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Abstract. The output-oriented plant capacity notion, which has been around formore than
two decades, has been empirically applied mainly in the fishery and the hospital sectors.
Since its introduction to the literature, a specified problem is that this notion may not be
attainable, in that it presupposes potentially unlimited numbers of variable inputs to
determine the maximum number of outputs available. However, this lack of attainability
has not been explored previously. This paper fills this void both theoretically and em-
pirically by showing that attainabilitymay be problematic and that bounds on the numbers
of variable inputs may well need to be imposed.
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1. Introduction
Research in the economics literature has developed
a variety of capacity notions (see, e.g., Johansen 1987 or
Nelson 1989). One useful taxonomy distinguishes be-
tween technical or engineering notions and economic
capacity concepts, the latter of which are mainly based
on or derived from some cost function. This paper
focuses on the plant capacity notion that is part of the
family of technical or engineering notions.

Johansen (1987, p. 362) defined the notion of plant
capacity informally as “the maximum amount that can
be produced per unit of time with existing plant and
equipment, provided that the availability of variable fac-
tors of production is not restricted.” Färe et al. (1989a, b)
translated this plant capacity notion into, respectively,
a single- and multiple-output nonparametric frontier
framework that helps determine capacity as well as
a measure of capacity utilization from information on
observed inputs and outputs using a pair of output-
oriented efficiency measures.

For more than two decades, research has employed
empirical applications using this output-oriented plant
capacity mainly in the fishery (e.g., Felthoven 2002,
Tingley and Pascoe 2005, Walden and Tomberlin 2010,
or Pascoe et al. 2013) and hospital (e.g., Kerr et al. 1999;
Valdmanis et al. 2010, 2015; or Karagiannis 2015) sec-
tors. Although one study also focuses on banking
(e.g., Sahoo and Tone 2009) and another describes a mac-
roeconomic application on trade barriers (e.g., Badau
2015), to our knowledge, no major methodological

innovation has occurred related to this plant capacity
concept. However, Cesaroni et al. (2017) recently used
the same nonparametric frontier framework to define
a new input-oriented measure of plant capacity utili-
zation based on a couple of input-oriented efficiency
measures.
Johansen (1987) argued that the plant capacity con-

cept need not necessarily be attainable, in that the
numbers of variable inputs required to determine the
maximum potential outputs may well be unavailable
at both the firm and sector levels. To the best of our
knowledge, the literature has completely ignored this
issue of attainability. Thus, the main goal of this paper
is to explore this attainability problem. At the theoretical
level, we argue that there is indeed such an issue for the
output-oriented plant capacity notion, but we also show
that the new input-oriented plant capacity concept does
not suffer from this problem. At the empirical level, we
illustrate the extent to which the numbers of variable
inputs required to determine the plant capacity output
are plausible or not using a secondary data set.
It is well known that the axiom of convexity has

a potentially large impact on empirical analyses based
on technologies (e.g., Tone and Sahoo 2003). For exam-
ple, in the context of plant capacity utilization, Walden
and Tomberlin (2010) empirically illustrate the effect
of convexity on the output-oriented plant capacity
notion. Similarly, Cesaroni et al. (2017) compare
output- and input-oriented plant capacity concepts em-
pirically and reveal the influence of convexity on both
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the output- and input-oriented plant capacity concepts.
Therefore, we also analyze the issue of attainability
in terms of the potential effect of the convexity axiom.

The structure of the rest of this contribution is as
follows. Section 2 provides the basic definitions of
technology and the efficiency measures representing
these technologies. In Section 3, we define both the
traditional output-oriented and the new input-oriented
plant capacity notions, after which we argue and il-
lustrate that the output-oriented plant capacity no-
tion may well fail in terms of attainability, although
this is not an issue for the input-oriented plant capacity
concept. We end this section by defining an attainable
output-oriented plant capacity notion that incorporates
either firm or industry constraints on the availability of
variable inputs. Section 4 describes the secondary data
set selected for the empirical illustration and summa-
rizes the empirical results in great detail. Section 5 ends
with concluding remarks.

2. Technology: Basic Definitions
This section introduces some basic notation and defines
the technology. Given an N-dimensional input vector
x ∈ RN+ and an M-dimensional output vector y ∈ RM+ ,
we define the production possibility set or technology
T asT � {(x, y) | x can produce y}. The input set, which is
associated with T, denotes all input vectors x capable of
producing a given output vector y: L(y) � {x | (x, y) ∈ T}.
Analogously, the output set associatedwithT denotes all
output vectors y that can be produced from a given input
vector x: P(x) � {y | (x, y) ∈ T}.

Throughout this contribution, technology T sat-
isfies some combination of the following standard
assumptions.

Assumption T.1. There is the possibility of inaction and no
free lunch; that is, (0, 0) ∈ T, and if (0, y) ∈ T, then y � 0.

Assumption T.2. Technology T is a closed subset of
RN+ × RM+ .

Assumption T.3. Strong input and output disposality exists;
that is, if (x, y) ∈ T and (x′, y′) ∈ RN+ × RM+ , then (x′,−y′) ≥(x,−y) ⇒ (x′, y′) ∈ T.

Assumption T.4. Technology T is convex.

With regard to these traditional axioms on tech-
nology (for details, see Hackman 2008), it is useful to
recall that inaction is feasible, there is no free lunch, and
technology is closed. We assume free disposal of inputs
and outputs in that inputs can be wasted and outputs
can be discarded. Finally, technology is convex. In our
empirical analysis, not all these axioms are simulta-
neously maintained.1 In particular, the key assumption
distinguishing some of the technologies in the empir-
ical analysis is convexity versus nonconvexity.

The radial input efficiency measure characterizes the
input set L(y) completely and can be defined as

DFi(x, y) � min{λ |λ ≥ 0, λx ∈ L(y)}. (1)

This radial input efficiency measure has the main prop-
erty that it is smaller than or equal to unity (DFi(x, y) ≤ 1),
with efficient production on the boundary (isoquant) of
L(y) represented by unity, and that it has a cost inter-
pretation (see Hackman 2008).
The radial output efficiency measure offers a com-

plete characterization of the output set P(x) and can be
defined as

DFo(x, y) � max{θ |θ ≥ 0, θy ∈ P(x)}. (2)

Its main properties are that it is larger than or equal to
unity (DFo(x, y) ≥ 1), with efficient production on the
boundary (isoquant) of the output set P(x) represented
by unity, and that this radial output efficiency measure
has a revenue interpretation (see Hackman 2008).
In the short run, we can partition the input vector

into a fixed and variable part. In particular, we denote

(x � (x f , xv)) with x f ∈ R
Nf
+ and xv ∈ R

Nv+ , such that N �
Nf +Nv.
Following Färe et al. (1989b), we can define a short-

run technology T f �{(x f , y) ∈ R
Nf
+ × RM+ | (x f , xv) can pro-

duce y} and the corresponding input set L f (y) � {x f ∈
R

Nf
+ | (x f , y) ∈ T f } and output set Pf (x f ) � {y | (x f , y)

∈ T f }. Note thatwe can obtain technologyT f byprojecting

technology T ∈ RN+M+ into the subspace R
Nf+M
+ (i.e., by

setting all variable inputs equal to zero). Analogously,
the same applies to the input set L f (y) and the output
set Pf (x f ).
Denoting the radial output efficiency measure of the

output set Pf (x f ) by DFf
o (x f , y), we can define this

output-oriented efficiency measure as

DFf
o (x f , y) � max{θ |θ ≥ 0, θy ∈ Pf (x f )}. (3)

We define the subvector input efficiency measure re-
ducing only the variable inputs as

DFSRi (x f , xv, y) � min{λ |λ ≥ 0, (x f , λxv) ∈ L(y)}. (4)

Next, we need the following particular definition of
technology: L(0) � {x | (x, 0) ∈ T} is the input set with
zero output level. The subvector input efficiency mea-
sure reducing variable inputs evaluated relative to this
input set with a zero output level is

DFSRi (x f , xv, 0) � min{λ |λ ≥ 0, (x f , λxv) ∈ L(0)}. (5)

Given data on K observations (k � 1, . . . ,K) consisting
of a vector of inputs and outputs (xk, yk) ∈ RN+ × RM+ ,
a unified algebraic representation of convex and
nonconvex nonparametric frontier technologies under
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the flexible or variable returns to scale assumption is
possible, as follows:

TΛ � (x, y) | x ≥ ∑K
k�1

zkxk, y ≤ ∑K
k�1

zkyk, z ∈ Λ

{ }
, (6)

where

(i)Λ ≡ ΛC � z | ∑K
k�1

zk � 1 and zk ≥ 0

{ }
;

(ii)Λ ≡ ΛNC � z | ∑K
k�1

zk � 1 and zk ∈ {0, 1}
{ }

.

