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Abstract
This contribution focuses on extending the current state of the art in a central resource allocation planning model known
under the name of the short-run Johansen industry model in three ways. First, we correct a long-standing issue of the correct
choice of weight variables on the capacity distribution by guaranteeing that these weights determine production
combinations that belong to the production technology on which the plant capacity estimates are based in the first place.
Second, we exploit the gap between average practice and best practice models by introducing an efficiency improvement
imperative that allows for partial technical inefficiency when planning. Third, instead of only considering output-oriented
plant capacity, we allow for alternative plant capacity concepts. In particular, we introduce an input-oriented plant capacity
concept, and an alternative attainable output-oriented plant capacity concept that corrects a major empirical issue in the
traditional output-oriented plant capacity notion. These methodological refinements are illustrated with a data set on U.S.
fishing vessels by developing a planning model to curb overfishing.
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1 Introduction

The short-run Johansen (1972) industry or sectoral model is
a planning tool which allows analysis of industry structure
on a disaggregated basis from underlying ex post firm-level
inputs and a single output. This model starts from a putty-
clay model of production and investment decisions: ex-ante
firms are free to choose among several production activities
exhibiting smooth substitution possibilities, but ex post

these firms face fixed coefficient technologies with capa-
cities that are entirely conditioned by past investment
decisions. The short-run Johansen industry model (SRJIM)
nevertheless exhibits substitution possibilities when inputs
and outputs can be reallocated across the units composing
the industry. Over time, substitution and technical change
can be traced via shifts in successive SRJIM. Surveys of this
SRJIM are found in Førsund and Vislie (2016). Critical
remarks on the whole SRJIM framework are available in
Shephard (1974).

The short-run industry or ex post macro (Johansen’s
terminology) model is derived from the short-run ex post
firm functions. It is a simple linear programming model
with an objective function maximizing the sum of firm
outputs subject to capacity constraints related to the
aggregate levels of inputs. The weight vectors are subject to
an upper bound. Empirical applications of this SRJIM
include the following examples in chronological order:
Førsund et al. (1980) analyze the Swedish pulp industry,
Hildenbrand (1981) studies the Norwegian tanker fleet and
the US electric power-generating industry; Førsund and
Hjalmarsson (1983) analyze the Swedish cement industry;
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Førsund and Jansen (1983) reflect upon the Norwegian
aluminum industry; Førsund et al. (1985) provide an
international comparison of the cement industry in the
Nordic countries comparing Denmark, Finland, Norway,
and Sweden; the last four empirical chapters in Førsund and
Hjalmarsson (1987) focus on a variety of sectors; Wibe
(1995) studies the Swedish paper industry; Førsund et al.
(1996) scrutinize the Finnish brewery industry; and Førsund
et al. (2011) develop an analysis for Chinese coal-fired
electricity generation plants, among others.

Sengupta (1989) and Färe et al. (1992) are the first to
establish a link between the SRJIM and frontier-based
production theory that focuses on best practice instead of
average practice (see also Dosi et al. 2016 for some further
links). Average practice analysis focuses on average
behavior, while best practice analysis concentrates on the
best performing units on the boundary of the production
possibility set. Dervaux et al. (2000) innovate by devel-
oping an entirely nonparametric frontier-based approach
to the SRJIM. This work improves two features. First, it
transforms the single output case into a multiple outputs
frontier framework.1 Second, it substitutes the somewhat
ad hoc specification of a capacity distribution in the tra-
ditional SRJIM by a nonparametric output-oriented (O-
oriented) plant capacity concept introduced in the litera-
ture by Färe et al. (1989a) in the single output case and by
Färe et al. (1989b) in the multiple output case using a pair
of O-oriented efficiency measures inspired by Johansen
(1968).2 Relaxing the single-output restriction sub-
stantially enlarges the scope of empirical applications
beyond the historically almost exclusive focus on industry
studies. Furthermore, the frontier nature allows for a
benchmarking perspective when adopting it for social
planning purposes.

Empirical applications of this generalized frontier-
based SRJIM include the following examples: Dervaux
et al. (2000) analyze French surgery units in 1605 hospi-
tals, Kerstens et al. (2010) provide an analysis of a Ger-
man bank branch network and how it can be restructured,
Färe et al. (2001) provide a first study on how to reduce
overfishing in the northwest USA Atlantic sea scallop
fishery, Kerstens et al. (2005) and Kerstens et al. (2006)

develop a plan to curb overfishing in the Danish fishery
fleet under a variety of scenarios with quota and fishing
days, while Lindebo (2005), Tingley and Pascoe (2005)
and Yagi and Managi (2011) develop a similar plan for the
North Sea, Scottish and Japanese fishing fleets, among
others.

