
Omega 113 (2022) 102718 

Contents lists available at ScienceDirect 

Omega 

journal homepage: www.elsevier.com/locate/omega 

Multi-Time and Multi-Moment Nonparametric Frontier-Based Fund 

Rating: Proposal and Buy-and-Hold Backtesting Strategy 

� , �� 

Kristiaan Kerstens a , Paolo Mazza 

c , Tiantian Ren 

b , c , ∗, Ignace Van de Woestyne 

d 

a Univ. Lille, CNRS, IESEG School of Management, UMR 9221 - LEM - Lille Économie Management, Lille F-590 0 0, France 
b School of Business Administration, Hunan University, Changsha 410081, China 
c IESEG School of Management, Univ. Lille, CNRS, UMR 9221 – LEM – Lille Economie Management, 3 rue de la Digue, F-590 0 0 Lille, France 
d KU Leuven, Research Centre for Operations Research and Statistics (ORSTAT), Brussels Campus, Warmoesberg 26, Brussels B-10 0 0, Belgium 

a r t i c l e i n f o 

Article history: 

Received 8 January 2022 

Accepted 20 June 2022 

Available online 22 June 2022 

JEL classification: 

D24 

G11 

Keywords: 

Data Envelopment Analysis 

Shortage function 

Frontier 

Fund rating 

a b s t r a c t 

This contribution introduces new frontier models to rate mutual funds that can simultaneously handle 

multiple moments and multiple times. These new models are empirically applied to hedge fund data, 

since this category of funds is known to be subject to non-normal return distributions. We define a sim- 

ple buy-and-hold backtesting strategy to test for the impact of multiple moments and multiple times 

separately and jointly. The empirical results demonstrate that the proposed frontier models perform bet- 

ter than most financial performance measures and existing frontier models in selecting promising funds. 
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. Introduction 

The foundational work of Markowitz [60] in modern portfolio 

heory has learned every investor that to gauge the performance of 

ortfolio management one must consider risk in addition to return. 

his mean-variance (MV) dual objective of maximizing returns and 

inimizing risks turns performance evaluation into a controver- 

ial task involving trade-offs related to the risk preferences of the 

nvestor. The two-dimensional nature of this nonlinear quadratic 

ptimization problem allows to display the efficient frontier as a 

areto-optimal subset of portfolios whereby the expected return 

an only increase when also the variance increases. 

A large part of modern portfolio theory continues developing 

ariations on these bi-objective MV optimization problems. A wide 

ffer of alternative risk measures is available in the portfolio liter- 

ture: entropy, expected shortfall, mean absolute deviation, semi- 
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ariance and other partial moment measures, Value-at-Risk (VaR) 

n all its variations, etc. (see, e.g., Bacon [4] and Feibel [35] for sur-

eys). 1 

This focus on the first two moments of a random variable’s dis- 

ribution is only consistent with the von Neumann-Morgenstern 

xioms of choice underlying expected utility (EU) theory when: 

i) asset processes follow normal distributions, or (ii) investors 

ave quadratic utility functions. 2 A substantial empirical literature 

as documented that normality of asset returns can be rejected for 

 variety of financial asset classes in both developed and emerging 

nancial markets (e.g., Jondeau and Rockinger [44] ). At least since 

cott and Horvath [69] , investors have been attributed a positive 

reference for skewness as well as a negative preference for kur- 

osis to explain financial behavior. Meanwhile, decision-theoretic 

rguments exist for what has become known as the broad class 

f mixed risk-aversion utility functions that are characterized by 

 preference for odd moments and an aversion for even moments 
1 More rarely alternatives are proposed for the expected return: e.g., Benati 

6] focuses on the median as a location parameter of the distribution of returns. 
2 Von Neumann and Morgenstern [77] propose that under some axioms of ratio- 

al behaviour (i.e, ordering, continuity, and independence axioms), the decisions of 

gents under uncertainty are based on maximizing their EU. Transposed into a port- 

olio context, the portfolio selection of investors should maximize the EU associated 

ith the uncertain return of assets. 
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see Eeckhoudt and Schlesinger [27] ). Furthermore, via surveys and 

xperiments traditional risk preferences like risk aversion, but also 

igher order risk preferences like prudence and temperance are 

owadays better understood (see Trautmann and van de Kuilen 

75] for a review). 

Over time, several alternative portfolio selection criteria based 

n preferences for higher-order moments have been developed. 

ut, so far not a single widely accepted criterion seems to have 

merged. It is possible to distinguish between primal and dual ap- 

roaches to determine such higher-order moments portfolio fron- 

iers. One example of the primal approach is found in Lai [53] who 

etermines mean-variance-skewness (MVS) optimal portfolios via 

 Polynomial Goal Programming procedure. The dual approach ne- 

essitates a specification of some indirect higher-moment utility 

unction and yields optimal portfolios via its parameters reflecting 

igher-moment preferences (e.g., Harvey et al. [42] ). 

To our knowledge, Sengupta [71] is the first to introduce an effi- 

iency measure -borrowed from production theory- into a diversi- 

ed MV portfolio model. This efficiency measure relates to the dis- 

ance function that for a long time has been employed in consumer 

heory and especially in production theory (e.g., Cornes [24] ). In 

onsumer theory the distance function is dual to the expenditure 

unction: it serves to characterize multiple commodity and single 

tility choice sets. 3 In production theory the input distance func- 

ion is dual to the cost function: it basically serves to character- 

ze multiple input multiple output production possibility sets (e.g., 

ackman [41] ). This has opened up a booming research field where 

arametric but particularly nonparametric specifications of produc- 

ion and dual (e.g., cost) frontiers are specified based on minimal 

aintained axioms (e.g., constant or variable returns to scale, con- 

exity or not, etc.). Applied to a plethora of private and public sec- 

ors, these frontier methodologies analyse technical, scale or cost 

fficiency, economies of specialization, mergers, etc. (e.g., Färe et al. 

33] ). 4 

The introduction of an efficiency measure into portfolio the- 

ry allows to gauge performance over multiple dimensions and it 

pens up new perspectives. On the one hand, following Briec et al. 

19] who establish duality between a distance function and MV 

tility functions, Briec et al. [18] use a general distance function 

named shortage function) to look for improvements in efficiency 

n MVS space by looking for simultaneous expansions in mean re- 

urn and positive skewness and reductions in risk. Furthermore, 

hese authors provide a duality result with a MVS utility func- 

ion. 5 Even more general, for the class of mixed risk-aversion util- 

ty functions, Briec and Kerstens [17] assess portfolio performance 

or the general moments case by simultaneously looking for im- 

rovements in odd moments and reductions in even moments. In 

ddition, these authors establish duality with general moment util- 

ty functions. 

Empirical applications of this diversified multi-moment ap- 

roach are found in Adam and Branda [1] , Branda [10] , Branda 

nd Kopa [12] , Branda [11] , Joro and Na [45] , Jurczenko et al. [46] ,

hemchandani and Chandra [50] , Krüger [51] , Massol and Banal- 

stañol [61] , among others. Furthermore, Bacmann and Benedetti 

3] , Boudt et al. [9] , and Jurczenko and Yanou [47] , among others,
3 This distance function has sometimes been employed to make welfare compar- 

sons (e.g., Slesnick [72] ). More recently, Briec et al. [15] stress that the directional 

istance function is dually linked to the weighted and indirect Rawlsian social wel- 

are functions. 
4 This nonparametric approach to production is sometimes labeled Data Envelop- 

ent Analysis (DEA) because observations are enveloped subject to some minimal 

et of axioms. 
5 Briec et al. [20] establish a relation between MVS portfolio optimisation us- 

ng the shortage function and the far more popular Polynomial Goal Programming 

ethod proposed by Lai [53] . 
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2 
re empirical diversified multi-moment contributions focusing on 

edge funds (HF). 

On the other hand, within a standard MV framework, Morey 

nd Morey [63] develop a multiple time horizon assessment: in 

articular, these authors use either a risk contraction or a return 

xpansion efficiency measure to evaluate MV performance over 

hree time horizons simultaneously (in particular, a 3, 5 and a 10- 

ear time period). This contribution is slightly generalized in Briec 

nd Kerstens [16] . 6 An empirical application is available in Ren 

t al. [67] . 

To the best of our knowledge, Murthi et al. [64] is the seminal 

rticle that has been rating mutual funds (MF) by simultaneously 

rying to maximize the return and minimizing standard deviation, 

xpense ratio, load, and turnover using a nonparametric production 

rontier specification that maintains convexity and constant returns 

o scale. Following Farrell [34] and Charnes et al. [23] , nonpara- 

etric production frontiers are transposed into the financial liter- 

ture in an effort to provide alternative fund ratings. Intuitively, 

onparametric production frontiers can envelop the observations 

f any multi-dimensional choice set and position each of the obser- 

ations relative to the boundary of the choice set using some effi- 

iency measure. This has led to a growing literature that has been 

pplied to a large variety of financial assets (e.g., exchange traded 

unds, hedge funds, pension funds, etc.). Furthermore, a wide vari- 

ty of model specifications are available in terms of some combina- 

ion of ordinary moments, lower and/and upper partial moments, 

s well as in terms of production frontier specifications (constant 

r variable returns to scale, etc.), and the choice of efficiency mea- 

ure (e.g., reducing variables for which less is better (like inputs), 

r expanding variables for which more is better (like outputs), or 

ome combination of both). This frontier-based MF rating literature 

as been rather recently surveyed in Basso and Funari [5] . 

Following Heffernan [43] and Blake [7] , among others, Kerstens 

t al. [48] interpret this funds rating literature as a transposition 

f the characteristics approach in consumer theory into finance: 

F are seen as fee-based financial products characterized by dis- 

ributional characteristics of the asset price distribution as summa- 

ized by some combination of moments. Compared to the diver- 

ified portfolio models that require nonlinear programming, these 

onparametric production frontier MF rating models can normally 

e solved using simple linear programming. 