The activity vector z of real numbers summing to unity
represents the convexity axiom. This same sum con-
straint with each vector element being a binary integer
represents nonconvexity. The convex technology sat-
isfies axioms T.1 (except inaction) to T.4, whereas the
nonconvex technology adheres to axioms T.1 to T.3. It
is now useful to condition the above notation (6) of the
efficiency measures relative to these nonparametric fron-
tier technologies by distinguishing between convexity
(convention C) and nonconvexity (convention NC).

A common assumption is that the input and output
data satisfy a series of conditions (Färe et al. 1994):
(i) each producer employs nonnegative numbers of
each input to produce nonnegative numbers of each
output, (ii) there is an aggregate production of pos-
itive numbers of every output as well as an aggregate
utilization of positive numbers of every input, and
(iii) each producer employs apositivenumberof at least one
input to produce a positive number of at least one output.

3. Plant Capacity Concepts
3.1. Plant Capacity: Basic Definitions
According to Johansen (1987, p. 362), the informal
definition of plant capacity is “the maximum amount
that can be produced per unit of time with existing
plant and equipment, provided that the availability of
variable factors of production is not restricted.” In turn,
Färe et al. (1989a, b) operationalize the output-oriented
plant capacity notion using a pair of output-oriented
efficiency measures. We can now define this output-
oriented plant capacity utilization (PCU) as follows.

Definition 1. The output-oriented plant capacity utili-
zation (PCUo) is

PCUo(x, x f , y) � DFo(x, y)
DFf

o (x f , y) ,

where DFo(x, y) and DFf
o (x f , y) are output efficiency

measures that, respectively, include and exclude the
variable inputs as defined in (2) and (3). Because
1 ≤ DFo(x, y) ≤ DFf

o (x f , y), 0<PCUo(x, x f , y) ≤ 1. Thus,
output-oriented plant capacity utilization has an upper

limit of unity. Following the terminology introduced
by Färe et al. (1989a, b) and Färe et al. (1994), we can
distinguish between a so-called biased plant capacity
measure DFf

o (x f , y) and an unbiased plant capacity
measure PCUo(x, x f , y). Taking the ratio of efficiency
measures eliminates any existing inefficiency and yields
in this sense a cleaned concept of output-oriented plant
capacity.

To guarantee the existence of the efficiencymeasures,
Färe et al. (1989a, pp. 659–660) sharpen the conditions
on the input and output data for nonparametric fron-
tier technologies.2 In particular, each fixed input is used
by some producer, and each producer uses some
fixed input.
In the case of C, the efficiency measure DFf

o (x f , y)
is computed for observation (xp, yp) as follows:

DFf
o (x f

p , yp) � max
θ,zk

θ

s.t.
∑K
k�1

zkyk ≥ θyp,

∑K
k�1

zkx
f
k ≤ x f

p ,

∑K
k�1

zk � 1,

θ ≥ 0, zk ≥ 0, k � 1, . . . ,K.

(7)

In the case ofNC, the variables zk in this model need to
be binary variables. In all linear programming (LP)
models mentioned hereafter, a similar adaptation
is required if NC is assumed. To save space, we no
longer mention this or formulate the corresponding
models.
Note that there are no input constraints on the

variable inputs in the model (7). Note that Färe et al.
(1994) introduce an alternative LPwith a scalar for each
variable input dimension. In addition, LP (7) is equiv-
alent to the following LP obtained by making each
variable input a decision variable:

DFf
o (x f

p , yp) � max
θ,zk ,xv

θ

s.t.
∑K
k�1

zkyk ≥ θyp,

∑K
k�1

zkx
f
k ≤ x f

p ,

∑K
k�1

zkxvk ≤ xv,

∑K
k�1

zk � 1,

θ ≥ 0, zk ≥ 0, xv≥ 0, k � 1, . . . ,K.

(8)
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Cesaroni et al. (2017) define a new input-oriented plant
capacity measure using a pair of input-oriented effi-
ciency measures.

Definition 2. The input-oriented plant capacity utili-
zation (PCUi) is

PCUi(x, x f , y) � DFSRi (x f , xv, y)
DFSRi (x f , xv, 0) ,

where DFSRi (x f , xv, y) and DFSRi (x f , xv, 0) are both sub-
vector input efficiency measures reducing only the
variable inputs relative to the technology, where the
latter efficiency measure is evaluated at a zero output
level. Because 0<DFSRi (x f , xv, 0) ≤ DFSRi (x f , xv, y), PCUi ·
(x, x f , y) ≥ 1. Thus, input-oriented plant capacity utiliza-
tion has a lower limit of unity. Similar to the previous case,
we can distinguish between a so-called biased plant ca-
pacity measure DFSRi (x f , xv, 0) and an unbiased plant
capacity measure PCUSR

i (x, x f , y), the latter of which is
cleaned of any prevailing inefficiency.3

To guarantee the existence of the efficiencymeasures,
we also need to sharpen the conditions on the input
and output data: each variable input is used by some
producer, and each producer uses some variable input.

Both Definitions 1 and 2 are graphically illustrated
with the help of Figure EC1 in Section EC.1 of the
e-companion. We now turn to the issue of attainability
of both these plant capacity concepts.

3.2. Plant Capacity: The Question
About Attainability

Although Definitions 1 and 2 are sufficiently clear, we
stress that these concepts differ in terms of the property
of attainability. According to Johansen (1987), the
output-oriented plant capacity notion is not attainable
if the extra variable inputs necessary to reach the
maximal plant capacity output are not available.
Whereas in principle the axiom of strong disposability
in the inputs allows for the wasting of infinitely many
inputs to determine the maximal plant capacity out-
puts, in practice there may well be various restrictions
that limit the availability of variable inputs.4

First, at the firm level there may be quasi-fixed
factors such as labor for which firms have to invest
in hiring and training activities that limit the number of
people who can be recruited at once. By definition,
quasi-fixed factors are characterized by the inability to
expand their supply rapidly. Furthermore, depending
on the nature of the labor market and the size of the
firm (e.g., it may have some monopsony power),
recruiting a large number of people may well have an
impact on their salaries. Although this does not show
up in the analytical framework of the output-oriented
plant capacity notion, which ignores input prices, firms
may well account for these general equilibrium effects

and constrain their recruitment of the quasi-fixed fac-
tor. In brief, the quasi-fixity of labor as well as other
production factors may seriously impede the expan-
sion of variable inputs and thus may prevent firms
from reaching the maximal plant capacity outputs (see
Oi 1962 for the seminal article in economics and Barney
2001 for the resource-based view of the firm).
Second, even if these extra variable inputs are

available at the firm level, restrictions on the available
extra variable inputs at the sector level may prevent all
firms from simultaneously reaching their maximal
plant capacity output (Johansen 1987). For example,
quasi-fixed factors may operate at the industry level
and prevent the rapid expansion of supply in amounts
necessary to realize the maximal plant capacity outputs
for all firms. At the sectoral level, general equilibrium
effects may play a role: if all firms simultaneously
increase their demand for a production factor, then the
price of that production factor may well increase.
Again, although this does not show up in the frame-
work of the output-oriented plant capacity notion, which
ignores factor prices, firms may take these general equi-
librium effects into account and constrain their expansion
of the production factor.
By contrast, the input-oriented plant capacity notion