Note that the frontier-based SRJIM is but one example of
a stream of literature on central resource allocation models
in the frontier framework. Central resource reallocation
models cover a heterogeneous variety of models reallocat-
ing some inputs and/or outputs across space and/or time
while eventually accounting for multiple objectives (e.g.,
efficiency, effectiveness, equality). To the best of our
knowledge Färe et al. (1992) and Golany et al. (1993) are
among the first frontier-based central resource reallocation
models. Other examples of these models can be found in the
work by Athanassopoulos (1998), Golany and Tamir
(1995), Korhonen and Syrjänen (2004), Lozano and Villa
(2004), and Ylvinger (2000), among others.3

The purpose of this contribution is threefold. First, we
want to remedy one remaining problem in the SRJIM:
while the O-oriented plant capacity concepts is estimated
at the extremes of the empirical data range in the tech-
nology, there is currently no guarantee that the scaling of
these plant capacity inputs and outputs remains technically
feasible by remaining within the frontier technology. By
contrast, all frontier-based central resource allocation
models in the literature meet this requirement. This pro-
blem is illustrated using a numerical example and a gen-
eral remedy is proposed. Second, we bridge the gap
between traditional average practice and more recent best
practice (frontier) models by introducing an efficiency
improvement imperative that allows for some form of
technical inefficiency in the planning process. Third, fol-
lowing Dervaux et al. (2000) we make sure that the
capacity distributions are based on nonparametric speci-
fications that are compatible with the nonparametric nature
of the SRJIM. Furthermore, we seek to widen the meth-
odological choices open to the users of the SRJIM by
introducing two new plant capacity concepts that are less
problematic than the O-oriented plant capacity concept
proposed in Dervaux et al. (2000).

On the one hand, we follow Cesaroni et al. (2017) who
define a new input-oriented (I-Oriented) plant capacity
measure using a pair of I-oriented efficiency measures. On
the other hand, we follow up on Kerstens et al. (2019b) who
argue that the traditional O-oriented PCU may be unrealistic
in that the amounts of variable inputs needed to reach the

1 However, in the traditional non-frontier literature Dosi et al. (2016,
Appendix B) also develop a multiple output-case. To the best of our
knowledge, this multi-outputs approach has never been empirically
implemented. Also Sengupta (1989, p. 49-50) outlines some possibi-
lities to develop a multiple outputs approach: also these options have
never been implemented empirically.
2 Johansen (1972) introduces the capacity distribution as a mechanism
to derive optimal factor proportions in a dynamic setting. He and
followers like Muysken (1985) and Seierstad (1985) explicitly intro-
duce the capacity distribution notion as a continuous or discrete or
mixed statistical distribution of the input coefficients when plants are
used at full capacity.

3 A selective survey of these frontier-based central resource allocation
models is found in Mar-Molinero et al. (2014), while more complete
and up to date reviews are published in White and Bordoloi (2015) and
Afsharian et al. (2021).
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maximum capacity outputs may simply be unavailable at
either the firm or the industry level. This problem is linked
to what Johansen (1968) called the attainability issue and
therefore Kerstens et al. (2019b) define a new attainable
O-oriented (AO-oriented) PCU. Throughout this contribu-
tion, we contrast the traditional average practice-based
SRJIM with the more recent frontier-based SRJIM to
highlight both similarities and differences.

This contribution is structured as follows. Section 2
defines the basic technology and efficiency measures
needed to define frontier-based plant capacity concepts.
Furthermore, it defines the traditional O-oriented PCU as
well as the alternative I-oriented PCU and the AO-
oriented plant capacity measure. The next Section 3
defines the deterministic nonparametric technologies that
are used to compute these plant capacity concepts and
that implicitly define the SRJIM. The basic frontier-based
SRJIM is discussed in Section 4. This same section
illustrates the problem that the scaling of the plant
capacity inputs and outputs need not remain technically
feasible by remaining within the technology. Thereafter,
Section 5 develops three new SRJIM. First, we develop a
revised version of the SRJIM based on the O-oriented
plant capacity that does respect the technology. Second,
we introduce two new plant capacity concepts in the
SRJIM: either the AO-oriented PCU, or the I-oriented
plant capacity measure. The differences between old and
new SRJIM are empirically illustrated in Section 6 using
convex and nonconvex technologies. A final Section 7
concludes.

2 Technology and plant capacity notions:
basic definitions

2.1 Technology and efficiency measures

This section introduces basic notation and defines the firm
technology. Given an N-dimensional input vector x 2 RN

þ
and an M-dimensional output vector y 2 RM

þ , the production
possibility set or technology T is defined as: T= {(x, y)∣x can
produce y}. Associated with T, the input set denotes all input
vectors x capable of producing a given output vector y:
L(y)= {x∣(x, y)∈ T}. Analogously, the output set associated
with T denotes all output vectors y that can be produced from
a given input vector x: P(x)= {y∣(x, y)∈ T}.

Throughout this contribution, technology T satisfies a
combination of the following assumptions:

(T.1) Possibility of inaction and no free lunch, i.e.,
(0, 0)∈ T and if (0, y)∈ T, then y= 0.

(T.2) T is a closed subset ofRN
þ �RM

þ , i.e., ∂T⊂ T where
the symbol ∂T denotes the boundary of T.

(T.3) Strong input and output disposal, i.e., if (x, y)∈ T
and ðx0; y0Þ 2 RN

þ �RM
þ , then ðx0;�y0Þ � ðx;�yÞ

) ðx0; y0Þ 2 T .
(T.4) T is convex.

Briefly discussing these technology axioms, it is use-
ful to recall the following (see, e.g., Hackman 2008 for
details). Inaction is feasible, and there is no free lunch.
Technology is closed. This closedness of T guarantees
the existence of efficient output and input vectors: see
Theorem 2.1 in Kerstens and Sadeghi (2023) for more
details. We assume free disposal of inputs and outputs in
that inputs can be wasted and outputs discarded.
Finally, technology is convex. In our empirical analysis
not all axioms are simultaneously maintained.4 In parti-
cular, an assumption distinguishing some of the tech-
nologies in the empirical analysis is convexity versus
nonconvexity.