An open question is how the diversified portfolio models relate 

o the nonparametric production frontier specifications? Recently, 

iu et al. [58] state that a convex variable returns to scale non- 

arametric production frontier specification provides an inner ap- 

roximation to the traditional MV diversified portfolio model. This 

s certainly correct. One basic idea implicit in their contribution is 

hat nonparametric production frontier specifications should ide- 

lly underestimate the eventual performance of a diversified port- 

olio model. In the more general case where we want to explore a 

onconvex diversified MV (e.g., with some integer constraints) or 

 nonconvex higher moment portfolio model, then one can argue 

hat the nonconvex nonparametric production frontier specification 

ith variable returns to scale already advocated by Kerstens et al. 

48] provides a conservative underestimation of the corresponding 

onconvex diversified portfolio model within some common sub- 

pace of moments (see also Germain et al. [37] ). By contrast, the 

ore widely used convex nonparametric production frontier spec- 

fication may overestimate the corresponding nonconvex diversi- 
6 Note that the use of multiple time horizons within a MV framework is not 

articularly computationally challenging, but moving from a quadratic convex MV 

roblem to a cubic nonconvex MVS portfolio optimization problem is computation- 

lly harder. Evidently, the same remark applies when one moves from a cubic non- 

onvex MVS to a quartic nonconvex mean-variance-skewness-kurtosis portfolio op- 

imization problem, or beyond by including even higher order moments. 
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8 For a given financial universe containing n MFs, the co-variances, co-skewnesses 

and co-kurtosises of the MFs are n × n , n × n × n , and n × n × n × n tensors, respec- 
ed portfolio model within the common subspace of moments. 

he latter argument seems to have escaped attention so far: this 

xplains why most nonparametric production frontier MF rating 

odels with higher moments do impose convexity (for instance, 

regoriou et al. [40] ). 

The use of distance functions or efficiency measures in both 

he diversified portfolio models and the nonparametric production 

rontier specifications leads to the question how these gauges re- 

ate to traditional financial performance measures (see, e.g., the 

urveys in Bacon [4] , Feibel [35] and Caporin et al. [22] ). While rel-

tive performance measures that are variations on returns per unit 

f risk (e.g., Sharpe ratio) are useful to handle bi-objective (e.g., 

V) optimization problems, they are of little use beyond two di- 

ensional problems. E.g., adding a skewness constraint to a MV 

iversified model weakly decreases return and weakly increases 

ariance inevitably yielding a weakly worse Sharpe ratio: hence, 

he Sharpe ratio cannot assess higher moment portfolios. If finance 

ants to handle mixed risk-aversion preferences of investors, then 

t must consider a multidimensional performance measure. Some 

erformance measures try to assess the tail risk, like VaR or the 

onditional Value-at-Risk (CVaR), but they most of the time focus 

n the risk component and do not include the first moment of the 

eturn distribution. 

One exception is the Omega ratio that we include in our analy- 

is. Caporin et al. [22] classify the distance (shortage) function ap- 

roach correctly among the absolute performance measures: these 

erformance measures are based on rewards when compared to 

hose of a reference portfolio on a portfolio frontier. The choice 

or distance (shortage) function brings finance and portfolio anal- 

sis in line with consumer and production analysis where these 

icro-economic tools have a proven track record in representing 

ultidimensional choice sets. 7 

The first major objective of this contribution is to define new 

istance functions or efficiency measures that can simultaneously 

andle both multiple moments and multiple times (instead of ei- 

her multiple moments or multiple times separately) compatible 

ith general mixed risk-aversion investor preferences. To the best 

f our knowledge, the existing literature on traditional financial 

erformance indicators as well as the literature on nonparametric 

rontiers to gauge MF performance have so far produced less gen- 

ral efficiency measures. The application of the shortage function 

lso guarantees the possibility of dealing with negative data for 

he output-like variables in MF performance assessment. This per- 

ormance measure offers a simple and powerful tool for assessing 

F performance based on the moment characteristics over all time 

eriods. To the best of our knowledge, this basic idea is new and 

navailable in the literature. This performance measure thus aims 

ot only to evaluate to which extent a MF performs well in the 

everal moments following mixed risk-aversion preferences, but it 

imultaneously is assessing to which extent a MF performs well 

n all these moments over different times. This is important given 

he concern in the financial literature that traditional performance 

easures may exhibit limited stability over time (e.g., Bodson et al. 

8] , Menardi and Lisi [62] and Grau-Carles et al. [38] , among oth-

rs). 

As a second major objective, by positioning ourselves into a 

ondiversified nonparametric frontier-based approach, our contri- 

ution avoids computational limitations. The presence of multiple 

oments besides mean and variance leads to diversified portfolio 

odels that are nonconvex and nonsmooth. On the one hand, di- 

ersified portfolio models with higher-order moments suffer from 

normous computational costs even for moderate MF universes. 8 
7 Tammer and Z ̆alinescu [74] show that the shortage function is linked to the 

calarization function that is used in vector optimization problems, of which multi- 

bjective optimization problem is a special case. 

t

t

c

a

3 
n the other hand, it is difficult to guarantee global optima when 

olving nonconvex and nonsmooth diversified portfolio models. 

hese computational drawbacks are exacerbated when account- 

ng for the performance of MF over different times in a diversi- 

ed portfolio model. By contrast, the nondiversified nonparamet- 

ic frontier models are simply solved by a linear programming 

LP) problem or an implicit enumeration algorithm for the binary 

ixed integer linear programming (BMILP). Thus, the nondiversi- 

ed models are computationally superior over the diversified mod- 

ls when handling multiple moments and multiple times sepa- 

ately and jointly. 

This new performance measure is applied to HFs, a fund acces- 

ible only to institutional investors and high net worth individu- 

ls. Among MFs, HFs have a unique compensation structure. The 

ost widespread fee structure is the so-called 2/20, i.e., 2% of as- 

ets under management for annual management fees and 20% of 

ny profits made as a performance incentive fee. Consequently, HFs 

re marked by their heterogeneity and unusual (i.e., non-normal) 

tatistical properties, as compared to more traditional MFs. Indeed, 

Fs tend to exhibit some more strongly asymmetric and fat tailed 

eturn characteristics compared to other MFs (see Gregoriou [39] , 

arolles and Gourieroux [25] , Eling and Faust [29] , among oth- 

rs, and especially El Kalak et al. [28] for a survey). Furthermore, 

acicot and Théoret [65 , 66] develop time-varying measures of co- 

kewness and co-kurtosis: their work reveals that the behavior of 

Fs tends to trade off return for higher moments when build- 

ng optimal portfolios, and this behavior is asymmetric in relation 

o the phase of the economic cycle. They are globally viewed as 

iskier but are also associated with higher rewards. This is why our 

mpirical study specifically focuses on HFs since these are most 

ikely to be affected by higher order moments. 

The traditional financial performance measures (e.g., Sharpe ra- 

io, Sortino ratio, etc.) used for HF rating have been subject to 

ome criticism, because they basically follow the theoretical as- 

umptions of the Capital Asset Pricing Model (CAPM) that the cap- 

tal market is efficient and financial asset returns are normally, in- 

ependently and identically distributed, among others. When as- 

et returns do not obey the normal distribution, then the mean 

nd variance no longer suffice to effectively summarize its return 

istribution. Several studies extend the conventional two-moment 

APM by incorporating the effects of systematic skewness and kur- 

osis. In the four-moment CAPM, in addition to systematic vari- 

nce also systematic kurtosis and skewness contribute to the risk 

remium of an asset (e.g., Fang and Lai [32] , Friend and Wester- 

eld [36] and Sears [70] , among others). 9 While the four-moment 

APM to some extent refines the conventional CAPM, it still makes 

tronger assumptions on the return distribution of assets com- 

ared to the nonparametric frontier models when applied to HF 

ppraisal. Given the complexities to assess the performance of HFs 

sing traditional performance measures (e.g., see Smith [73] ), we 

hink that our new performance measure may provide a suitable 

ramework to evaluate both persistence across moments and across 

imes. 

In a HF context, the need for multiple moments is apparent in a 

ultitude of nonparametric production frontier studies: examples 

nclude, e.g., Gregoriou et al. [40] , Kumar et al. [52] , Germain et al.

37] , among others. However, to the best of our knowledge none 

f these studies appeal to the characteristics approach as proposed 
ively. Furthermore, a simple case is provided in Appendix to explain the computa- 

ional costs of the diversified models with multiple moments. 
9 Consistent with the co-variance definition, the measures of co-skewness and 

o-kurtosis are proposed based on an four-moment CAPM model. Back [2] provides 

 systematic discussion of the properties of these two measures. 
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y Kerstens et al. [48] . Furthermore, all these existing nonparamet- 

ic production frontier studies are single time: this contribution is 

he first to develop a multi-time evaluation framework. Therefore, 

s a third major objective, we focus on the impact of multiple mo- 

ents and multiple times separately and jointly surrounding the 

pplication of nonparametric frontiers when assessing the perfor- 

ance of HFs. We employ a Li-test statistic (initially proposed in 

i [54] ) to empirically test the necessity of multiple moments and 

ultiple times in HF appraisal. Thereafter, by means of a back- 

esting approach in a buy-and-hold setting, the potential benefits 

nd superiority of the multi-moment and multi-time frontier rat- 

ngs compared to most existing traditional and frontier MF ratings 

re empirically illustrated. 