is always attainable in that firms can always reduce the
number of existing variable inputs to reach an input set
with a zero output level. Reducing variable inputs to
reach zero production levels is normally possible be-
cause of the axiom of inaction. Inaction implies that
firms can stop producing in full: but in modern pro-
duction facilities, producing a zero output does not
necessarily imply that no inputs are used.5 Examples
of zero production with positive numbers of variable
inputs include critical maintenance activities at a large
industrial plant impeding production, counting in-
ventory in a retailer while temporarily suspending
sales, or temporarily closing a mine while keeping it
exploitable with the option of reopening it as part of
a real options strategy. Closing down production is
therefore possible at the firm level, but it can also be
done at the sectoral level.
Therefore, attainability is a potential issue for the

output-oriented plant capacity notion, whereas it is
a priori not an issue for the new input-oriented plant
capacity concept. We now turn to the modeling of
constraints on the availability of variable inputs in the
output-oriented plant capacity notion.
A somewhat related issue is the economic relevance

of these plant capacity notions. Again considering the
output-oriented plant capacity concept, even if the firm
has sufficiently variable inputs at its disposal and the
attainability issue does not exist, producing the output-
oriented plant capacity outputs will rarely be cost
minimizing or profit maximizing. This technical or en-
gineering capacity concept just serves as a generalization
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of other popular capacity concepts (e.g., in the hotel
industry, room occupancy rates are very popular) for
multiple-output production processes. For the case of
the input-oriented plant capacity concept, for which the
attainability issue does not exist, the question as to the
relevance of the optimal variable inputs at the level of
the initialization of production is also important. As pre-
viously mentioned, maintenance activities may lead to
temporarily suspending production, as well as tempo-
rarily mothballing operations. However, for most firms,
these optimal variable inputs at zero output levels may
not follow from a cost-minimizing or profit-maximizing
strategy. Again, this technical or engineering capacity
concept just serves as a framework to summarize ca-
pacity measurement for multiple inputs and outputs
production processes.

Cesaroni et al. (2019) also recently defined new long-
run output- and input-oriented plant capacity concepts
that allow for changes in all input dimensions simul-
taneously rather than changes in the variable inputs
only. The plant capacity concepts focusing on changes
in the variable inputs alone can then be interpreted as
short-run concepts. Note that the whole issue of attain-
ability also transposes to the output- and input-oriented
long-run plant capacity concepts.

3.3. Attainable Output-Oriented Plant
Capacity: Proposals

We now turn to the specification of attainability con-
straints at the firm level. Thereafter, we explore how to
model attainability constraints at the industry level.

3.3.1. Attainability Constraints at the Firm Level. The
standard assumption T.3 of strong input and output
disposability implies that variable inputs can be in-
creased without limitation in the absence of price infor-
mation. However, with the reality of limited resources,
we know that this possibility of allowing unlimited
increases of inputs creates a potential issue. This issue
also affects all notions built on this possibility, espe-
cially the output-oriented plant capacity notion. As
a possible remedy, we define an attainability level λ̄ of
an observation as follows.

Definition 3. An attainability level λ̄ of observation
(xp, yp) (abbreviated to level λ̄) is any value λ̄ ∈ R+
satisfying

∃λ ∈ R+ with λ ≤ λ̄ and

∃θ ∈ R+ such that (x f , λxv, θy) ∈T .

It follows from this definition that every value λ̄ ≥ 1 can
serve as an attainability level for all observations (e.g.,
set λ � 1 and θ � 1). An attainability level λ̄< 1 might
not be possible for some observations (see the empirical
illustration in Section 4). However, this level should
be chosen to reflect a realistic achievable upscaling of

variable inputs for a particular observation. For ex-
ample, a value λ̄ � 3means that tripling variable inputs
can be realistic (or achievable).

Note that Definition 3 differs from the rather well-
known axiom of attainability as developed by Shephard
(see Färe and Mitchell 1987 for a critical discussion).
With an attainability level set to some realistic value,

we can define the following attainable output-oriented
efficiency measure.

Definition 4. The attainable output-oriented efficiency
measure (ADFo) at level λ̄ ∈ R+ is

ADFf
o (x f , y, λ̄) � max{θ |θ ≥ 0, 0 ≤ λ ≤ λ̄,

θy ∈ P(x f , λxv)}.
The number of variable inputs is now bound to be at
most a scalar-wise multiple smaller than λ̄. Then,ADFf

o ·
(x f , y, λ̄) ≤ DFf

o (x f , y). Note that wewrite Definition 4 in
absolute terms. For example, λ̄ � 3 corresponds to the
impossibility of variable inputs exceeding three times
the current amount of variable inputs. Alternatively, we
could focus on relative comparisons with the sector
aggregates (

∑K
p�1 xvp). Here, we could impose the con-

straint that variable inputs at the firm level cannot ex-
ceed a certain share of the total number of variable inputs
available in a sector. We opt for the former approach.

Using the attainable output-oriented efficiency mea-
sure introduced in Definition 4, we can define a new
attainable output-oriented plant capacity concept at the
firm level.

Definition 5. An attainable output-oriented plant ca-
pacity utilization (APCUo) at level λ̄ ∈ R+ is

APCUo(x, x f , y, λ̄) � DFo(x, y)
ADFf

o (x f , y, λ̄) ,

withDFo(x, y) andADFf
o (x f , y, λ̄) as defined previously.

Analogous to the plant capacity utilization measures
introduced in Definitions 1 and 2, we can distinguish
between the attainable biased plant capacity measure
ADFf

o (x f , y, λ̄) and the attainable unbiased plant ca-
pacity measure APCUo(x, x f , y, λ̄), where the ratio of
efficiency measures ensures the elimination of any
existing inefficiency.
Because ADFf

o (x f , y, λ̄) ≤ DFf
o (x f , y), APCUo(x, x f , y,

λ̄) ≥ PCUo(x, x f , y). Thus, the attainable output-oriented
measure of plant capacity utilization is always larger
than or equal to the traditional measure of output-
oriented plant capacity utilization.

Proposition 1. The attainable output-oriented plant ca-
pacity utilization APCUo(x, x f , y, λ̄) converges to the output-
oriented plant capacity utilization PCUo(x, x f , y) as λ̄−→∞
(i.e., limλ̄→∞APCUo(x, x f , y, λ̄) � PCUo(x, x f , y)).
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For the proofs of all propositions, see Section EC.2 in
the e-companion.

Note also that the output-oriented plant capacity
utilization PCUo(x, x f , y) might be unrealistic because
the numbers of variable inputs required to reach the
maximum capacity outputs may simply not be avail-
able. This can be observed in the empirical illustration
in Section 4. Thus, APCUo(x, x f , y, λ̄) should be a more
realistic alternative plant capacity utilization measure
provided an achievable level λ̄ is chosen.

We can nowmodel the attainability constraints at the
firm level as follows:

ADFf
o (x f

p , yp, λ̄) �max
θ,zk ,xv

θ

s.t.
∑K
k�1

zkyk ≥ θyp,

∑K
k�1

zkx
f
k ≤ x f

p ,

∑K
k�1

zkxvk ≤ xv,

∑K
k�1

zk � 1,

xv ≤ λ̄xvp,

θ ≥ 0, zk ≥ 0, xv ≥ 0, k � 1, . . . ,K.

(9)

The constraint xv ≤ λ̄xvp establishes a link between the
decision variable xv and the value xvp of the firm under
observation. In the empirical analysis of Section 4, we
choose λ̄ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. Thus, we
regard an increase of the variable inputs with a factor
more than 5 or less than 0.5 (i.e., halving these variable
inputs) as implausible.