The radial input efficiency measure characterizes the
input set L(y) completely and is defined as:

DFiðx; yÞ ¼ minfλjλ � 0; λx 2 LðyÞg: ð1Þ
This radial efficiency measure is smaller or equal to unity
(DFi(x, y) ≤ 1), with efficient production on the boundary
(isoquant) of L(y) represented by unity, and has a cost
interpretation (see, e.g., Hackman 2008).5

The radial output efficiency measure offers a complete
characterization of the output set P(x) and is defined as:

DFoðx; yÞ ¼ maxfθjθ � 0; θy 2 PðxÞg: ð2Þ
This efficiency measure is larger than or equal to unity
(DFo(x, y) ≥ 1), with efficient production on the boundary
(isoquant) of the output set P(x) represented by unity, and
has a revenue interpretation (e.g., Hackman 2008).

In the short run, we can partition the input vector into a
fixed and variable part. In particular, we denote (x= (xf, xv))
with xf 2 RNf

þ and xv 2 RNv
þ such that N= Nf+ Nv. Simi-

larly, a short-run technology Tf ¼ fðxf ; yÞ 2 RNf
þ �

RM
þj there exists xv such that ðxf ; xvÞ can produce at least yg

and the corresponding input set Lf ðyÞ ¼ fxf 2
RNf

þ jðxf ; yÞ 2 Tf g and output set Pf(xf)= {y∣(xf, y)∈ Tf} can
be defined. Note that technology Tf is obtained by a pro-
jection of technology T � RN

þ �RM
þ into the subspace

4 For instance, note that the convex flexible or variable returns to scale
technology does not satisfy inaction.
5 The input-oriented distance function, denoted as Diðx; yÞ : RN

þ�
RM

þ ! Rþ ∪ f1g, is defined as follows:

Diðx; yÞ ¼ sup
φ

φ> 0j xφ 2 LðyÞ
n o

:

We can express DFiðx; yÞ ¼ 1
Diðxk ;ykÞ (see Färe and Lovell 1978 for a

first statement). Since there is a one-to-one relationship between dis-
tance functions and efficiency measures, our focus in this contribution
is on efficiency measures.
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RNf
þ �RM

þ (i.e., by setting all variable inputs equal to
zero).6 By analogy, the same applies to the input set Lf(y)
and the output set Pf(xf).

Denoting the radial output efficiency measure of the
output set Pf(xf) by DFf

oðxf ; yÞ, this efficiency measure can
be defined as follows:

DFf
oðxf ; yÞ ¼ maxfθjθ � 0; θy 2 Pf ðxf Þg: ð3Þ

The sub-vector input efficiency measure reducing only the
variable inputs is defined as follows:

DFSR
vi ðxf ; xv; yÞ ¼ minfλjλ � 0; ðxf ; λxvÞ 2 LðyÞg: ð4Þ

The sub-vector input efficiency measure reducing only the
fixed inputs is defined as follows:

DFSR
fi ðxf ; xv; yÞ ¼ minfλjλ � 0; ðλxf ; xvÞ 2 LðyÞg: ð5Þ

Next, we need the following particular definition of a
technology: L(0)= {x∣(x, 0)∈ T} is the input set with zero
output level.7 The sub-vector input efficiency measure
reducing variable inputs evaluated relative to this input set
with a zero output level is as follows:

DFSR
vi ðxf ; xv; 0Þ ¼ minfλjλ � 0; ðxf ; λxvÞ 2 Lð0Þg: ð6Þ

2.2 Plant capacity notions

It is common to distinguish between technical or engi-
neering capacity, and economic capacity. Johansen (1968)
develops a technical approach through an informally
defined plant capacity notion. This informal definition of
plant capacity by Johansen (1968, p. 362) reads:"the max-
imum amount that can be produced per unit of time with
existing plant and equipment, provided that the availability
of variable factors of production is not restricted." This
plant capacity notion is made operational by Färe et al.
(1989a) and Färe et al. (1989b) using a pair of O-oriented
efficiency measures. Now recall the definition of
O-oriented PCU.

Definition 2.1 The O-oriented PCUo is defined as follows:

PCUoðx; xf ; yÞ ¼ DFoðx; yÞ
DFf

oðxf ; yÞ
;

where DFo(x, y) and DFf
oðxf ; yÞ are output efficiency

measures including (excluding) the variable inputs as
defined before in (2) and (3).

O-oriented PCU has an upper limit of unity, since
1 � DFoðx; yÞ � DFf

oðxf ; yÞ; 0<PCUoðx; xf ; yÞ � 1. Färe
et al. (1989a) distinguishes between a biased (DFf

oðxf ; yÞ) and
unbiased (PCUo(x, x

f, y)) plant capacity measure depending
on whether the measure ignores (adjusts for) inefficiency. By
taking the ratio of efficiency measures, existing inefficiency is
eliminated yielding a cleaned concept of O-oriented PCU.8

Recently, Kerstens et al. (2019b) argue that the O-oriented
PCUo(x, x

f, y) is unrealistic because the variable inputs needed
to reach capacity output may be unavailable. This is linked to
what Johansen (1968) called the attainability issue. Hence,
Kerstens et al. (2019b) define a new AO-oriented PCU level.