The remainder of this contribution is organized as follows. The 

ext Section 2 introduces the nonparametric production frontiers 

hat serve to approximate the diversified portfolio models: we first 

iscuss single-time multi-moment models, then we introduce the 

ew multi-time multi-moment models. In Section 3 , we develop 

he buy-and-hold backtesting strategy in detail. Section 4 describes 

he hedge fund data in detail and comments upon the empirical 

esults. Finally, Section 5 concludes. 

. Nonparametric Frontier Rating Models: Methodology 

.1. Single-Time and Multi-Moment Rating Framework 

The nonparametric frontier rating methods gauge the financial 

erformance of MF, and these evaluations are done mostly us- 

ng frontier-based models which originate from production theory. 

n this section, we only introduce the basic definitions and prop- 

rties needed for applications within finance. Assume that there 

re n MFs under evaluation over a given time horizon. At time t

n this time horizon, the j-th MF ( j ∈ { 1 , . . . , n } ) is characterized

y m input-like values x t 
i j 

( i ∈ { 1 , . . . , m } ) and s output-like values

 

t 
r j 

( r ∈ { 1 , . . . , s } ). Input-like variables need to be minimized and

utput-like variables need to be maximized. 

We introduce one widely used production frontier-based model 

ith variable returns to scale (VRS). 10 Following Briec et al. [21] , a 

nified algebraic representation of convex and nonconvex produc- 

ion possibility sets (PPS) under the VRS assumption for a sample 

f n MFs at time t is: 

 

t 
� = 

{ 

(x t , y t ) ∈ R 

m × R 

s | ∀ i ∈ { 1 , · · · , m } : x t i ≥
n ∑ 

j=1 

λ j x 
t 
i j , 

∀ r ∈ { 1 , · · · , s } : y t r ≤
n ∑ 

j=1 

λ j y 
t 
r j , λ∈ �

} 

, 

(1) 

here: 

� ≡ �C = { λ ∈ R 

n | ∑ n 
j=1 λ j = 1 and ∀ j ∈ { 1 , . . . , n } : λ j ≥ 0 } if

onvexity is assumed, and 

� ≡ �NC = { λ ∈ R 

n | ∑ n 
j=1 λ j = 1 and ∀ j ∈ { 1 , . . . , n } : λ j ∈ 

 0 , 1 }} if nonconvexity is assumed. 

At time t , if there exists an input-output combination 

 

∑ n 
j=1 λ j x 

t 
i j 
, 
∑ n 

j=1 λ j y 
t 
i j 
) in the convex or nonconvex PPS using less 

nputs and producing more outputs than the observed MF, then 

his MF is considered inefficient since it can improve its inputs 

nd/or outputs. MFs are efficient if no improved input-output com- 

inations can be found. The input-output combinations of these 

fficient MFs are all located at the boundary of P t which is called 
�

10 Remark that a VRS frontier model is the most general representation of a tech- 

ology allowing for increasing, constant, or decreasing returns to scale at different 

oints on the production frontier. 

w

t

4 
he convex or nonconvex VRS (VRSc and VRSnc for short hereafter) 

onparametric frontier. 

Using the nonparametric PPS defined in (1) , the shortage func- 

ion of any observed MF at time t is now defined as follows: 

efinition 2.1. At time t , let g t = (−g t x , g 
t 
y ) ∈ R 

m 

− × R 

s 
+ and g t � = 0 .

or any observation z t = (x t , y t ) ∈ R 

m × R 

s , the shortage function

 

t 
�

at time t in the direction of vector g t is defined as: 

 

t 
�(z t ; g t ) = sup { β ∈ R | z t + βg t ∈ P t �} . 

This shortage function simultaneously permits the enhance- 

ent of output-like variables and the reduction of input-like vari- 

bles. If the shortage function value S t 
�

(z t ; g t ) > 0 for the input-

utput combination z t = (x t , y t ) of a specific MF at time t , then

 

t is not located on the frontier of P t 
�

. Hence, its inputs and/or

utputs can be improved to catch up with the VRS nonparametric 

rontier. By contrast, if the shortage function value S t 
�

(z t ; g t ) = 0 ,

hen z t is located on the frontier. 

Consider a MF with index o ∈ { 1 , . . . , n } in need of assessment

t time t by means of the shortage function with direction vector 

 

t 
o = (−g t xo , g 

t 
yo ) ∈ R 

m − × R 

s + . Combining (1) and Definition 2.1 , the

fficiency status of this MF at time t can be determined by solv- 

ng the following model: 

ax β

.t. 

n ∑ 

j=1 

λ j x 
t 
i j ≤ x t io − βg t io , i = 1 , · · · , m, 

n ∑ 

j=1 

λ j y 
t 
r j ≥ y t ro + βg t ro , r = 1 , · · · , s, 

n ∑ 

j=1 

λ j = 1 , β ≥ 0 , 

∀ j = 1 , · · · , n : 

{
λ j ≥ 0 , under convexity , 

λ j ∈ { 0 , 1 } , under nonconvexity . 

(2) 

Note that model (2) results in a LP problem under convex- 

ty and a BMILP problem under nonconvexity. In the empiri- 

al application, the direction vector is in general set as g t o = 

−x t 
1 o 

, . . . , −x t mo , | y t 1 o | , . . . , | y t so | ) to accommodate eventual negative

alues of return and skewness, whereby all input-like values x t 
io 

, 

i = 1 , . . . , m ) and output-like values y t ro , (r = 1 , . . . , s ) are simulta-

eously increased and decreased in proportion to their initial val- 

es, respectively. The optimal value β∗ measures the resulting pro- 

ortional amount of inefficiency representing the shortage func- 

ion. 

Note that the value of inefficiency β∗ determined by model 

2) in the nonconvex case is always less than that determined in 

he convex case. Naturally, the number of efficient MFs obtained 

sing the nonconvex case is also larger than the ones obtained us- 

ng the convex case when assessing a set of MFs to be evaluated. 

athematically, these properties are a direct consequence of the 

estrictions of weights λ j ( j = 1 , . . . , n ) in model (2) under convex-

ty and nonconvexity. Clearly, the nonconvex model is more restric- 

ive on the weights λ j than the convex model. In terms of efficient 

rontiers, the VRSnc nonparametric frontier is always located below 

he VRSc one (see Kerstens et al. [48] ), since the latter imposes the 

onvexity axiom that allows to linearly combine MFs. 11 

The setting defined in the previous section is general and flex- 

ble and can thus handle a large choice of inputs and outputs. 

e now particularize the above formulation to characterize the 
11 Convexity is not always useful for guiding investors in terms of selecting MFs 

henever there are nonconvexities at stake (e.g., higher moments of the asset re- 

urns, cardinality constraints on the number of assets, etc.). 
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fficient frontier in the MVS and the mean-variance-skewness- 

urtosis (MVSK) spaces. Suppose that there are n MFs under 

valuation. At time t , let R t 
1 
, . . . , R t n denote the raw returns of

he n funds, which are characterized by their expected return 

(R t 
j 
) , variance V (R t 

j 
) , skewness S(R t 

j 
) and kurtosis K(R t 

j 
) for j ∈

 1 , . . . , n } . Here, the calculations of variance, skewness and kur-

osis are expressed as follows: V (R t 
j 
) = E [(R t 

j 
− E (R t 

j 
)) 2 ] , S(R t 

j 
) =

 [(R t 
j 
− E (R t 

j 
)) 3 ] , and K(R t 

j 
) = E [(R t 

j 
− E (R t 

j 
)) 4 ] . 12 To obtain a de-

ailed specification of the PPS, as defined in (1) , we need to clas-

ify the different goals of the investor in terms of either inputs 

i.e., objectives to minimize), or outputs (i.e., objectives to maxi- 

ize). As discussed in the previous section, the need for multi- 

le moments is apparent to assess MFs (and most particularly HFs) 

hose return distributions may exhibit strong asymmetry and fat 

ails. Given mixed risk-aversion utility functions, investors express 

 preference for odd moments and a dislike for even moments of 

he distribution of asset returns. Therefore, when the MVSK frame- 

ork is considered, we can define the first and second inputs of 

Fs as x t 
1 j 

= V (R t 
j 
) and x t 

2 j 
= K(R t 

j 
) , and the first and second out-

uts as y t 
1 j 

= E(R t 
j 
) and y t 

2 j 
= S(R t 

j 
) for j ∈ { 1 , . . . , n } . Obviously, for

he MVS case only the first input is considered. 

For a MF o under evaluation at time t , denote E o = E(R t o ) , V o =
 (R t o ) , S o = S(R t o ) and K o = K(R t o ) . Then both models, either with

onvexity or nonconvexity, allow to project the input-output com- 

ination (V o , K o , E o , S o ) of this MF in such a way that inputs (i.e.,

ariance and kurtosis) are decreased and outputs (i.e., expected re- 

urn and skewness) are increased in the direction g t o . The optimal 

olution β∗ of model (2) measures how many times the direction 

ector g t o fits in the line segment from the input-output combina- 

ion of the MF o to the efficient frontier in the direction of g t o . 

In model (2) under convexity, the left-hand sides of the con- 

traints are all linear. All possible linear combinations of inputs and 

utputs of the observed MFs are used to construct a convex VRS 

rontier for evaluation. For the MF o, if β∗ = 0 , the correspond- 

ng input-output combination is on the convex frontier and effi- 

ient at time t . If β∗ > 0 , there exist input-output combinations 

ielding a higher or equal return and skewness together with a 

ower or equal variance and kurtosis. When nonconvexity is as- 

umed in model (2) , evaluation is done with respect to a non- 

onvex VRS frontier determined by all efficient MFs (excluding the 

onvex input-output combinations of these). 