In model (9), we can vary the scalar λ̄ over some part
of the interval (0,∞). To determine the complete fea-
sible interval for λ̄ and to classify ADFf

o (x f , y, λ) and
APCUo(x, x f , y, λ) subsequently, we need the following
definition of critical points.

Definition 6. For a given observation (xp, yp), we can
define the following three critical points Lp,Mp, andUp:

Lp � DFSRi (x f
p , x

v
p, 0), (10)

Mp � DFSRi (x f
p , x

v
p, yp), (11)

and

Up � DFSRi (x f
p , x

v
p,DFf

o (x f
p , yp)yp). (12)

Note that the critical points Lp and Mp make up the
components of the input-oriented plant capacity mea-
surePCUi(x, x f , y) in Definition 2. To our knowledge,Up

has not been described previously in the literature. It
can be interpreted as the minimal expansion of variable

inputs needed to produce the maximum plant capacity
outputs and can be computed as

Up �min
θ,zk

θ

s.t.
∑K
k�1

zkyk ≥ DFf
o (x f

p , yp)yp,
∑K
k�1

zkx
f
k ≤ x f

p ,

∑K
k�1

zkxvk ≤ θxvp,

∑K
k�1

zk � 1,

θ ≥ 0, zk ≥ 0, k � 1, . . . ,K.

(13)

We briefly illustrate these three critical points in Figure
EC1. First, the point Lp pertains to the distance from
point a to point e′′: it indicates the minimal number of
variable inputs compatible with zero outputs. Second,
the point Mp pertains to the distance from point e′′′′ to
point e: it indicates the minimal number of variable
inputs compatible with current levels of outputs. Third,
the pointUp pertains to the distance frompoint e to point
e′: it indicates the minimal number with which variable
inputs need to be expanded to be compatible with the
maximal level of plant capacity outputs at point d.

We are now in a position to classify ADFf
o (x f , y, λ̄)

and APCUo(x, x f , y, λ̄) in terms of these three critical
points. In particular, we establish two propositions.

Proposition 2. For the attainable biased and unbiased
output-oriented plant capacity utilization in both C and NC
technologies, for every observation (xp, yp),

(i) if λ̄<Lp, then model (9) is infeasible;
(ii) if Lp ≤ λ̄<Mp, then ADFf

o (x f
p , yp, λ̄)< 1 and

APCUo(xp, x f
p , yp, λ̄)> 1; and

(iii) if Mp ≤ λ̄, then ADFf
o (x f

p , yp, λ̄) ≥ 1 and

APCUo(xp, x f
p , yp, λ̄) ≤ 1.

Proposition 3. For the attainable biased and unbiased
output-oriented plant capacity utilization in both C and NC
technologies, for every observation (xp, yp),

(i) if Lp ≤ λ̄<Up, then ADF f
o (x f

p , yp, λ̄)<DFf
o (x f

p , yp)
and APCUo(xp, x f

p , yp, λ̄)>PCUo(xp, x f
p , yp); and

(ii) if λ̄ ≥ Up, then ADFf
o (x f

p , yp, λ̄) � DFf
o (x f

p , yp) and
APCUo(xp, x f

p , yp, λ̄) � PCUo(xp, x f
p , yp).

3.3.2. Attainability Constraints at the Industry Level.
Similar to the firm-level situation, it is also feasible to
devise new attainable output-oriented plant capacity
concepts at the industry level. First, we introduce the
industry-attainable output-oriented efficiency measure
as follows.
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Definition 7. The industry-attainable output-oriented
efficiency measure (IADFo) at level λ̄ ∈ R+ for obser-
vation (xp, yp) is

IADF f
o (x f

p , yp, λ̄) � θ∗
p,

where θ∗
p is the optimum value of θp in the follow-

ing model:

max
θp,z

p
k ,x

v
p

∑K
p�1

θp

s.t.
∑K
k�1

zpkyk ≥ θpyp, p � 1, . . . ,K,

∑K
k�1

zpkx
f
k ≤ x f

p , p � 1, . . . ,K,

∑K
k�1

zpkx
v
k ≤ xvp, p � 1, . . . ,K,

∑K
k�1

zpk � 1, p � 1, . . . ,K,

∑K
p�1

xvp ≤ λ̄
∑K
p�1

x̄vp,

θp ≥ 0, zpk ≥ 0, xvp ≥ 0, k, p � 1, . . . ,K.

(14)

Note that model (14) is a kind of central resource al-
location model with K LPs (one for each observation)
and a bogus objective function and with a common
constraint on the total number of variable inputs
available in the sector. In particular, its aim is to de-
termine the maximum plant capacity outputs for all
observations while reallocating variable inputs among
units, such that a global constraint on the industry
number of variable inputs is respected. Central re-
source reallocation models cover a heterogeneous va-
riety of models reallocating some inputs and/or
outputs across space and/or time while eventually
accounting for multiple objectives (e.g., efficiency, ef-
fectiveness, equality). Athanassopoulos (1998), Färe
et al. (1992), Golany and Tamir (1995), Korhonen
and Syrjänen (2004), Lozano and Villa (2004), and
Ylvinger (2000) provide examples of these models. One
type of central resource reallocation model that also
makes use of the notion of plant capacity is the so-
called short-run Johansen industry model (see Färe
et al. 1992 for a single-output version and Kerstens et al.
2006 for a multiple-output version). Note that if we
remove the last constraint in model (14), thenwe obtain
the industry output-oriented efficiency measure (IDFo)
for observation (xp, yp): IDF f

o (x f
p , yp) � θ∗∗

p � DFf
o (x f

p , yp),
where θ∗∗

p is the optimal value of θp in model (14)
without its last constraint. Thus, this new industry

output-oriented efficiency measure (IDFo) coincides
with the firm output-oriented efficiency measure (DFo).
Note also that—to the best of our knowledge—this
contribution is the first to discuss plant capacity at the
industry level.
Second, using the industry-attainable output-oriented

efficiency measure of Definition 7, we can define the
industry-attainable output-oriented plant capacity uti-
lization as follows.

Definition 8. The industry-attainable output-oriented
plant capacity utilization (IAPCUo) at level λ̄ ∈ R+ for
observation (xp, yp) is

IAPCUo(xp, x f
p , yp, λ̄) �

DFo(xp, yp)
IADF f

o (x f
p , yp, λ̄)

.

Because IADFf
o (x f , y, λ̄) ≤ DFf

o (x f , y), IAPCUo(x, x f ,
y, λ̄) ≥ PCUo(x, x f , y). Thus, the industry-attainable
output-oriented measure of plant capacity utilization
is always larger than or equal to the traditional measure
of output-oriented plant capacity utilization. Analogously,
we can distinguish between the industry-attainable biased
plant capacity measure IADF f

o (x f , y, λ̄) and the industry-
attainable unbiased plant capacity measure IAPCUo(x, x f ,
y, λ̄), where the ratio of efficiency measures ensures
elimination of any existing inefficiency.

Note that the industry-attainable output-oriented
measure of plant capacity utilization may be smaller
or larger than the attainable output-oriented measure
of plant capacity utilization. This holds true for both
the biased and unbiased versions. Therefore, we have
IADF f

o (x f, y, λ̄) �>
<
ADF f

o (x f
p , yp, λ̄) and IAPCUo(x, x f , y,

λ̄) �>
<
APCUo(x, x f , y, λ̄).

Analogous to firm-level modeling, we can vary the
scalar λ̄ in model (14) over some part of the interval
(0,∞). To determine this feasible interval for λ̄, we can
define the following two critical points LI and UI.

Definition 9. LI can be determined from the following
LP:

LI � min
θ,zpk ,x

v
p

θ

s.t.
∑K
k�1

zpkx
f
k ≤ x f

p , p � 1, . . . ,K,

∑K
k�1

zpkx
v
k ≤ xvp, p � 1, . . . ,K,

∑K
k�1

zpk � 1, p � 1, . . . ,K,

∑K
p�1

xvp ≤ θ
∑K
p�1

x̄vp,

θ ≥ 0, zpk ≥ 0, xvp ≥ 0, k, p � 1, . . . ,K.