Definition 2.2 An AO-oriented PCU APCUo at a certain
level λ 2 Rþ is defined by

APCUoðx; xf ; y; λÞ ¼ DFoðx; yÞ
ADFf

oðxf ; y; λÞ
;

where the AO-oriented efficiency measure ADFf
o at level

λ 2 Rþ is defined by

ADFf
oðxf ; y; λÞ ¼ maxfφjφ � 0; 0 � λ � λ;φy 2 Pðxf ; λxvÞg

ð7Þ

Again, for λ � 1, since 1 � DFoðx; yÞ � ADFf
oðxf ; y; λÞ,

notice that 0<APCUoðx; xf ; y; λÞ � 1. Also, for λ< 1, since
1 � ADFf

oðxf ; y; λÞ � DFoðx; yÞ, notice that 1 � APCUoðx;
xf ; y; λÞ.

One can again distinguish between a so-called biased
plant capacity measure (ADFf

oðxf ; y; λÞ), and an unbiased
attainable PCU measure (APCUoðx; xf ; y; λÞ), whereby the
latter is cleaned from any inefficiency. Kerstens et al.
(2019b) pragmatically experiment with values of
λ 2 f0:5; 1; 1:5; 2; 2:5; 3; 3:5; 4; 4:5; 5g9, and note that if
expert opinion cannot determine a plausible value, then it
may be better to opt for an I-oriented plant capacity measure
that does not suffer from the attainability issue.

Cesaroni et al. (2017) define an I-oriented plant capacity
measure using a pair of I-oriented efficiency measures.

Definition 2.3 The I-oriented PCUi is defined as follows:

PCUiðx; xf ; yÞ ¼ DFSR
vi ðxf ; xv; yÞ

DFSR
vi ðxf ; xv; 0Þ

;
6 See Cesaroni et al. (2019, p. 388 and following) for more details
about this projection.
7 As already pointed out in Cesaroni et al. (2019, p. 388), L(0) can
also be defined as L(ymin)= {x∣(x, ymin)∈ T}, whereby ymin ¼ min

k¼1;:::;K
yk

takes the minimum in a component-wise manner for every output y
over all observations K.

8 Computational issues are discussed in Section 4.
9 Notice that λ< 1 is added for completeness sake. Normally there is
no need to reduce variable inputs below their currently available
levels.
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where DFSR
vi ðxf ; xv; yÞ and DFSR

vi ðxf ; xv; 0Þ are the sub-vector
input efficiency measures defined in (4) and (6),
respectively.

Since 0<DFSR
vi ðxf ; xv; 0Þ � DFSR

vi ðxf ; xv; yÞ, notice that
PCUi(x, x

f, y)≥1.10 Thus, I-oriented PCU has a lower limit of
unity. Similar to the previous cases, one can distinguish
between a so-called biased plant capacity measure (
DFSR

vi ðxf ; xv; 0Þ) and an unbiased PCUi(x, x
f, y), the latter

being cleaned of any inefficiency. Graphical illustrations of
plant capacity Definitions 2.1, 2.2 and 2.3 are in Supple-
mentary Appendix A. Cesaroni et al. (2019) also define an
input-based and output-based long-run plant capacity con-
cept whereby both fixed and variable inputs can adjust.
Furthermore, Kerstens et al. (2019a) empirically illustrate
that both engineering and economic capacity concepts differ
systematically when estimated using convex and nonconvex
technologies.

As stated earlier, the average practice single output
SRJIM suffer in practice from a rather ad hoc specification
of capacity distributions (as recently admitted in Dosi et al.
(2016, fn 13)). It should be stressed that some substantial
efforts are available in the literature to derive a more
satisfactory solution for this state of affairs: Muysken
(1985) develops continuous capacity distribution, while
Seierstad (1985) develops any form of the capacity dis-
tribution (discrete, continuous, or a mixture). However, it is
clear that the above frontier-based technical or engineering
plant capacity concepts are quite appealing since these can
easily be computed relative to deterministic nonparametric
technologies (see below). For detailed formulations of the
mathematical programs to compute these three PCU con-
cepts, see Kerstens et al. (2020, Appendix B.1).

Kerstens and Sadeghi (2023) have theoretically investi-
gated the existence question regarding the above plant
capacity notions at the firm level and at the industry level.
For the O-oriented, the AO-oriented, and the I-oriented
plant capacity measures the question as to the existence at
the firm level poses no problem: all these concepts are well
defined for variable returns to scale technologies. However,
at the industry level the picture changes: the O-oriented and
the AO-oriented plant capacities may not exist, while the
I-oriented plant capacity notion is the only one that always
exists.

These theoretical results have drastic consequences for
the use of the SRJIM as a planning model. The frontier-
based SRJIM based on O-oriented plant capacities, as
defined in Dervaux et al. (2000), loses much of its appeal.
The alternative SRJIM developed here based on the AO-
oriented plant capacity can mitigate this problem under
certain conditions. Clearly, the alternative SRJIM

developed here based on the I-oriented plant capacity notion
is the only solution free of any reservations.

3 Deterministic nonparametric technologies:
definitions

Having introduced all efficiency measures needed to define
various plant capacity concepts, we now turn to the alge-
braic definition of the technologies relative to which plant
capacities are estimated. In the literature cited above, the
fact that the SRJIM is not explicitly considered as a tech-
nology has led to the problem that the scaling of capacities
need not respect the technology. Therefore, in this con-
tribution we explicitly develop the deterministic nonpara-
metric technologies relative to which plant capacities are
computed and that implicitly define the SRJIM.