.2. Multi-Time and Multi-Moment Rating Framework 

Differing from MF ratings in a single-time framework, MF rat- 

ngs in a multi-time framework consider performance over a time 

orizon consisting of multiple discrete time periods. In this re- 

pect, Morey and Morey [63] and Briec and Kerstens [16] empha- 

ize the importance of the multiple period assessment to find out 

he maximum improvements possible for a MV portfolio over a 

ulti-period time horizon. Inspired by this multi-time perspective, 

he objective of our methodological extension is to offer a gener- 

lized efficiency measure for evaluating MF performance based on 

he multiple moment characteristics over all time periods simulta- 

eously. The multi-time and multi-moment ratings thereby devel- 

ped potentially identify promising MFs that have both persistence 

cross moments and across times. To develop the nonparametric 

rontier rating models in this multi-time framework, some defini- 

ions and properties are presented. 

The fundamental idea of multi-time rating is to combine the 

tatic evaluation based on nonparametric multi-moment frontiers 

ith the concept of a temporal shortage function proposed in Briec 
12 Note that the four moments of the return distribution are computed based on 

he historical returns observed in an estimation time window of a given length. 

l

i

o

(

5

t al. [14] . This temporal efficiency measure is developed based on 

he assumption of time separability: there are no temporal linkages 

etween each of the estimated technologies in each sub-period. In 

n investment context, the typical investor attempts to select MFs 

y their performances over multiple periods (e.g., 1 year, 3 years, 

nd 5 years) starting from a certain initial time in which he de- 

ides on an investment. Therefore, an explicit temporal linkage be- 

ween multiple time periods is not needed in this context, since 

nly a given investment in the initial time period is at stake and 

ot some optimal investment trajectory. Therefore, our multi-time 

F rating is based on the idea of the temporal efficiency measure- 

ent that explicitly aims to provide an overall weighting scheme 

or MF performance of a given initial investment over multiple 

ime periods. Thus, it is only dynamic in a limited sense. 

By contrast, if one would be interested to analyse the overall 

erformance of MFs based on a series of adjacent periods through- 

ut the whole investment process in which investments are made 

n some optimal way throughout the whole investment horizon, 

hen this involves a dynamic structure accounting for the interme- 

iate connections between adjacent periods for the dynamic port- 

olio assessment. Therefore, for cases in which the temporal sep- 

rability does not hold, one ideally needs truly dynamic portfolio 

odels in either continuous or discrete time: see, e.g., Lin et al. 

56] for an example. 

Consider n MFs under evaluation. Let T denote the number of 

onsecutive times in a time horizon of interest. In addition, define 

 multi-time path of inputs and outputs as Z j = (x t 
j 
, y t 

j 
) T t=1 for MF

j, ( j = 1 , . . . , n ) , where x t 
j 
= (x t 

1 j 
, . . . , x t 

m j 
) and y t 

j 
= (y t 

1 j 
, . . . , y t 

s j 
)

epresent m inputs and s outputs at time t , respectively. Assum- 

ng VRS for all times t ∈ { 1 , . . . , T } and strong free disposability of

ll inputs and outputs, the multi-time PPS with convexity and non- 

onvexity can be defined as: 

 

T 
� = P 1 � × · · · × P T � ⊂ (R 

m × R 

s ) T ∼= 

R 

m ×T × R 

s ×T , (3) 

here P t 
�

, (t = 1 , . . . , T ) , is the PPS at time t mentioned previously

n (1) . 

The idea is now for each MF to simultaneously expand its mul- 

iple outputs and decrease its multiple inputs over all discrete 

imes in a given time horizon by means of the multi-time short- 

ge function. To allow a general definition, we first introduce some 

bbreviating notations. 

The time dependent direction vector denoted by G = 

g 1 , . . . , g T ) ∈ (R 

m − × R 

s + ) T ∼= 

R 

m ×T 
− × R 

s ×T 
+ represents a given multi-

ime direction path, where g t = (−g t x , g 
t 
y ) ∈ R 

m − × R 

s + represents

he direction vector at time t ∈ { 1 , . . . , T } . In addition, we denote

= (β1 , . . . , βT ) ∈ R 

T and � · G = (β1 g 
1 , . . . , βT g 

T ) ∈ (R 

m × R 

s ) T ∼=
 

m ×T × R 

s ×T . Considering the time preference of an investor in a 

ortfolio context, we introduce a time discounting factor denoted 

(0 < ξ < 1) to weight the efficiency measures over the time 

orizon. Then, the time discounted multi-time shortage function 

ssuming convexity or nonconvexity is defined as follows: 

efinition 2.2. With the notations introduced above, for any 

bservation Z ∈ (R 

m × R 

s ) T ∼= 

R 

m ×T × R 

s ×T , the time discounted 

ulti-time shortage function S T 
�

in the direction of G is defined 

s: 

 

T 
�(Z; G ) = sup 

{ 

1 

T 

T ∑ 

t=1 

ξ T −t βt | Z + � · G ∈ P 

T 
�

} 

. 

For a given time horizon T , this amounts to looking for the 

argest arithmetic mean of time discounted distances over all times 

n a given time horizon of the input-output combinations of an 

bserved MF to boundary of P 

T 
�. This definition adapts a weighted 

discounted) temporal efficiency measure, whereby the weights de- 
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line as one moves away from the present into the past. 13 If the 

ime discounted multi-time shortage function value S T 
�

(Z; G ) > 0 

or the input-output path Z of the MF being evaluated, then it 

eans that its inputs and outputs can be reduced and improved 

imultaneously in one or more time periods. 

Based on Definition 2.2 , we are now in the position to deter- 

ine the nonparametric frontier rating models in a general for- 

ulation. Suppose there are n MFs under evaluation. Let T de- 

ote the number of consecutive times in a time horizon under 

onsideration. In particular, the multi-time rating methods used in 

ection 3 focus on 3 distinct time periods: 1, 3 and 5 years. For a

iven multi-time direction path G = (g t ) T t=1 ∈ R 

m ×T 
− × R 

s ×T 
+ , the ef-

ciency of the MF o under evaluation can be determined by the 

ime discounted multi-time shortage function value resulting from 

he following program: 

ax 
1 

T 

T ∑ 

t=1 

ξ T −t βt 

.t. 

n ∑ 

j=1 

λt 
j x 

t 
ij ≤ x t io − βt g 

t 
io , i = 1 , · · · , m, 

n ∑ 

j=1 

λt 
j y 

t 
rj ≥ y t ro + βt g 

t 
ro , r = 1 , · · · , s, 

n ∑ 

j=1 

λt 
j = 1 , βt ≥ 0 , t = 1 , · · · , T , 

∀ j = 1 , · · · , n : 

{ 

λt 
j 
≥ 0 , t = 1 , · · · , T , under convexity , 

λt 
j 
∈ { 0 , 1 } , t = 1 , · · · , T , under nonconvexity .

(4) 

In the multi-time framework, we select variance and kurtosis 

f each time t , (t = 1 , . . . , T ) , as inputs and expected return and

kewness as outputs, whereas for the MVS case only variance for 

ach t is considered as inputs. With the help of the time dis- 

ounted multi-time shortage function, the observed MF with in- 

ex o can improve its multiple return and skewness dimensions 

nd reduce its multiple variance and kurtosis dimensions along a 

iven direction path G over all time periods. The value of the ob- 

ective function of model (4) indicates the amount of (in)efficiency 

f the MF o representing the multi-time shortage function. A value 

reater than zero indicates that the inputs and outputs of the eval- 

ated MF can be improved in one or more time periods. The path 

f input-output combinations is thus situated below the boundary 

f the multi-time PPS, and thus is inefficient from a multi-time 

erspective. 14 

Again, it is trivial to prove that the value of the multi-time 

hortage function computed by model (4) with nonconvexity is 

lways less than the one computed by this model with convex- 

ty. Furthermore, the number of efficient MFs determined by the 

ulti-time shortage function in the nonconvex context is larger 

han that determined by the multi-time shortage function in the 

onvex context for MF assessments. 
13 For retrospective benchmarking based on observed past behavior when assess- 

ng performance, the distant past is less valuable than the nearby present (as in- 

icated by Briec and Kerstens [16] ). In that sense, the distant past contributes less 

eight to efficiency gains than the nearby past. 
14 Practically speaking, our frontier rating methods are remarkably flexible in 

erms of the inclusion of either multiple moments or multiple times. For instance, 

e can specify only including expect return and variance to measure the perfor- 

ance of MFs in case a normal return distribution is valid. Also, the desired times 

o be included depend on the actual needs of investors involved in the MFs assess- 

ent and selection process. While using frontier-based methods, it is recommended 

hat one employs Li-test statistics to assess these key methodological choices in 

erms of moments and times to include. In our empirical study, the HFs sample 

atabase has been tested in terms of the necessity of multiple moments (skewness 

nd kurtosis) and multiple times separately and jointly. 

w
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6

Due to the time separability assumption mentioned above, the 

athematical program (4) is a block-diagonal LP or BMILP, since 

here are no temporal linkages among the MF assessments for each 

ime period. Mathematically, one can solve the static mathemati- 

al program (2) for each time period separately and compute the 

bjective function of model (4) based on the optimal solutions of 

hese T sub-problems (see Briec et al. [14] and Briec and Kerstens 

16] ). 

In the following Sections 4 and 5 , we employ MF data to com- 

are the proposed multi-time and multi-moment measures with 

raditional financial measures, as well as with single-time MV 

easures. These comparisons are aimed not only to illustrate the 

mpact of multiple moments and multiple times on MF perfor- 

ance evaluation, but more importantly to further explore the po- 

ential benefits of the newly proposed performance measures for 

F selection by means of backtesting. We now turn to explain the 

acktesting framework in Section 3 . 