(15)
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We obtain UI by solving the following LP:

UI � min
θ,zpk ,x

v
p

θ

s.t.
∑K
k�1

zpkyk ≥ DFf
o (x f

p , yp)yp, p � 1, . . . ,K,

∑K
k�1

zpkx
f
k ≤ x f

p , p � 1, . . . ,K,

∑K
k�1

zpkx
v
k ≤ xvp, p � 1, . . . ,K,

∑K
k�1

zpk � 1, p � 1, . . . ,K,

∑K
p�1

xvp ≤ θ
∑K
p�1

x̄vp,

θ ≥ 0, zpk ≥ 0, xvp ≥ 0, k, p � 1, . . . ,K.

(16)

Note thatUI can be interpreted as theminimal expansion
of overall variable inputs needed to produce the plant
capacity outputs for all units for the industry model (14).

We are now in a position to classify IADF f
o (x f , y, λ̄)

and IAPCUo(x, x f , y, λ̄) in terms of these two critical
points.

Proposition 4. For the industry-attainable biased and
unbiased output-oriented plant capacity utilization in both C
and NC technologies,

(i) if λ̄< LI, then model (14) is infeasible;
(ii) if LI ≤ λ̄<UI, then at least for one observed obser-

vation (xp, yp), we have IADF f
o (x f

p , yp, λ̄)<DFf
o (x f

p , yp) and
IAPCUo(xp, x f

p , yp, λ̄)>PCUo(xp, x f
p , yp); and

(iii) if UI ≤ λ̄, then for every observation (xp, yp), we have
IADFf

o (xf
p,yp, λ̄) �DFf

o (xf
p,yp) and IAPCUo(xp,xf

p,yp, λ̄) �
PCUo(xp,xf

p,yp).

4. Empirical Illustration
4.1. Description of the Sample
For the empirical illustration of the attainability notions
introduced previously, we use a secondary data set
from Atkinson and Dorfman (2009). The sample is
based on 16 Chilean hydroelectric power genera-
tion plants observed on a monthly basis. We limit our
observations to the year 1997, and assuming that there

is no technical change, we specify an intertemporal
frontier across all 12 months, which results in 192 units.
It is well known that Chile was one of the first countries
to deregulate its electricity market and that hydro-
power was a dominant source of energy during the
1990s. These hydropower plants generate one out-
put (electricity) using three inputs: labor, capital,
and water. Except for the fixed input capital, we ex-
press the remaining flow variables in physical units.
Table 1 presents basic descriptive statistics for the in-
puts and the single output. It shows a large hetero-
geneity in terms of size among the different inputs and
the single output.

4.2. Empirical Results for Firm Level
We structure Tables 2 and 3 in a similar way. Table 2
reports the biased plant capacity utilization measures
DFf

o (x f , y) and ADFf
o (x f , y, λ̄), and Table 3 focuses on

the unbiased plant capacity utilization measures
PCUo(x, x f , y) and APCUo(x, x f , y, λ̄). In each table, the
second column reports the standard plant capacity uti-
lization measures, whereas the next 10 columns
describe the attainable plant capacity utilization mea-
sures for λ̄ varying between 0.5 and 5 with step size 0.5
(thus, λ̄ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}). Therefore, we
somewhat arbitrarily assume that variable inputs can be
magnified at most fivefold. Note that we could have
selected a wider range of values to experiment with λ̄.
In line with Proposition 2, for 37 observations under C
and 41 observations under NC, λ̄ � 0.5 is too small for
model (9) to be feasible. Therefore, we do not include
these observations in the corresponding descriptive
statistics computations.
Our data set contains a single output, which implies

that DFf
o (x f

p , yp) is homogeneous of degree −1 in the
output. From (12), it then follows that Up � DFSRi (x f

p ,

xvp,DFf
o (x f

p , 1)). Then, Up now depends only on the var-
iable and fixed inputs. However, in the multioutput
case, this observation no longer holds true. For an
example with multiple outputs, see Section EC.3 in the
e-companion.
Analyzing the results in Table 2, we can draw the

following conclusions. First, the biased plant capacity
utilization measure DFf

o (x f , y) indicates that outputs
can be magnified by at least 13.65 times under C and

Table 1. Descriptive Statistics for Hydropower Plants (1997)

Variable Trimmed meana Minimum Maximum

Billions of cubic meters of water (variable input) 126.80 0.49 1,347.47
No. of workers (variable input) 15.62 2.00 52.86
Billions of capital (fixed input) 0.47 0.04 5.98
Thousands of kilowatt-hours (output) 46.79 0.40 353.70

aThere is a 10% trimming level.
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12.54 times under NC, on average. Second, there is
a great amount of variation in DFf

o (x f , y), as indicated
by the standard deviation, and the range is broad: the
maximum increase in outputs amounts to 884.25 times
under both C and NC. Third, the attainable biased
plant capacity utilization measure ADFf

o (x f , y, λ̄) in-
creases monotonically in λ̄, and on average, the output
magnification under C is always higher than that under
NC. Fourth, for a fivefold increase in variable inputs
(i.e., λ̄ � 5), we obtain on average a 3.87 output mag-
nification under C and a 2.76 output magnification
under NC. This is quite a bit lower than the average
output magnification computed by the biased plant
capacity utilization measure DFf

o (x f , y).
Turning to the analysis of Table 3, we can draw

several conclusions. First, the unbiased plant capacity
utilization measure PCUo(x f , y) indicates that current
outputs make up 52% from maximal plant capacity
outputs under C and 55% underNC, on average. Second,
there is a great amount of heterogeneity in PCUo(x f , y),
as indicated by the standard deviation, and the range
is again broad: the minimum of approximately 1.5%
under both C and NC is simply extremely low. Third,
the attainable unbiased plant capacity utilization mea-
sureAPCUo(x, x f , y, λ̄) decreasesmonotonically in λ̄, and
on average, APCUo(x, x f , y, λ̄) is always smaller under

C than under NC. Fourth, for a fivefold increase in
variable inputs (i.e., λ̄ � 5), APCUo(x, x f , y, λ̄) moves
close to PCUo(x, x f , y) in the C case (a difference of only
4%), whereas this gap is larger in the NC case (a dif-
ference of 8%).
Table 4 reports descriptive statistics on the three

critical points Lp,Mp, andUp as defined in Definition 6.
Our inferred conclusions are fourfold. First, the average
values for Lp and Mp are rather moderate, and the
values are lower under C than under NC each time.
This leads to rather plausible results for the input-oriented
plant capacity measure PCUi(x, x f , y). Under C, an av-
erage of 4.39 more variable inputs with current outputs
than with zero outputs are required, whereas under NC,
6.21 more variable inputs with current outputs than with
zero outputs are required.
Second, on average, the critical pointUp is very high:

31.58 times more variable inputs than currently in use
are required to reach maximum plant capacity outputs
under C, whereas magnifying variable inputs by just
a factor of 28.75 would be necessary under NC. These
amounts aremuch larger than our prior value of allowing
for only a fivefold increase in variable inputs.
Third, the variation in this factor Up is also large. For

example, at the third quartile, we obtain a 12.29 mag-
nification factor under C and only a 5.44 magnification

Table 3. Descriptive Statistics of Unbiased Plant Capacity Utilization

APCUo(x, xf , y, λ̄)
PCUo(x, xf, y) λ̄ � 0.5 λ̄ � 1 λ̄ � 1.5 λ̄ � 2 λ̄ � 2.5 λ̄ � 3 λ̄ � 3.5 λ̄ � 4 λ̄ � 4.5 λ̄ � 5