Given data on K observations (k= 1,⋯ ,K) consisting of
a vector of inputs and outputs ðxk; ykÞ 2 RN

þ �RM
þ , a uni-

fied algebraic representation of convex and nonconvex
nonparametric frontier technologies under the flexible or
variable returns to scale assumption is as follows:

TΛ ¼ ðx; yÞ j x �
XK
k¼1

zkxk; y �
XK
k¼1

zkyk; ðz1; ¼ ; zKÞ 2 Λ

( )
;

ð8Þ

where

(i) Λ � ΛC ¼ ðz1; ¼ ; zKÞ j
PK
k¼1

zk ¼ 1 and zk � 0

� �
;

(ii) Λ � ΛNC ¼
ðz1; ¼ ; zKÞ j

PK
k¼1

zk ¼ 1 and zk 2 f0; 1g
� �

.

The activity vector (z1,…, zK) of real numbers summing
to unity represents the convexity axiom. This same con-
straint with each vector element being a binary integer
represents nonconvexity. The convex technology satisfies
axioms (T.1) (except inaction) to (T.4), while the non-
convex technology adheres to axioms (T.1) to (T.3). It is
now useful to condition the above efficiency measures
relative to these nonparametric frontier technologies by
distinguishing between convexity (convention C) and non-
convexity (convention NC). This firm technology allows us
to compute a series of frontier-based concepts of plant
capacity to which we now turn.

4 Short-run Johansen industry model: basic
version

Following Dervaux et al. (2000), this model permits real-
location of production among units by explicitly allowing

10 Kerstens et al. (2019a, Proposition B.1) prove that
DFSR

vi ðxf ; xv; 0Þ ¼ DFSR
vi ðxf ; xv; yminÞ, where ymin is as defined supra.
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technical efficiency and capacity utilization improvements
using two phases. Phase one computes capacity outputs and
corresponding inputs. In phase two, the SRJIM is con-
structed with parameters from phase one. As explained
below, this SRJIM does not inherit the technology proper-
ties used to compute plant capacity.

In phase one, the short-run O-oriented radial technical effi-
ciency measureDFf

oðxfp; ypÞ (i.e., the denominator in Definition
2.1) of firm p, (p= 1,…,K), with fixed inputs xfp 2 RNf

þ and
outputs yp 2 RM

þ requires the following program:

DFf
o xfp; yp
� �

¼ max
φ;z;xv

φ

s:t
PK
k¼1

zkyk � φyp;

PK
k¼1

zkx
f
k � xfp;

PK
k¼1

zkxvk � xv;

z ¼ ðz1; ¼ ; zKÞ 2 Λ;
φ � 0; xv � 0;

ð9Þ

where Λ determines the convex or nonconvex assumption
of the technology defined in (8). Assume that φ* is the
optimal value of short-run O-oriented model (9). To find a
solution that maximizes slacks and surpluses, the following
model is solved for all p firms:

max
Sþ;S�;z;xv

1M :Sþ þ 1Nf :S
�

s:t
PK
k¼1

zkyk � Sþ ¼ φ�yp;

PK
k¼1

zkx
f
k þ S� ¼ xfp;

PK
k¼1

zkxvk � xv;

z ¼ ðz1; ¼ ; zKÞ 2 Λ;
xv � 0; Sþ � 0; S� � 0;

ð10Þ

with 1M ¼ ð1; ¼ ; 1Þ 2 RM and 1Nf ¼ ð1; ¼ ; 1Þ 2 RNf .
From model (10), an optimal activity vector zp� ¼
ðzp�1 ; ¼ ; zp�K Þ is provided for firm p under evaluation.
Capacity outputs and the optimal fixed and variable input
levels can be computed:

ŷ�p ¼
XK
k¼1

zp�k yk; xf �p ¼
XK
k¼1

zp�k xfk; xv�p ¼
XK
k¼1

zp�k xvk: ð11Þ

Depending on the sector, it might be wise to adjust
capacity outputs to account for technical inefficiencies.
Realistic planning procedures in a second-best setting may
allow for some form of inefficiency in production along part

of the planning horizon (see Peters 1985). This basic
intuition may be modeled by modifying the capacity output
in the second stage of the SRJIM based on observed tech-
nical inefficiency, which may eventually be remedied by an
O-oriented efficiency improvement imperative (αoutp ).

Technically efficient firms (DFo(xp, yp)= 1) require no such
adjustment. When technical inefficiency is (partially) tol-
erated, and assuming the O-oriented efficiency improve-
ment imperative or correction factor is less than or equal to

unity 1
DFoðxp;ypÞ � αoutp � 1
� �

, the modification of capacity

output in (11) can be considered as follows:

y�p ¼ αoutp

XK
k¼1

zp�k yk: ð12Þ

When inefficiencies are partially or completely accepted,
capacity outputs decrease and the industry needs additional
firms. When no adjustment for inefficiency is made in the
planning process, then the O-oriented efficiency improve-
ment imperative or correction factor is simply fixed at unity
(αoutp ¼ 1). Firms are required to shift away from their
maximum capacity when the efficiency improvement
imperative (αoutp ) moves away from unity.

