-convex tech-
nologies and find, among other things, that local qualitative scale information
depends little on measurement orientation and that technical and scale ineffi-
ciencies differ markedly between convex and non-convex technologies.
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But this research may also have implications for parametric frontier specifi-
cations. First, it remains an open question to which extent also parametric
decompositions of technical and scale efficiencies (see, e.g., BAUER [1990b],
KUMBHAKAR, BISWAS and BAILEY [1989]) are subject to the same impact of
changes in measurement orientation. Data availability and the ensuing choice
of a primal or dual approach often dictate measurement orientation. Casual
evidence suggests there may be a problem. ATKINSON and CORNWELL [1993],
for instance, develop output and input technical efficiency measures in terms
of dual cost frontiers. Their translog cost frontier results indicate substantial
cardinal and ordinal differences between both types of technical efficiency.
Second, a to our knowledge unexplored, alternative is to develop parametric
stochastic frontier models allowing for a decomposition of overall technical
efficiency into its three components. To be specific, the structural efficiency
(congestion) component has so far never been estimated parametrically.
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