Convex
Average 0.522 1.952 1.000 0.778 0.687 0.637 0.611 0.594 0.581 0.572 0.564
SD 0.269 0.705 0.000 0.113 0.156 0.179 0.193 0.203 0.211 0.218 0.223
Minimum 0.016 1.000 1.000 0.495 0.331 0.272 0.231 0.200 0.177 0.159 0.155
Maximum 1.000 4.916 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Nonconvex
Average 0.553 2.964 1.000 0.868 0.782 0.733 0.677 0.658 0.647 0.634 0.631
SD 0.304 1.424 0.000 0.146 0.187 0.205 0.236 0.244 0.251 0.258 0.260
Minimum 0.015 1.000 1.000 0.459 0.392 0.387 0.259 0.099 0.099 0.099 0.099
Maximum 1.000 8.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2. Descriptive Statistics of Biased Plant Capacity Utilization

ADF f
o (xf, y, λ̄)

DF f
o (xf , y) λ̄ � 0.5 λ̄ � 1 λ̄ � 1.5 λ̄ � 2 λ̄ � 2.5 λ̄ � 3 λ̄ � 3.5 λ̄ � 4 λ̄ � 4.5 λ̄ � 5

Convex
Average 13.655 1.017 1.663 2.191 2.594 2.912 3.153 3.358 3.547 3.721 3.877
SD 77.137 1.027 1.721 2.421 3.107 3.770 4.349 4.927 5.502 6.077 6.645
Minimum 1.000 0.252 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Maximum 884.250 7.732 15.465 21.695 27.937 34.322 38.807 43.290 47.775 52.259 56.743

Nonconvex
Average 12.541 0.600 1.275 1.508 1.746 1.942 2.166 2.367 2.547 2.701 2.762
SD 77.226 0.907 1.511 1.818 2.157 2.830 2.856 3.501 4.303 4.725 5.079
Minimum 1.000 0.118 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Maximum 884.250 7.714 13.500 19.000 21.000 33.250 33.250 33.250 40.286 43.714 45.500
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factor under NC. The maximal magnification factors
of 648.99 and 643.50 under C and NC, respectively,
are similar in magnitude, and both are clearly impos-
sible in reality. These extreme requirements on the
availability of variable inputs cast doubt on the plau-
sibility of the traditional output-oriented plant ca-
pacity measure.

Fourth, the last column reporting the differenceUC
p −

UNC
p reveals that, on average, the variable inputs un-

der C should be increasing at least 2.83 times more than
under NC. Furthermore, there is a great amount of
heterogeneity in this differenceUC

p −UNC
p . Thus, in short,

although these magnification factors for the variable
inputs are clearly implausible, the nonconvex results are
the least implausible.

We end this analysis with the results for certain in-
dividual observations. Figures 1 and 2 have two parts:
the left-hand side displays the attainable biased plant
capacity in function of the value of λ̄, and the right-hand
side shows the attainable unbiased plant capacity in
function of the value of λ̄. We draw both figures under
the C and NC assumptions. Furthermore, we draw the
same critical pointUp for both C and NC in both figures.

Figure 1 shows the results for plant number 9. With
regard to the left-hand side, first the attainable bi-
ased plant capacity increases monotonically with λ̄

under C and in a stepwise fashion under NC: these
steps reveal the pervasive problem of slacks that occur
under NC. Second, the maximum increase in outputs
(i.e., the vertical distance between both lines) for the
attainable biased plant capacity is almost double un-
der C than under NC. Third, the value of Up is almost
four times larger under C (15.48) than under NC (3.11).
With regard to the right-hand side of Figure 1, first
the attainable unbiased plant capacity decreases again
monotonically with λ̄ under C and in a stepwise fashion
under NC. Second, the attainable unbiased plant ca-
pacity under C crosses with that under NC: only for very
high values of λ̄ are both estimates close to each other.
Overall, this again confirms that the NC results are less
implausible.
Figure 2 depicts the results for plant number 105.

Here, the value ofUp under C andNC is identical (12.82).
In this case, the differences between C and NC attainable
biased plant capacity are rather pronounced, whereas
these differences are mainly visible for the low-range
values of λ̄ for the attainable unbiased plant capacity.

4.3. Empirical Results for Industry Level
We structure Tables 5 and 6 in a similar way to the
corresponding firm-level tables. Table 5 reports on the
industry-biased plant capacity utilization measure

Figure 1. (Color online) Attainable Biased and Unbiased Plant Capacity for Plant 9

Table 4. Descriptive Statistics for Three Critical Points

Convex Nonconvex

LCp MC
p UC

p PCUi(.) LNC
p MNC

p UNC
p PCUi(.) UC

p −UNC
p

Average 0.338 0.715 31.585 4.397 0.352 0.944 28.753 6.214 2.832
SD 0.301 0.256 106.385 4.877 0.314 0.164 106.372 6.335 4.895
Minimum 0.038 0.132 1.000 1.000 0.038 0.267 0.904 1.000 0.000
First quartile 0.113 0.557 2.628 1.272 0.121 1.000 1.283 1.995 0.000
Median 0.200 0.754 4.031 2.485 0.245 1.000 2.627 3.566 0.571
Third quartile 0.451 0.952 12.295 5.732 0.451 1.000 5.444 7.359 2.692
Maximum 1.000 1.000 648.998 26.070 1.000 1.000 643.500 26.428 25.759
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IADF f
o (x f , y, λ̄), and Table 6 focuses on the industry-

unbiased plant capacity utilization measures IAPCUo(x,
x f , y, λ̄). Again, we have 10 columns describing the
industry-attainable plant capacity utilization measures
for λ̄ varying between 0.5 and 5 with step size 0.5. The
three last rows of Tables 5 and 6 are new and show
the number of observed units that have the amounts
ADFf

o (.)< IADFf
o (.),ADFf

o (.) � IADFf
o (.), andADFf

o (.)>
IADFf

o (.), respectively, andwe focus on comparing firm-
level and industry-level results.

In analyzing these results in Table 5, we can draw
several conclusions. First, the industry-attainable bi-
ased plant capacity utilization measure IADF f

o (x f , y, λ̄)
increases almost monotonically in λ̄, and on average,
the outputmagnification is always higher under C than
under NC. Second, IADF f

o (x f , y, λ̄) becomes stationary
after λ̄ reaches the value of 3 under C and the value of 2

under NC. Third, whereas IADFf
o (x f , y, λ̄) �>

<
ADFf

o ·
(x f

p , yp, λ̄), for the majority of observations, we find
that ADFf

o (x f
p , yp, λ̄)< IADF f

o (x f , y, λ̄) until λ̄ reaches
the value of 4 under C and only 2.5 under NC and
ADFf

o (x f
p , yp, λ̄) � IADFf

o (x f , y, λ̄) afterward for the ma-
jority of observations. Furthermore, ADFf

o (xf
p ,yp, λ̄)>

IADFf
o (xf ,y, λ̄) becomes 0 when IADFf

o (xf ,y, λ̄) be-
comes stationary.
Three deductions emerge with regard to the results

in Table 6. First, the industry-attainable unbiased plant
capacity utilization measure IAPCU f

o (x, x f , y, λ̄) de-
creases almost monotonically in λ̄, and on average,
IAPCUo(x, x f , y, λ̄) is first smaller under NC than un-
der C and then the converse. Second, IAPCU f

o (x, x f , y, λ̄)
becomes stationary after λ̄ reaches the value of 3 un-
der C and the value of 2 under NC. Third, whereas
IAPCUo(x, x f , y, λ̄) �>

<
APCUo(x, x f , y, λ̄), for the majority

Table 5. Descriptive Statistics of Biased Industry Plant Capacity Utilization

IADFf
o (xf , y, λ̄)