In a second phase, these ‘optimal’ frontier results at the
firm level are parameters in the SRJIM. The SRJIM mini-
mises the use of fixed inputs in a radial way (using
DFSR

fi ðxf ; xv; yÞ from (5)) such that the total production of
outputs is at least at the current total level by reallocating
production between firms. Reallocation is allowed based on
the frontier production outputs and input usage of each firm.
In the short run, current plant capacities cannot be exceeded.
The formulation of the multi-output and frontier-based SRJIM
(hereafter referred to as the basic version (bv)) is specified as:

min
θbv;wbv

k ;Xv
θbv;

s:t:
PK
k¼1

wbv
k y

�
k � Y;

PK
k¼1

wbv
k x

f �
k � θbvXf ;

PK
k¼1

wbv
k x

v�
k � Xv;

0 � wbv
k � 1; k ¼ 1; :::;K;

θbv � 0;Xv � 0;

ð13Þ

where

Y ¼
XK
k¼1

yk1; ¼ ;
XK
k¼1

ykM

 !
and Xf ¼

XK
k¼1

xfk1; ¼ ;
XK
k¼1

xfkNf

 !
:

ð14Þ
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After solving model (13), the vector ðwbv�
p xf �p ;w

bv�
p

xv�p ;w
bv�
p y�pÞ can be a target for firm p where wbv�

p is an
optimal solution of model (13) and xf �p ; x

v�
p and y�p are

obtained from the relations (11). Note that the variable
inputs Xv in model (13) are a vector of decision variables.

The frontier-based SRJIM (13) focuses on reducing fixed
inputs by a scalar θbv. This is shown in the empirical
application in Dervaux et al. (2000) which sought to
minimize surgery units. The same motivation applies to
empirical applications curbing overfishing in fisheries
where output quotas are imposed to guarantee biological
sustainability. While fixed inputs can normally not be
reduced by definition, one can mothball either temporarily
or definitively particular vessels. It is trivial to define an
alternative SRJIM that maximises all industry outputs
similar to (2): see, e.g., Färe and Grosskopf (2003, p. 109-
115) for an output-oriented approach based on directional
distance functions.11

Geometrically, this SRJIM (13) is a set consisting of a
finite sum of line segments, or zonotopes (see Hildenbrand
(1981, p. 1096)).12 More precisely, assuming divisibility
and additivity of production processes, the industry tech-
nology is geometrically represented by the space formed by
the finite sum of all the line segments linking the origin and
the points representing each production unit (see Dosi et al.
(2016, p. 877)). Furthermore, Dosi et al. (2016, footnote 3)
remark that convexity comes as a result of the chosen
analytical framework: it is not an assumption of some
underlying theory of production.

The activity vector w= (w1,…,wK) indicates which
portions of the line segments representing the firm capa-
cities are effectively used to produce outputs from given
inputs. The bounds on the activity vector w (0 ≤wk ≤ 1)
reflect the assumption of constant returns to scale up to full
capacity for individual production units (see Hildenbrand
(1981, p. 1096)). The optimal solution to this simple LP
gives the combination of firms that can produce the same or
more outputs with less or the same use of fixed inputs at the
aggregate level. In the following Proposition, we prove that
model (13) has finite optimum value.

Proposition 4.1 Model (13) is always feasible and has
finite optimal value.

The proofs of Proposition 4.1 and the other propositions
are given in Supplementary Appendix C.

In brief, average and best practice SRJIM share a similar
formal structure of the SRJIM. The main difference is that
only the best practice version is consistent with the idea of

an industry frontier, while the average practice version does
not ensure estimation of an industry frontier given uncer-
tainties surrounding the underlying ad hoc capacity
estimates.

In the putty-clay framework with limited substitution ex
post, Johansen (1972) assumes embodied technical change
in the successive vintages of capital. This typically leads to
co-existing units of different vintages with different unit
costs. One may wonder whether co-existing vintages pre-
vents one from speaking about technical inefficiencies,
implying that the frontier version of the SRJIM is ques-
tionable. For instance, Belu (2015) illustrates in a putty-clay
vintage model where recent vintages are modeled as more
efficient than older ones that basic production frontier
models may not detect the imputed distribution of ineffi-
ciencies. However, we conjecture that the metafrontier
framework initiated by O’Donnell et al. (2008) and cor-
rected by Kerstens et al. (2019) can provide a way out: for a
discrete number of vintages each group technology repre-
sents a single vintage and the metaproduction technology is
the union of all group technologies. This framework affects
both the plant capacity estimates and the SRJIM solution.
Since vintages play no role in our empirical application, we
leave out the details of such a metafrontier vintage frame-
work for future work.

Furthermore, to impose minimal assumptions on the
frontier technology when estimating plant capacity utili-
zation measures, as well as on the short-run industry
model, we dispense with the traditionally maintained
convexity axiom. Following Afriat (1972) and Deprins
et al. (1984) we employ a strongly disposable variable
returns to scale nonconvex production technology in
addition to the more traditional convex production tech-
nology. Nonconvex models are known to provide a tighter
fit with the data.

Some may object that social planning based on an
SRJIM is too demanding: perhaps, one should allow for
some amount of technical inefficiency persisting among
firms. But, as shown in Kerstens et al. (2006) and as
developed infra, it is straightforward to adjust the frontier-
based short-run Johansen (1972) industry model to allow
for some technical inefficiency.