. Backtesting Framework 

Our main objective in this contribution is to test that the multi- 

ime and multi-moment performance measures can be expected 

o perform well for MF ratings and selection. To this end, a com- 

arative approach based on a backtesting methodology is adopted. 

acktesting refers to executing fictitious investment strategies us- 

ng historical data to simulate how these strategies would have 

erformed if they had actually been adopted by MF managers in 

he past. 15 

It is powerful for evaluating and comparing the performance of 

ifferent investment strategies without using real capital. Some ex- 

mples of a backtesting approach are found in DeMiguel et al. [26] , 

u and Zhou [76] , Brandouy et al. [13] , Zhou et al. [79] and Lin and

i [57] , among others. 

For comparison, there are 15 fund rating methods in total being 

ollected in our work. On the one hand, we test some popular tra- 

itional financial indicators: Sharpe ratio, Sortino ratio and Omega 

atio. The exact definition for the Sharpe, Sortino and Omega ratios 

an be found in Feibel [35 , p. 187 and p. 200] and Eling and Schuh-

acher [30 , p. 2635], respectively. Based on these definitions and 

otations introduced in Section 2 , these three traditional financial 

atios for MF j, ( j ∈ { 1 , . . . , n } ) at time t are presented as follows:

Sharpe 
t 
j = 

E(R 

t 
j 
) − r f 

σ (R 

t 
j 
) 

, (5) 

Sortino 

t 
j = 

E(R 

t 
j 
) − r f 

σ−(R 

t 
j 
) 

, (6) 

Omega t j = 

E(R 

t 
j 
) − L 

E[ max (L − R 

t 
j 
, 0)] 

+ 1 , (7) 

here E(R t 
j 
) and r f represent the expected return and the risk- 

ree rate, respectively; σ (R t 
j 
) and σ−(R t 

j 
) denote the standard and 

ower semi-standard deviations, respectively; L is the loss thresh- 

ld, in particular, above this threshold returns are considered gains, 

hile below this threshold these are regarded as losses. Using the 

bove three ratios, we obtain the financial indexes for the above 

 MFs, which can be use to measure their performance at time t , 

nd the higher the value, the better the performance. The risk-free 
15 The use of a backtesting approach is implicitly linked to the hypothesis of effi- 

ient markets whereby participants in the financial market have no effect on prices: 

hus, a given investment strategy of one individual investor does not affect the ob- 

erved results of the financial market in which he/she is operating. 
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Table 1 

List of various rating models compared. 

Classification Methods 

Traditional financial measures Eff(Sharpe) 

Eff(Sortino) 

Eff(Omega) 

Convex frontier rating methods Single-time and MV framework 

Single-time and MVS framework 

Single-time and MVSK framework 

Multi-time and MV framework 

Multi-time and MVS framework 

Multi-time and MVSK framework 

Nonconvex frontier rating methods Single-time and MV framework 

Single-time and MVS framework 

Single-time and MVSK framework 

Multi-time and MV framework 

Multi-time and MVS framework 

Multi-time and MVSK framework 
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16 In contrast to a rebalancing portfolio strategy, the buy-and-hold strategy is a 

long-term passive investment strategy whereby investors maintain a relatively sta- 

ble portfolio over time. For this reason, our backtesting analysis sets up several 

fairly long holding windows to test the performance of these buy-and-hold back- 

testing strategies. 
17 Appendix discusses the empirical results pertaining to the performance of 15 

buy-and-hold backtesting strategies held for 1 year, for 3 years, for 5 years, respec- 

tively. 
ate r f and the loss threshold L are here specified as zero. Further- 

ore, in line with the properties of the shortage function used in 

he nonparametric frontier-based methods, we define the follow- 

ng traditional finance-based efficiency measures that bound the 

alues between zero and unity and that make sure that the zero 

ndicates full efficiency: 

Eff( Sharpe 
t 
j ) = 

max { Sharpe 
t 
j | j = 1 , . . . , n } − Sharpe 

t 
j 

max { Sharpe 
t 
j | j = 1 , . . . , n } − min { Sharpe 

t 
j | j = 1 , . . . , n } , (8) 

Eff( Sortino 
t 
j ) = 

max { Sortino 
t 
j | j = 1 , . . . , n } − Sortino 

t 
j 

max { Sortino 
t 
j | j = 1 , . . . , n } − min { Sortino 

t 
j | j = 1 , . . . , n } , (9) 

Eff( Omega t j ) = 

max { Omega t j | j = 1 , . . . , n } − Omega t j 

max { Omega t j | j = 1 , . . . , n } − min { Omega t j | j = 1 , . . . , n } . (10) 

On the other hand, we include convex and nonconvex non- 

arametric frontier-based ratings in different frameworks. All these 

5 rating methods (3 traditional financial rating methods plus 12 

rontier-based rating methods) are listed in Table 1 . 

To simplify names of the frontier-based methods, some nota- 

ion indicates which frontier rating method is used for ranking 

Fs. This can be done in both single-time (ST) and multiple- 

ime (MT) frameworks, using a convex (subscript c) or a non- 

onvex (subscript nc) frontier rating methods, and focusing on 

he first two (MV), three (MVS), or four moments (MVSK), re- 

pectively. For instance, MTMVSKc refers to the convex fron- 

ier model with the mean, variance, skewness and kurtosis over 

ultiple times. Note that all the empirical results concerning 

hese 15 rating methods are reported using these simplified 

otations. 

We consider a simple buy-and-hold backtesting strategy con- 

isting of buying in each time the 10, 20 and 30 best perform- 

ng MFs ranked by rating method, respectively. Our work now 

s to empirically test the out-of-sample performance of these 15 

uy-and-hold strategies. Since the Sharpe ratio and other relative 

erformance measures are only suitable for the MV world, we 

pt for the shortage function as an absolute performance mea- 

ure that is capable to assess the performance of these strate- 

ies in multiple dimensions simultaneously (i.e., mean, variance, 

kewness and kurtosis). Hence, the 15 buy-and-hold backtesting 

trategies are compared based on the MVSK performance of their 

olding values evaluated by combining shortage functions with 

he single-time and multi-moment frontiers (with convexity and 

onconvexity). 

Based on the fundamental logic of backtesting summarized so 

ar, we design a backtesting analysis in detail for the buy-and-hold 
7 
trategies constructed by the 15 rating methods. Our backtesting 

nalysis is performed multiple times by rolling the time window. 

e first collect a sample of HFs with monthly return data starting 

rom October 2006 till October 2020. The detailed description of 

his sample funds is presented in the following section ( Section 4 ). 

hen, we split the period from the beginning of the sample period 

o the end of October 2015 in time windows of a given length, 

here the 5 years before the end of the sample period are kept 

part to test the long-term holding performance of these strategies 

n the last backtesting period. Since the longest time period con- 

idered in our work is 5 years, it is appropriate to set the length of

he rolling time window at 5 years. Therefore, the backtesting anal- 

sis is developed starting from November 2011, and is repeated 48 

imes (each time another month) with the rolling time window of 

 years till October 2015. 

Using the first 5 year time window of data (from November 

006 to October 2011) to obtain the rankings for different rating 

ethods, we determine the first buy-and-hold backtesting strate- 

ies in November 2011. These strategies are held for four holding 

cenarios: the end of October 2012 (for 1 year); the end of October 

014 (for 3 years); the end of October 2016 (for 5 years); and un- 

il the end of October 2020 (the end of the whole sample period). 

he process of the first backtesting is represented in Figure 1 . 16 

Then, the time window is shifted with a step of a single month 

o develop the next backtesting analysis. For each time window or 

ach backtesting event, the steps can be detailed as follows: 

1) Adopt the 5-year time window of data to compute the single- 

time frontier rankings, as well as the traditional financial rank- 

ings. In combination with the other two time periods (i.e., 1- 

year and 3-year) of data from this time window, the multi-time 

frontier ratings are computed. 

2) Depending on the ranking computed by this time window of 

data for each rating method, the 10, 20 or 30 best perform- 

ing HFs are selected for the backtesting exercise, and then one 

holds these selected HFs for 1 year, for 3 years, for 5 years, and 

till the end of the whole sample period, respectively. 17 

3) In each of the above four holding period scenarios, we compute 

and store the complete historical track record of the holding 

value per buy-and-hold backtesting strategy, and then we cal- 

culate the mean, variance, skewness and kurtosis of these hold- 

ing value series. 

The above steps for backtesting are repeated over 48 time win- 

ows in total. For each of the four holding period scenarios, the 

erformance of these MVSK observations (15 times 48 observa- 

ions) that are generated by the 15 strategies over 48 backtesting 

xercises are all evaluated by the shortage functions in the single- 

ime and multi-moment frameworks (with convexity and noncon- 

exity). In particular, we first establish the VRSc and VRSnc non- 

arametric frontiers in the single-time and multi-moment frame- 

ork for these MVSK observations, and then measure their effi- 

iency scores using the shortage functions. Clearly, each buy-and- 

old strategy yields the efficiency scores of 48 MVSK observations. 

he average efficiency score and the number of efficient units, as 

ell as the distribution of inefficiency scores across these 48 ob- 

ervations, are adopted to evaluate the 15 strategies. For the four 

olding scenarios, the same pattern is used to compare the 15 

trategies based on the different rating methods. 
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Fig. 1. Process of the first backtesting window. 

Table 2 

Descriptive statistics for all 187 HFs over the whole sample period. 