λ̄ � 0.5 λ̄ � 1 λ̄ � 1.5 λ̄ � 2 λ̄ � 2.5 λ̄ � 3 λ̄ � 3.5 λ̄ � 4 λ̄ � 4.5 λ̄ � 5

Convex
Average 12.092 12.973 13.366 13.576 13.644 13.655 13.655 13.655 13.655 13.655
SD 77.335 77.236 77.181 77.148 77.139 77.137 77.137 77.137 77.137 77.137
Minimum 0.010 0.010 0.318 0.318 0.918 1.000 1.000 1.000 1.000 1.000
Maximum 884.250 884.250 884.250 884.250 884.250 884.250 884.250 884.250 884.250 884.250
ADFf

o (.)< IADFf
o (.) 73 112 128 145 130 119 110 99 89 82

ADFf
o (.) � IADFf

o (.) 0 2 7 20 38 73 82 93 103 110
ADFf

o (.)> IADFf
o (.) 82 78 57 27 24 0 0 0 0 0

Nonconvex
Average 11.547 12.225 12.450 12.541 12.541 12.541 12.541 12.541 12.541 12.541
SD 77.357 77.270 77.240 77.226 77.226 77.226 77.226 77.226 77.226 77.226
Minimum 0.010 0.080 0.318 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Maximum 884.250 884.250 884.250 884.250 884.250 884.250 884.250 884.250 884.250 884.250
ADFf

o (.)< IADFf
o (.) 60 125 103 107 99 85 77 72 62 59

ADFf
o (.) � IADFf

o (.) 5 29 60 85 93 107 115 120 130 133
ADFf

o (.)> IADFf
o (.) 86 38 29 0 0 0 0 0 0 0

Figure 2. (Color online) Attainable Biased and Unbiased Plant Capacity for Plant 105
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of observations, we find that APCUo(x, x f , y, λ̄) >
IAPCUo(x, x f , y, λ̄) until λ̄ reaches the value of 4 under
C and only 2.5 under NC and APCUo(x, x f , y, λ̄) �
IAPCUo(x, x f , y, λ̄) afterward for the majority of obser-
vations. Furthermore, APCUo(x, x f , y, λ̄)< IAPCUo(x,
x f , y, λ̄) becomes 0 when IAPCUo(x, x f , y, λ̄) becomes
stationary.

By solving the models in Definition 9, we obtain two
critical points: under C, LI,C � 0.1199 andUI,C � 2.7516,
and under NC, LI,NC � 0.1199 and UI,NC � 1.9947. Re-
garding these points, first, although the lower bound
is identical under C and NC, the upper bound is sub-
stantially lower under NC than under C. Second,
according to Proposition 4, for λ̄ ≥ 2.7516 in the C case
and λ̄≥1.9947 in the NC case, we have IADFfo(xfp,yp,λ̄) �
DFf

o(xfp,yp) and IAPCUo(xp, xf
p , yp, λ̄) � PCUo(xp, x f

p ,yp).
Thus, in Tables 5 and 6, the last five columns in the
C case and the last seven columns in theNC case contain
identical results. Third, it makes no sense to compare
these two critical points LI andUI with, for example, the

averages of the corresponding points in the firmmodels
Lp and Up.
Instead, Table 7 reports the degree of increase of

aggregate variable inputs, such that all units obtain the
maximum of the standard plant capacity utilization
measure DFf

o (x f
p , yp) from both the perspective of the

firm and the industry in both the C and NC cases. The
second column shows the sum of observed variable
inputs. The sum of needed variable inputs with the
firm-level model (9) under C and NC appears in the
third and fifth columns, respectively. The fourth and
sixth columns present the sum of needed variable in-
puts with the industry-level model (14) under C and
NC, respectively. The second part of this table shows
themagnification factors computed by taking the ratios
of the sum of needed variable inputs to the sum of
observed variable inputs under firm and industry
models and under C and NC. The rows denote the two
variable inputs: water and workers.
In analyzing the results in Table 7, we draw three con-

clusions. First, firm models need many more variable

Table 7. Amounts of Variable Inputs Across Models

Convex Nonconvex

Variable inputs
∑K

p�1 xvp
∑K

p�1 Upxvp
∑K

p�1 UIxvp
∑K

p�1 Upxvp
∑K

p�1 UIxvp

Billions of cubic meters of water 30,718.888 103,352.775 84,526.092 74,867.372 61,274.966
No. of workers 3,203.284 94,183.888 8,814.156 89,220.392 6,389.590

Convex Nonconvex

Variable inputs
∑

K
p�1 Upxvp∑
K
p�1 x

v
p

∑
K
p�1 U

Ixvp∑
K
p�1 x

v
p

∑
K
p�1 Upxvp∑
K
p�1 x

v
p

∑
K
p�1 U

Ixvp∑
K
p�1 x

v
p

Billions of cubic meters of water 3.364 2.752 2.437 1.995
No. of workers 29.402 2.752 27.853 1.995

Table 6. Descriptive Statistics of Unbiased Industry Plant Capacity Utilization

IAPCUo(x, xf , y, λ̄)
λ̄ � 0.5 λ̄ � 1 λ̄ � 1.5 λ̄ � 2 λ̄ � 2.5 λ̄ � 3 λ̄ � 3.5 λ̄ � 4 λ̄ � 4.5 λ̄ � 5

Convex
Average 12.698 5.761 0.746 0.591 0.526 0.522 0.522 0.522 0.522 0.522
SD 23.797 19.196 0.624 0.473 0.273 0.269 0.269 0.269 0.269 0.269
Minimum 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
Maximum 98.250 98.250 3.150 3.150 1.090 1.000 1.000 1.000 1.000 1.000
APCUf

o (.)< IAPCUf
o (.) 82 78 57 27 24 0 0 0 0 0

APCUf
o (.) � IAPCUf

o (.) 0 2 7 20 38 73 82 93 103 110
APCUf

o (.)> IAPCUf
o (.) 73 112 128 145 130 119 110 99 89 82

Nonconvex
Average 10.792 0.811 0.673 0.553 0.553 0.553 0.553 0.553 0.553 0.553
SD 20.264 1.006 0.543 0.304 0.304 0.304 0.304 0.304 0.304 0.304
Minimum 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015
Maximum 98.250 12.543 3.150 1.000 1.000 1.000 1.000 1.000 1.000 1.000
APCUf

o (.)< IAPCUf
o (.) 86 38 29 0 0 0 0 0 0 0

APCUf
o (.) � IAPCUf

o (.) 5 29 60 85 93 107 115 120 130 133
APCUf

o (.)> IAPCUf
o (.) 60 125 103 107 99 85 77 72 62 59
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inputs than industry models. Second, C models need
many more variable inputs than NC models. Third,
whereas the industry models with an almost doubling
of variable inputs under NC and an almost tripling of
variable inputs under C are not necessarily incredible,
the firmmodels with a doubling by a factor of almost 2.5
at a minimum and a 30-fold magnification at worst are
clearly incredible. For the number of workers it is sim-
ply inconceivable that firms could magnify the existing
numbers by a factor of 27.85 under NC and a factor of
29.40 under C.

We deduce the following overall conclusions. First,
firm models necessitate unlikely numbers of variable
inputs, whereas the results for industry models are not
a priori strikingly unrealistic. Second, NC models in-
volve less unrealistic numbers of variable input mag-
nifications than C models.

Although some may put their hope in the industry
models, it is crucial to remember their limitations. First,
these models presuppose that there is a central au-
thority coordinating among all firms. If firms are decen-
tralized, this clearly is not an option. Second, the industry
models are very basic. However, a more realistic in-
dustrymodelwith additional constraints [e.g., constraints
on the amounts of inefficiency that are allowed for (see
Kerstens et al. 2006), putting lower and upper bounds on
changes in variable inputs per firm, etc.] would lead to
less spectacular results.

To provide additional empirical evidence, in Sec-
tion EC.3 in the e-companion we report the empiri-
cal results for both the firm and industry levels for a
data set withmultiple outputs.We find that themultiple-
output results are slightly less extreme than the single-
output results. Clearly, these empirical illustrations
make the basic point about the attainability issue of the
traditional output-oriented plant capacity measure.

5. Conclusions
The output-oriented plant capacity concept has been
around for at least two decades and is quite popular
for empirical applications. Although it was directly in-
spired by the informal definition provided by Johansen
(1987), the doubts of Johansen expressed with regard to
the attainability of the concept have seemingly never been
investigated. This paper has tried to dig deeper into this
issue of attainability.