Additionally, there are some subtle differences
between average practice and best practice models.
Average practice models ignore fixed inputs, while best
practice models do not. As a matter of fact, in average
practice models the fixed inputs indirectly determine the
capacities. Furthermore, some of the average practice
authors assume cost minimization (e.g., Hildenbrand
(1983, p. 175)). Indeed, average practice models need
input prices to determine the cost per output, while many
best practice models depend solely on physical inputs
and outputs. It is relatively easy to demonstrate that the

11 Färe and Grosskopf (2003) define a model similar to (13), except
that they ignore the first phase and base capacities on observed inputs
and outputs.
12 One may also benefit from consulting the work of Koopmans
(1977), Hildenbrand (1983) or Settepanella et al. (2015).
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feasible set of the multi-output SRJIM (13) under certain
conditions is comparable to the multi-output average
practice zonotope set in Dosi et al. (2016, Appendix B).

Finally, we mention a series of methodological refine-
ments of the SRJIM. First, it has been rather common to
trace how the short-run average practice Johansen (1972)
industry production function has evolved over time
(Førsund and Hjalmarsson 1983, 1987; Førsund and Jansen
1983; Wibe 1995). Second, Dosi et al. (2016) define a
normalized volume of the zonotope as a measure of
industry heterogeneity. These authors also propose a
measure of productivity change based on the zonotope’s
main diagonal, and assess the role of firm entry and exit on
industry level productivity growth (see Settepanella et al.
2015 for technical details). Both these developments so far
do not seem to have been implemented in a frontier
context.

To provide some intuition, we graphically show using
13 fictitious observations (Supplementary Appendix B)
with two inputs (one variable, one fixed) and a single
output, that by solving model (13) the optimal weight
vector wbv� does not guarantee the projected point is part
of the technology. Figure 1a presents a two dimensional
representation of this three dimensional technology. The
horizontal axis shows the amount of simultaneous
change in fixed and variable inputs (α) for the target
point 13 in a radial way while the vertical axis shows the
amount of changes in outputs (φ). For observation 13,
(α, φ)= (1, 1) since ðxv�13; xf �13; y�13Þ ¼ ð6; 4; 5Þ. Conse-
quently, the target point of observation 13 is depicted as
the black solid box (label A). Based on these results, we
must scale down point A by a factor 0.2 resulting in the
target point (1.2, 0.8, 1) for which (α, φ)= (0.2, 0.2). The
corresponding point is labeled D in Fig. 1a: obviously,

point D does not belong to the technology and is thus
infeasible.

Anticipating further developments in Section 5, the
revised version of the SRJIM will only consider the line
segment between points A and C in Fig. 1a. The new SRJIM
based on the I-oriented plant capacity will in Fig. 1b start
from point A and only considers solutions on the line seg-
ment between points A and C.

5 Output-, attainable output-, and input-
oriented short-run Johansen industry
models: new proposals

This section develops methodological refinements to the
basic SRJIM. We first correct the SRJIM such that the
scaling of the plant capacity inputs and outputs remains
technically feasible. Thereafter, we develop a new SRJIM
based on the AO-oriented plant capacity concept. Finally,
we develop a new SRJIM based on the I-oriented plant
capacity notion.

5.1 Short-run Johansen industry model with output-
oriented capacity measures: a revised version

This model requires two steps. Starting from models (9)
and (10), an optimal firm p activity vector zp* is pro-
vided. Capacity output and its optimal use of fixed and
variable inputs xf �p and xv�p can be computed by means of
Eq. (11) and optimal outputs y�p can be obtained by Eq.
(12).

In step two, these ‘optimal’ frontier results (capacity
output, variable and fixed inputs) at the firm level are used
as parameters in the SRJIM (hereafter also referred to as the

Fig. 1 Intersection of the technology with the plane going through the origin and the output- and input-oriented target point of observation 13.
a Output-oriented case. b Input-oriented case
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revised version (rv)):

min
θrv;wrv;Xv

θrv

s:t:
PK
k¼1

wrv
k y

�
k � Y ;

PK
k¼1

wrv
k x

f �
k � θrvXf ;

PK
k¼1

wrv
k x

v�
k � Xv;

wrv ¼ ðwrv
1 ; ¼ ;wrv

K Þ 2 Γrv;

θrv � 0;Xv � 0:

ð15Þ

where

Y ¼
XK
k¼1

yk1; ¼ ;
XK
k¼1

ykM

 !
and Xf ¼

XK
k¼1

xfk1; ¼ ;
XK
k¼1

xfkNf

 !
;

and

Γrv ¼ fðw1; ¼ ;wKÞjwk � 1; ðwkx
f �
k ;wkx

v�
k ;wky

�
kÞ 2 TΛ;

k ¼ 1; ¼ ;Kg: ð16Þ

This set Γrv determines the feasible weights (w1,…,wK) such
that the target points ðwpx

f �
p ;wpx

v�
p ;wpy

�
pÞ; ðp ¼ 1; ¼ ;KÞ,

belong to the technology. Note that for feasible weights
(w1,…,wK)∈ Γrv, we have wp≤1 for all p= 1,…,K. There-
fore in model (15), the decision variable wrv

p scales down the
target point ðxf �p ; xv�p ; y�pÞ of firm p and respects the
technology. Note that in model (15), the vector Xv of variable
inputs are decision variables. To obtain a lower bound Lrvp for
wrv
p ; ðp ¼ 1; :::;KÞ; we need to solve model (17):

Lrvp ¼ min
δ;z

δ

s:t:
PK
k¼1

zkyk � δy�p;

PK
k¼1

zkx
f
k � δxf �p ;

PK
k¼1

zkxvk � δxv�p ;

z ¼ ðz1; ¼ ; zKÞ 2 Λ;
δ � 0;

ð17Þ

where y�p; x
f �
p and xv�p are defined in (11). By solving model

(17), output and input capacity targets are scaled down such
that they become feasible within the technology. Therefore,
model (17) can be interpreted as reducing the capacity
targets to obtain the lower bound of weights, while
respecting the technology. This relaxes the assumption of
constant returns to scale up to full capacity in the basic
version of the model.