Mean Variance Skewness Kurtosis Scaled skewness Scaled kurtosis 

Min. -0.328 0.633 -621.506 3.866 -5.989 2.469 

Q1 0.306 8.764 -43.341 481.584 -0.785 3.874 

Median 0.447 14.971 -10.294 1293.516 -0.320 5.385 

Mean 0.480 26.810 210.182 34145.995 -0.510 7.283 

Q3 0.601 27.018 1.468 4267.635 0.077 7.417 

Max. 1.733 521.156 22732.909 2655540.333 1.913 59.538 
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. Empirical Backtesting Results 

As previously mentioned, the purpose of the empirical analysis 

s twofold. First, we examine whether the consideration of multi- 

le moments and multiple times has an impact on both the ef- 

ciencies and the rankings of HFs. Second, we aim to further il- 

ustrate the eventual superiority of the proposed multi-time and 

ulti-moment frontier rating methods by the backtesting analysis. 

.1. Sample Description 

Considering the use of backtesting in the newly proposed multi- 

ime and multi-moment ratings, the sample data collected requires 

he availability of continuous data for at least 14 years. Hence, we 

hoose 187 HFs with monthly returns from October 2006 to Oc- 

ober 2020 to test the 15 rating methods. 18 The data is all down- 

oaded from Lipper for Investment Management made available by 

edge Funds database. According to the Lipper classification re- 

arding HFs strategies, our sample database includes twelve differ- 

nt strategies. 19 Indeed, HFs with different strategies tend to have 

ifferent trade-offs between risk and return when building their 

ptimal portfolios (see Racicot and Théoret [65 , 66] ). In our buy- 

nd-hold backtesting analysis, we do not account for this varia- 

ion since most individual investors are normally free to select a 

umber of HFs across strategies from the universe of HFs to in- 

est in. It needs to be stated that we initially specify these non- 

arametric frontier rating methods following the idea of Kerstens 
18 As introduced in Section 3 , each backtesting exercise needs the return data of 

he 5 previous years to calculate the statistics of HFs for computing the finance- 

ased and frontier-based ratings, and at least the return data of 5 years ahead to 

valuate the out-of-sample performance of these fund ratings. This process is re- 

eated for 48 successive months. Therefore, this requires that the selected sample 

f HFs contains at least 14 (= 5 + 5 + 4) years of monthly return data. Thus, our 

ample runs from October 2006 to October 2020 for a total of 187 HFs in Lipper 

hat are available over the sample period. 
19 In detail: Long/Short Equity (71 obs.), Managed Futures/CTAs (41 obs.), Multi 

trategies (20 obs.), Event Driven (18 obs.), Emerging Markets (16 obs.), Global 

acro (7 obs.), Credit Focus (5 obs.), Long Bias (4 obs.), Convertible Arbitrage (1 

bs.), Equity Market Neutral (1 obs.), Fixed Income Arbitrage (1 obs.), and Other 

edge (2 obs.). 

(

b

t

m

p

a

o

a

S

E

8

t al. [48] that higher order moments and cost components are 

ncluded. But, since HF cost data is unavailable in this database, 

ur empirical analysis is limited to focus on the characteristics of 

he return distributions for these HFs without considering cost fac- 

ors. 20 In the following, we make a basic analysis of the monthly 

eturn characteristics of the 187 HF sample over the whole sam- 

le period. Table 2 reports descriptive statistics on the first four 

oments in columns 2 to 5 as well as on the scaled versions of 

kewness and kurtosis in columns 6 and 7 for the sample. 21 

Several studies mention that both scaled skewness and scaled 

urtosis are not independent of one another for asymmetric distri- 

utions. Wilkins [78] proves a lower statistical bound for scaled 

urtosis which links it to the squared value of scaled skewness 

i.e., kurtosis ≥ 1 + skewness 2 ). More recent theoretical and empir- 

cal research discussing the relation between these two measures 

s found in Schopflocher and Sullivan [68] and Racicot and Théoret 

65 , 66] . Clearly, the descriptive statistics for the scaled versions of 

kewness and kurtosis in Table 2 differ from those of the unscaled 

ersions of skewness and kurtosis (i.e., the third and fourth central 

oments of the asset return distribution). 

While several streams in the financial literature do use scaled 

kewness and kurtosis, we adapt the third and fourth central mo- 

ents as the input-like and output-like variables in the proposed 

ating methods. The main concerns are twofold. First, using the 

hird and fourth central moments as output and input allows 

erformance gauging of HFs consistent with general mixed risk- 

version investor preferences, i.e., a preference for odd moments 
20 Kerstens et al. [48] argue that MF can be trivially interpreted as a cost-based 

loads) financial product that is identified by the characteristics of the return distri- 

ution, as summarized by some common subspace of moments. For example, when 

wo MFs are identical in terms of the return distribution as summarized by the four 

oments, then the rational investor chooses for the MF with the lowest cost com- 

onents. In the absence of data on the cost characteristics of MF, there is an implicit 

ssumption that these costs are identical across the sample: therefore, their effect 

n the evaluation of the rating methods in our work can be ignored. 
21 In finance, the scaled versions of skewness and kurtosis are often used to char- 

cterize the asymmetry of return distributions. Consistent with the notations in 

ection 2 , the scaled skewness and scaled kurtosis can be computed as: E[(R t 
j 
−

(R t 
j 
)) 3 ] / (E[(R t 

j 
− E(R t 

j 
)) 2 ]) 

3 
2 , and E[(R t 

j 
− E(R t 

j 
)) 4 ] / (E[(R t 

j 
− E(R t 

j 
)) 2 ]) 2 , respectively. 
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nd an aversion for even moments. Second, the association be- 

ween the third and fourth central moments of the return distribu- 

ion with the Taylor approximation of the expected utility function 

or a mixed risk-averse investor have been argued in the literature 

see, e.g., Briec et al. [18] , and Krüger [51] ). The use of ratios in the

caled skewness and kurtosis imposes a proportionality between 

oments that is not present in the above investor preferences. For 

nstance, when using the scaled kurtosis, while we know that in- 

estors want a reduction in kurtosis and variance separately, we 

o not know their preference for the ratio of both. Therefore, all 

iscussions and computations hereafter make use of central mo- 

ents. 

From the descriptive statistics of the monthly returns reported 

n Table 2 , we see that some HFs are characterised by negative 

eturn and/or negative skewness. Such HFs are handled by tak- 

ng absolute values of the output-like variables. Furthermore, we 

nd that the series consisting of 187 HFs’skewness present posi- 

ive mean and negative median, while the dispersion is quite large. 

urthermore, all 187 HFs display positive kurtosis and also have a 

igh dispersion. It is evident that some HFs do not perform well 

n terms of skewness and kurtosis. Therefore, for investors seek- 

ng non-negative skewness with small positive kurtosis, the multi- 

oment rating methods can be of great importance to select well- 

erforming HFs from a large and heterogeneous HF universe. To 

ssess the stability and persistence of these return characteristics 

ver time, we further report the first four moments of the sample 

ver three time periods: a 1-year, a 3-year and a 5-year time peri- 

ds, respectively, is presented in Table in Appendix. Fundamentally, 

he same results regarding the return characteristics are available 

or these three time periods. 

.2. Evaluation Results 

For the first aim of the empirical analysis, we compare both the 

fficiency distributions and the rankings of the 187 HFs calculated 

y the 15 rating methods. In the single-time rating framework, we 

xtract the monthly returns of these samples for the past 5 years 

o date to calculate the efficiency and ranking. While in the multi- 

ime rating framework, the monthly returns for the past 1 year, 3 

ears and 5 years to date are integrated and applied to evaluate 

he performance of these funds. 

First, the efficiency distributions computed for the 15 rating 

ethods are compared by means of nonparametric tests compar- 

ng two entire distributions initially developed by Li [54] and re- 

ned by Fan and Ullah [31] and most recently by Li et al. [55] .

t tests for the eventual statistical significance of differences be- 

ween two kernel-based estimates of density functions f and g

f a random variable x . The null hypothesis maintains the equal- 

ty of both density functions almost everywhere: H 0 : f (x ) = g(x )

or all x ; while the alternative hypothesis negates this equality of 

oth density functions: H 1 : f (x ) � = g(x ) for some x . 22 Table 3 pro-

ides Li-test statistics using 20 0 0 bootstrap replications for all rat- 

ng methods considered in this contribution: in total, we report 

05 relevant rating methods comparisons. 

Several observations can be made regarding the results in 

able 3 . First, it is clear that the efficiency distributions computed 
22 Matlab code developed by P.J. Kerstens based on Li et al. [55] is found at: 

ttps://github.com/kepiej/DEAUtils . In fact, we use the so-called Simar-Zelenyuk 

daptation of this test statistic for nonparametric frontier estimators to circumvent 

he problem of spurious mass at the boundary by considering two algorithms: Algo- 

ithm I ignores the boundary estimates and Algorithm II smooths these estimates by 

dding a uniform noise of order of magnitude less than the order of magnitude of 

he noise added by the nonparametric frontier estimator. The Monte Carlo evidence 

ndicates that Algorithm II is more robust when the dimensions of the specification 

re increased. Therefore, we employ the Li-test version of Li et al. [55] amended 

ith Algorithm II. 
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y traditional financial performance measures and those computed 

y frontier-based rating methods are significantly different at the 

 % significance level. 

Second, in both c and nc frontier ratings, the single-time and 

ulti-time rating methods yield significantly different efficiency 

istributions. This implies that the consideration of multiple times 

as a significant impact on the efficiency distributions. 

Third, the effect of adding multiple moments on the efficiency 

istributions are somewhat different in single-time and multi-time 

atings. For instance, in the case of convexity, adding skewness 

nd kurtosis jointly has a significant effect on the efficiency dis- 

ributions at the 1 % significance level in multi-time ratings. In 

ingle-time ratings, adding higher moments does not contribute 

n a significant way. Furthermore, the nonconvex frontier rating 

ethods are more discriminatory in the impact of adding multi- 

le moments. Compared to the above results in the case of con- 

exity, in the case of nonconvexity, both adding skewness in itself 

nd adding skewness and kurtosis jointly have significant effects 

n the efficiency distributions at 1 % significance level in multi- 

ime ratings, and adding these jointly has a significant impact at 5 

 significance level in single-time ratings. 