In Section 3, we formally defined both the traditional
output-oriented and the rather new input-oriented plant
capacity notions. Thereafter, we argued that the output-
oriented plant capacity notionmaywell fail the notion of
attainability in general, because the numbers of variable
inputs required to reach the maximum capacity outputs
may simply not be available. This issue does not seem
to be a problem for the input-oriented plant capacity
concept. Consequently, we defined a new attainable
output-oriented plant capacity notion that incorporates

either firm or industry constraints on the availability of
variable inputs. It is up to the researcher to determine
plausible values limiting the upward scaling of variable
inputs.
Using secondary data, we developed an empirical

illustration in Section 4, which enabled us to draw
several conclusions. First, outputs need to bemagnified
unreasonably to reach traditional plant capacity out-
puts. Second, the reason for this phenomenon is that
variable inputs are supposed to be scalable at numbers
that are unlikely to be available at either the firm or the
industry level. Moreover, the degree of scaling that
needs to be applied is ways above the fivefold increase,
a case that we experimented with when defining our
attainable plant capacity notion. Third, although this
scaling of variable inputs is likely unreasonable, com-
putational results on a nonconvex technology are slightly
less implausible than those obtained on a traditional
convex technology. Thus, nonconvexity seems to partly
mitigate the extreme results associated with the tradi-
tional output-oriented plant capacity notion. Fourth, the
industry model (if applicable) leads to less incredible
results than the firm model.
It is clear that the traditional output-oriented plant

capacity concept in general faces serious attainability
problems. To continue using this output-oriented plant
capacity concept, one should always at least compute
the critical point Up to verify whether the required
variable inputs are likely available at the firm level. If
these required variable inputs are unavailable, then the
new notion of an attainable output-oriented plant ca-
pacity concept merits further attention. Furthermore,
because the new input-oriented plant capacity notion
does not face any attainability issues, it may constitute
an alternative framework as well.
We propose three avenues for future research. First,

our empirical analysis related to the attainability problem
of the traditional output-oriented plant capacity concept
needs further corroboration. In particular, it would be
important to verify whether the attainability problem is
equally serious when employing alternative estimators
(e.g., stochastic frontier analysis; see Felthoven 2002).
Furthermore, a major limitation is that we limited our
analysis to radial efficiency measures, although it is well
known that the traditional convex and especially the
nonconvex technologies suffer from a great amount of
unmeasured inefficiency appearing as slacks (see, e.g., De
Borger et al. 1998). There are some indications that slacks
may also play a substantial role in the measurement of
plant capacity utilization (e.g., Dupont et al. 2002 or
Vestergaard et al. 2003). Therefore, it would be useful to
revisit the attainability problem using nonradial rather
than radial efficiency measures.
Second, our attainable plant capacity notion could

benefit from a clarification of the number by which vari-
able inputs can reasonably be magnified (i.e., the value

Kerstens, Sadeghi, and Van de Woestyne: Plant Capacity and Attainability
Operations Research, 2019, vol. 67, no. 4, pp. 1135–1149, © 2019 INFORMS 1147



of λ̄). Expert opinion may be one source of inspiration
worth exploring. Economic considerations related to, for
example, costminimization or profitmaximizationmaybe
another source of inspiration. Otherwise, it remains a
conceptual alternative for the traditional output-oriented
plant capacity notion, but it has little empirical bite.

Third, Kerstens et al. (2017)find that the input-oriented
plant capacity notion compares well with cost-based
capacity notions, whereas the output-oriented plant ca-
pacity notion performs less well in this respect. Thus, we
question the extent to which the attainability issue of the
traditional output-oriented plant capacity plays a role
in these results. Perhaps the attainable output-oriented
plant capacity would mitigate these differences: this re-
mains an open question.
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Endnotes
1 For example, the convex variable returns to scale technology does
not satisfy inaction.
2 In case of parametric production technologieswith a single output, Färe
(1984) formally defines the notions of plant capacity limiting andweakly
plant capacity limiting factor combinations and provides necessary
and sufficient conditions for a factor combination to be plant capacity
limiting, assuming additional restrictions on the class of production
functions. However, not all production functions satisfy these addi-
tional restrictions. For example, for a popular production function
such as the constant elasticity of substitution with certain parameter
values, no factor combination is (weakly) plant capacity limiting.
3 Sahoo and Tone (2009) propose another input-oriented capacity
notion based on the short-run technology T f . Its eventual relationship
to PCUi(x, x f , y) remains to be explored.
4The idea of a kind of limited strong disposability has been pursued
in the context of congestion measurement (see Briec et al. 2016).
5Although inaction is often phrased mathematically as (0, 0) ∈ T, the
occurrence of zero outputs need not imply zero inputs. Assuming
strong input disposability, (x, 0) ∈ T for x> 0. Thus, the use of positive
inputs is compatible with zero outputs.
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Deng R (2013) DEA-based predictors for estimating fleet size
changes when modelling the introduction of rights-based man-
agement. Eur. J. Oper. Res. 230(3):681–687.

Kerstens, Sadeghi, and Van de Woestyne: Plant Capacity and Attainability
1148 Operations Research, 2019, vol. 67, no. 4, pp. 1135–1149, © 2019 INFORMS



Sahoo B, Tone K (2009) Decomposing capacity utilization in data
envelopment analysis: An application to banks in India. Eur. J.
Oper. Res. 195(2):575–594.

Tingley D, Pascoe S (2005) Factors affecting capacity utilisation
in English channel fisheries. J. Agricultural Econom. 56(2):287–305.

Tone K, Sahoo B (2003) Scale, indivisibilities and production function
in data envelopment analysis. Internat. J. Production Econom.
84(2):165–192.

Valdmanis V, Bernet P, Moises J (2010) Hospital capacity, capability,
and emergency preparedness. Eur. J. Oper. Res. 207(3):1628–1634.

Valdmanis V, DeNicola A, Bernet P (2015) Public health capacity in
the provision of health care services.Health Care Management Sci.
18(4):475–482.

Vestergaard N, Squires D, Kirkley J (2003) Measuring capacity and
capacity utilization in fisheries: The case of the Danish gill-net
fleet. Fisheries Res. 60(2–3):357–368.

Walden J, Tomberlin D (2010) Estimating fishing vessel capacity:
A comparison of nonparametric frontier approaches.Marine Res.
Econom. 25(1):23–36.

Ylvinger S (2000) Industry performance and structural efficiency
measures: Solutions to problems in firmmodels. Eur. J. Oper. Res.
121(1):164–174.

Kristiaan Kerstens is a research professor at CNRS in Lille,
France (LEM, UMR 9221) and full professor of economics at
IESEG School of Management in Lille, France. His main re-
search focus is on developing nonparametric methodology to
analyze microeconomic (production and portfolio) behavior.
His work covers productivity indices and indicators, efficiency
measurement (with a particular interest in nonconvexities),
capacity utilization, andmulti-moment portfolio optimization.

Jafar Sadeghi just finished a PhD in applied mathematics
(operations research) at Kharazmi University in Tehran, Iran
under the supervision of the late Prof. Dr. G. Jahanshahloo
and Dr. A. Dehnokhalaji. His current research interests are
situated in efficiency measurement and capacity utilization.

Ignace Van de Woestyne is full professor at the Faculty
of Economics and Business at KU Leuven campus Brussels,
Belgium. After doing research in differential geometry and
computer vision earlier, his research interests have shifted
toward mathematical modeling in production economics
(non-parametric methods) and in finance (multi-moment
portfolio optimization).

Kerstens, Sadeghi, and Van de Woestyne: Plant Capacity and Attainability
Operations Research, 2019, vol. 67, no. 4, pp. 1135–1149, © 2019 INFORMS 1149


	Plant Capacity and Attainability: Exploration and Remedies
	Introduction
	Technology: Basic Definitions
	Plant Capacity Concepts
	Empirical Illustration
	Conclusions