Fourth, for multi-time ratings, imposing convexity always has 

 significant impact on the efficiency distributions. The efficiency 

istributions obtained by convex and nonconvex frontier ratings in 

V, MVS and MVSK cases all yield differences at 1 % significance 

evel, respectively. For the single-time ratings, the efficiency distri- 

utions of the convex and the nonconvex models are different at 

he 1 % and 10 % significance level in MVS and MVSK cases, re-

pectively. 

We further determine the Kendall rank correlations to test the 

egree of concordance in rankings determined by these perfor- 

ance measures. Table 4 shows the rank correlation between dif- 

erent HF ratings. In this table, ∗∗∗ indicates that the correlation 

oefficient between the rankings is significantly different from zero 

t 1 % significance level. The following key findings are revealed 

rom Table 4 . First, it is clear that the traditional financial ratings 

resent a consistently low correlation (around 0.39-0.43) with the 

ulti-time and multi-moment (MVS & MVSK) frontier ratings, but 

 high correlation (more than 0.8) with the single-time MV rat- 

ngs. Second, turning to the comparisons between frontier ratings 

n single-time and multi-time frameworks, the single-time frontier 

ating and multi-time frontier rating show a low correlation over- 

ll. Third, the MV frontier rating exhibits a lower correlation with 

he multi-moment (MVS & MVSK) frontier ratings in multi-time 

ramework compared in single-time framework. Moreover, the MV 

rontier rating has a lower correlation with the MVSK frontier rat- 

ng compared with the MVS frontier rating. Finally, regarding com- 

arisons between the rating models with convexity and noncon- 

exity, both the second and third findings tend to be more pro- 

ounced in the nonconvex case compared to the convex case. 

From these analyses, we can conclude that the multiple mo- 

ents and multiple times both separately and jointly have an im- 

act on the HF efficiency and ranking for our data, and this impact 

s more significant when the two factors are considered jointly. 

urthermore, nonconvexity may prove to be a more modest hy- 

othesis in the proposed multi-time and multi-moment ratings 

ince it exhibits a stronger discriminatory power with respect to 

he effect of adding multiple moments. This confirms earlier com- 

arative results between the convex and nonconvex models with 

igher order moments in the contribution of Kerstens et al. [48] . 
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Table 5 

Performance results for 15 buy-and-hold backtesting strategies: Descriptive statistics of the values of shortage function. 

Methods 

HF(10) HF(20) HF(30) 

VRSc VRSnc VRSc VRSnc VRSc VRSnc 

Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. 

Eff(Sharpe) 0.064 0 0.040 9 0.081 2 0.047 10 0.078 0 0.034 9 

Eff(Sortino) 0.063 1 0.034 10 0.084 2 0.055 7 0.077 1 0.037 9 

Eff(Omega) 0.064 0 0.031 10 0.084 1 0.059 4 0.077 0 0.040 7 

STMVc 0.077 0 0.045 17 0.101 1 0.064 5 0.096 0 0.047 11 

STMVSc 0.059 7 0.027 28 0.090 2 0.055 14 0.076 4 0.033 16 

STMVSKc 0.044 6 0.014 31 0.070 4 0.039 17 0.059 1 0.031 15 

MTMVc 0.061 1 0.020 22 0.075 1 0.038 14 0.078 2 0.032 11 

MTMVSc 0.063 4 0.025 22 0.078 2 0.044 14 0.065 2 0.028 16 

MTMVSKc 0.041 9 0.008 30 0.065 1 0.033 17 0.053 1 0.020 17 

STMVnc 0.068 2 0.031 20 0.100 0 0.062 8 0.090 0 0.038 11 

STMVSnc 0.042 5 0.023 16 0.054 4 0.029 19 0.039 5 0.014 25 

STMVSKnc 0.042 4 0.026 13 0.040 6 0.022 27 0.035 7 0.012 26 

MTMVnc 0.047 3 0.013 26 0.075 0 0.035 18 0.074 0 0.030 15 

MTMVSnc 0.034 9 0.010 27 0.049 9 0.024 19 0.039 6 0.013 28 

MTMVSKnc 0.039 5 0.012 31 0.047 7 0.021 21 0.032 7 0.009 28 
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.3. Backtesting Results 

We analyze the backtesting scenarios with a selection of the 

0, 20 or 30 best performing HFs, respectively. 23 As stated previ- 

usly, the 15 buy-and-hold strategies are compared in terms of the 

VSK performances of their holding value series that are evaluated 

y the shortage functions based on the VRSc and VRSnc frontiers 

n single-time and multi-moment frameworks. Table 5 presents an 

verall analysis with respect to the performances of the MVSK ob- 

ervations generated per strategy held until the end of the whole 

ample period. This table is structured as follows: the first series 

f four columns list the results with regard to the 10 best HFs se- 

ected for the backtesting exercise, and the second and third series 

f four columns present the results for selecting 20 and 30 best 

Fs, respectively. Within each selecting (buying) scenario, the first 

wo columns report the average inefficiency scores and the num- 

er of efficient units for each strategy when evaluated using the 

RSc frontier in single-time and multi-moment framework, while 

he last two columns report these results in the VRSnc case. 

We first analyze the main findings in the context of buying and 

olding until the end of the whole sample period, as presented in 

able 5 . From these results, there are four main conclusions. 

The first key finding is that all the frontier-based strategies 

utperform the strategies based on traditional financial indicators, 

xcept the strategies constructed by the single-time MV frontier 

ating methods. From the average inefficient scores reported in 

able 5 , it is easy to see that the average inefficiency scores of all

trategies based on the multi-moment and/or the multi-time fron- 

ier ratings are lower than those of Sharpe-, Sortino- and Omega- 

riven strategies. This result is valid when buying the 10, 20 and 

0 best HFs. Combining the numbers of efficient units given in 

able 5 , the frontier-based strategies clearly yield more efficient 

nits compared to those based on traditional indicators. 

The second key result is that the buy-and-hold strategies 

ccording to the multi-moment ratings present superior results 

ompared to those based on the MV ratings. Again, this result is 

onfirmed when buying the 10, 20 and 30 best HFs. Both in the 

ingle-time and multi-time rating frameworks, we find that the 

trategies driven by the multi-moment ratings yield lower average 

nefficiency scores and a higher number of efficient units over 

trategies driven by the MV ratings. 
23 All HFs with an efficiency of 0 are ranked as 1 in our calculations. As a conse- 

uence, when we have to take a certain amount of funds among these ties then we 

ake these randomly among the tied units (as in Brandouy et al. [13] ). 

t

d

p

a

11 
Third, combining the two evaluation indicators of average inef- 

ciency scores and the number of efficient units, it is found that in 

he majority of cases the buy-and-hold strategies consisting of the 

Fs selected by the multi-time rating methods perform better than 

trategies consisting of the HFs selected by the single-time rating 

ethods. This result remains valid when buying the 10, 20 and 30 

est HFs. 

A last key finding is that strategies determined by the noncon- 

ex frontier-based ratings always outperform those determined by 

he convex frontier-based ratings. Moreover, by comparing the av- 

rage inefficiency scores and the number of efficient units between 

he two in MVS and MVSK frameworks, it can be seen that when 

ultiple moments are considered, the strategies based on the non- 

onvex frontier-based ratings usually display a more significant ad- 

antage. The reason for this finding is that skewness and kurto- 

is imply nonconvexities in diversified portfolio optimisation. As 

tated above, nonconvex production frontier models used for fund 

ating underestimate the nonconvex diversified portfolio models, 

hile the convex production frontier models may tend to overesti- 

ate these same nonconvex diversified portfolio models. 

Thus, this backtesting analysis shows that the buy-and-hold 

trategies constructed by our proposed multi-moment and multi- 

ime rating methods exhibit superior performance in most sce- 

arios. We therefore believe that the joint consideration of multi- 

oments and multi-times provides additional useful information 

or HF selection in practice. 

As a sensitivity analysis, we test the performance of the 15 

uy-and-hold backtesting strategies held for 1 year, 3 years and 5 

ears, which can be regarded as their short-, medium- and long- 

erm holding performance. Table in Appendix summarizes the per- 

ormance results of the 15 strategies held for these three alterna- 

ive holding periods. The above four findings are also evidenced 

n most cases for these three holding period scenarios. Moreover, 

he buy-and-hold backtesting strategies consisting of the best HFs 

ated by the multi-moment and multi-time performance measure 

end to show a consistent performance over the different hold- 

ng periods. We basically conclude that the buy-and-hold strategies 

riven by the multi-moment and multi-time ratings exhibit favor- 

ble and consistent short-, medium- and long-term holding per- 

ormance, somewhat implying that the performance of the best- 

erforming HFs rated by the proposed multi-moment and multi- 

ime performance measure would be sustained over time. A more 

etailed discussion on the sensitivity analysis is provide in Ap- 

endix. 

Furthermore, we also report the performance of the 15 buy- 

nd-hold backtesting strategies held during the COVID-19 period 
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Fig. 2. Distributions of inefficiency scores for 15 buy-and-hold backtesting strategies.eps. 
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hich for our purpose ranges from February 2020 to February 

022 to explore whether the proposed multi-time and multi- 

oment frontier ratings perform well in such a holding phase with 

igh market volatility. To add this very harsh holding period, we 

omplement our initial sample with data from November 2020 till 

ebruary 2022. 24 This question pertains to the more general issue 

hat the behavior of HF strategies are linked to the phases of the 

conomic cycle, i.e., economic expansion or crisis (see, e.g., Raci- 

ot and Théoret [65 , 66] ). The performance results of the 15 strate-

ies held during the COVID-19 crisis are presented in Table of Ap- 

endix. Overall, one finds that the buy-and-hold strategies deter- 

ined by the multi-time and multi-moment frontier ratings main- 

ain a mild advantage over those determined by the other existing 

atings, though this advantage is not so pronounced as in other 

olding scenarios with lower market volatility. To save space, the 

etails are presented and discussed in Appendix. 

Besides evaluating strategies based on the two summarized in- 

icators reported in Table 5 , we further provide the entire distribu- 

ion of the inefficiency scores per strategy to compare these intu- 

tively. Figure 2 presents a graphical overview of the performance 

f all strategies by integrating the box-plot per strategy held to end 

n the buying scenarios with 10, 20 and 30 HFs selected. In this 

gure, the sub-figures (a) to (c) correspond to the performance re- 

ults of these three buying scenarios. The box-plots for the per- 

ormance of strategies based on the VRSc frontier are in blue, and 

hose based on the VRSnc frontier are in red. In these box-plots, 

he box indicates the interquartile range where the small vertical 

ines reporting the location of the median. Their locations closer to 

he left suggests that the entire distribution of inefficiency scores 

or the strategy is at a lower level, which implies that the strategy 

as a better performance in backtesting analysis. As we can ob- 

erve from Figure 2 , comparing the performance of these strategies 

n each buying (backtesting) scenario, the buy-and-hold strategies 

onstructed by the multi-moment and multi-time frontier rating 

ethods are superior to strategies constructed by the existing rat- 

ng methods in most cases. 

Equally so, the entire distributions of the inefficiency scores for 

he 15 strategies held for 1, 3 and 5 years are presented in Figures,

nd in Appendix, respectively. From Figures, and, one can observe 
24 Note that if certain HFs are liquidated during this extended period, then the 

orresponding return data are all set to zero. 

l

b

v

12 
hat the dominance of the strategies driven by the multi-moment 

nd multi-time ratings over other strategies remains valid and that 

his relation is strengthened as the holding period increases. It is 

herefore clear that the good performance of the strategies driven 

y the proposed frontier-based performance measures including 

ultiple moments and multiple times exhibits good stability (see 

ppendix for details). In addition, we also report the entire dis- 

ribution of the inefficiency scores per strategy held during the 

OVID-19 period in Figure provided in Appendix. From Figure, it 

an be observed that the multi-time and multi-moment ratings 

omewhat do better than the traditional financial ratings and sev- 

ral existing frontier ratings in general during the holding period 

hen market volatility is relatively high. 

Finally, we provide some minimal sensitivity analysis with re- 

pect to one popular alternative risk measure: CVaR. VaR is defined 

s the maximum loss that investors may suffer over a given time 

orizon at a specified confidence level. CVaR (one popular variation 

n VaR) corresponds to the expected loss conditional on the loss 

xceeding VaR. CVaR risk measures are coherent (see Branda [11] ): 

his leads to a convex mean-CVaR portfolio optimization problem. 

hus, the nonparametric production frontier specifications have the 

otential to provide a conservative approximation for this diversi- 

ed meanCVaR frontier. Therefore, we first opt to add another 4 

uy-and-hold strategies consisting of the HFs selected by on the 

ne hand the convex and nonconvex and on the other hand the 

ingle time and multiple time nonparametric mean-CVaR frontier 

atings. In addition, Branda [11 , p. 75, equation (18)] proposes an 

quivalent linearized version of the diversified mean-CVaR model, 

hich refines the computation of the diversified mean-CVaR model 

see also Branda [10] and see Mansini et al. [59] for a survey of 

inear programming approaches to diversified portfolio models). 

ence, we also opt to add another 2 buy-and-hold strategies de- 

ermined by the diversified mean-CVaR models in both single-time 

nd multi-time frameworks. 

The four nondiversified mean-CVaR ratings are obtained by 

olving model (2) and model (4) with CVaR as the input-like vari- 

ble and return as the output-like variable (denoted as STMCVaRc, 

TMCVaRnc, MTMCVaRc and MTMCVaRnc, respectively). The two 

iversified mean-CVaR ratings are based on solving the equivalent 

inearized model of the diversified mean-CVaR portfolio proposed 

y Branda [11] , and the multi-time one is an extension of this di- 

ersified mean-CVaR model in our multi-time framework (denoted 
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s STMCVaRdiv and MTMCVaRdiv, respectively). 25 The performance 

esults of these 21 buy-and-hold backtesting strategies held until 

he end of the whole sample period are presented in Table and 

igure of Appendix . Overall, it can be concluded that the pro- 

osed multi-time and multi-moment ratings in this contribution 

ave a clear dominance over both nondiversified and diversified 

ean-CVaR ratings. 26 

. Conclusion 

Inspired by recent nonparametric frontier rating methods con- 

ributing to assessing MF performance (e.g., Kerstens et al. [48] ), 

his contribution has aimed to define a new shortage function or 

erformance measure for rating MFs that can simultaneously han- 

le both multiple moments and multiple times. Furthermore, we 

ave explored the potential benefits of this new performance mea- 

ure for selecting the best performing MF. We are now in a posi- 

ion to summarize the main contributions. 

First, we establish a series of nonparametric convex and non- 

onvex frontier rating methods with multi-moments and multi- 

imes. The proposed rating methods are capable of not only assess- 

ng to which extent a MF performs well in the several moments 

ollowing mixed risk-aversion preferences, but it simultaneously 

easures to which extent a MF performs well in all these mo- 

ents in different times as well. These new multi-time and multi- 

oment performance measures are suitable for handling mixed 

isk-aversion preferences of investors which aim at time persis- 

ence. 

Second, the proposed rating methods are empirically applied to 

Fs, given that HFs tend to exhibit strong asymmetric and long- 

ail return characteristics compared to other MFs. Using Li-test and 

endall rank correlation, the multi-time and multi-moment ratings 

re compared with traditional financial indicators and basic single- 

ime MV rating methods to examine the impact of multiple mo- 

ents and multiple times. From the comparison among 15 vari- 

us rating methods, we find that in both convex and nonconvex 

ases, the multiple moments and multiple times both separately 

nd jointly have an impact on the HF efficiency and ranking, and 

his impact is more significant when the two factors are considered 

ointly. Furthermore, the nonconvex rating models have stronger 

iscriminatory power with respect to the effect of adding multi- 

le moments over the convex rating models. This confirms earlier 

omparative results between convex and nonconvex models with 

igher order moments in Kerstens et al. [48] . 

Third, having the impact of the multi-moments and multi-times 

n mind, we develop a simple buy-and-hold backtesting strategy 

o test whether the new ratings perform any better than more 

raditional financial ratings and single-time MV ratings in HF se- 

ection. In most backtesting exercises, the buy-and-hold strategies 

ased on the multi-time and multi-moment ratings exhibit a supe- 

iority over those based on traditional financial ratings and single- 

ime MV ratings. This superiority is clearly confirmed by com- 

aring the MVSK performance of holding values with respect to 

arious buy-and-hold backtesting strategies. The multi-time and 

ulti-moment strategies tend to exhibit more stable and favor- 

ble short-, medium- and long-term holding performance than the 

ther strategies. Equally so, we focus on the comparison of these 

ulti-time and multi-moment strategies in the convex and non- 

onvex cases. The strategies based on the nonconvex frontier rat- 
25 We simply set the confidence level as 95% as is commonly used to calculate 

he CVaR measure and the mean-CVaR diversified model, while Branda [11] sets a 

hole range of confidence levels in his computations. 
26 In Appendix the 21 buy-and-hold strategies driven by both VRSc and VRSnc 

onparametric as well as diversified mean-CVaR frontier ratings in single-time and 

ulti-time frameworks are included in our backtesting exercise. 

13 
ngs usually display a more significant advantage over the convex 

rontier ratings probably for reasons of a closer fit with the non- 

onvex skewness and kurtosis in diversified portfolio optimisation. 

Overall, the proposed multi-time and multi-moment perfor- 

ance measures provide a novel idea into the important topic 

f rating and selecting MF. From the basic backtesting setup in 

ur empirical analysis, further extensive backtesting studies can be 

eveloped to exploit the potential of the new performance mea- 

ures in constructing a fund of funds. Another desirable avenue 

or future research is to transfer the current methodological frame- 

ork and to perform a backtesting analysis using diversified port- 

olio models. It is worthwhile to compare the performance in MF 

election between the backtesting strategies driven by diversified 

nd convex and nonconvex nondiversified frontier rating methods. 

ut, this in principle calls for overcoming the computational dif- 

culties of extending the diversified models to the multi-moment 

nd multi-time framework. Furthermore, one can account for other 

opular risk measures that assess tail risk as an alternative to 

ariance (i.e., the second moment of the return distribution): e.g., 

aR or CVaR. While mean-CVaR models are common, their ex- 

ension to include in addition higher moments is a bit unusual. 

he fundamental methodologies developed in this work can be ex- 

ended to the mean-CVaR (or VaR)-skewness-kurtosis framework. 

lso the eventual use of alternative risk measures in conjunction 

ith higher moments is left for future work. Due to certain regu- 

atory and strategic limitations, fund managers may only be able to 

onstruct portfolios among several specific categories (e.g., strate- 

ies) of HFs. It could be intriguing to develop HFs rating across 

ategories by incorporating the current effort s with the so-called 

onparametric metatechnology (e.g., Kerstens et al. [49] ). Clearly, 

t is also useful to apply the current methodology and the further 

xtensions for tackling the evaluation and comparison across cat- 

gories for other traditional MFs (e.g., equity MFs, bond MFs, and 

ixed asset MFs, etc.). 
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