Note that the main difference between the basic version
(13) and the revised version (15) of the SRJIM is in the

range of the weights (w1,…,wK): in model (13) we have
0 � wbv

k � 1, while in model (15) we have Lrvk � wrv
k � 1.

Therefore, after solving model (15), the vector
ðwrv�

p xf �p ;w
rv�
p xv�p ;w

rv�
p y�pÞ, where wrv�

p is an optimal solution
of model (15), can be a target for firm p which belongs to
the technology TΛ.

Contrasting the basic (bv) and revised version (rv) of the
SRJIM yields the following result:

Proposition 5.1 In technology (8), we have:

(i) Model (15) is always feasible and it has finite
optimal value.

(ii) Assume that ðθbv� ;wbv� Þ and ðθrv� ;wrv� Þ are an
optimal solution of models (13) and (15),respec-
tively, then we have: θbv

� � θrv
�
and wbv�

p ¼>
<
wrv�
p .

(iii) If θbv
�
< θrv

�
, then for all multiple optimal solutions

of model (13), there exists k∈ {1,…,K} such that
the corresponding target point ðwbv�

k xf �k ;w
bv�
k xv�k ;

wbv�
k y�kÞ does not belong to the technology.

(iv) If θbv
� ¼ θrv

�
, then there is at least one optimal

solution of model (13) for which the corresponding
target points of all observed units belong to the
technology.

Interpreting Proposition 5.1, the fact that θbv
� � θrv

�

shows the empirical relevance of relaxing the hypothesis of
constant returns to scale up to full capacity. Furthermore, it
also shows that if we have θbv

�
< θrv

�
, then for every mul-

tiple optimal solution of the basic version of the SRJIM
(13), there is at least one observation for which its target
point does not respect the technology. Also, the relation
θbv

� ¼ θrv
�
guarantees one optimal solution of the basic

version of the SRJIM (13) such that all corresponding target
points of observations belong to the technology.

It is important to note that the relation θbv
� ¼ θrv

�
does

not guarantee that all multiple optimal solutions of model
(13) lead to target points belonging to the technology. Even
if θbv

� ¼ θrv
�
, the possibility exists of having a target point

of some observations not respecting the technology.
By solving model (13) on the data of the numerical example

in Supplementary Table B.1, we obtain θrv
� ¼ 0:660. Hence,

we have 0:638 ¼ θbv
�
< θrv

� ¼ 0:660. Therefore, based on
Proposition 5.1, for every multiple optimal solution of the basic
version of the SRJIM (13), there is at least one observation for
which its target point does not respect the technology.

As illustrated in Fig. 1a, the traditional O-oriented
SRJIM (13) scales down point A to obtain the target point
D, located outside of the technology. But, by implementing
the revised SRJIM (15), the target point A translates to the
solid black box B: this remains technically feasible by
remaining within the technology (see Supplementary
Appendix D, Section D.1).
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5.2 Short-run Johansen industry model with
attainable output-oriented efficiency measure:
new proposal

As mentioned in Section 2.2, the original O-oriented
PCUo(x, x

f, y) has no variable input limitations. However,
in most empirical settings this is unrealistic and we limit the
variable inputs available at either the firm or the industry
level (see Kerstens et al. 2019b for details). Thus,
APCUoðx; xf ; y; λÞ is a more realistic alternative PCU
measure provided a reasonable level λ is chosen.

The AO-oriented efficiency measure ADFf
oðxfp; yp; λÞ at

level λ 2 Rþ is computed by:

ADFf
oðxfp; yp; λÞ ¼ max

xv;φ;z
φ

s:t
PK
k¼1

zkyk � φyp;

PK
k¼1

zkx
f
k � xfp;PK

k¼1
zkxvk ¼ xv;

xv � λxvp;
z ¼ ðz1; ¼ ; zKÞ 2 Λ;
xv � 0:

ð18Þ

In model (18), the scalar λ is varied over some part of the
interval (0,∞). But, when λ< 1, then model (18) may be
infeasible. However, Kerstens et al. (2019b) determine the
complete feasible interval for λ by defining three critical
points. For our purpose, we only need two critical points:

Definition 5.1 For a given observation (xp, yp), the fol-
lowing two critical points C1

P and C2
P can be defined.

C1
P ¼ DFSR

vi ðxfp; xvp; 0Þ; ð19Þ
and

C2
P ¼ DFSR

vi ðxfp; xvp; ypÞ: ð20Þ

Note that C1
P and C2

P make up the components of the
I-oriented PCUi(x, x

f, y) in Definition 2.3. Furthermore,
Kerstens et al. (2019b) have proven that for every obser-
vation (xp, yp): if λ<C1

P, then model (18) is infeasible.
Assume that φ* is the optimal value of model (18), then

the following model can be solved to find a solution max-
imizing slacks and surpluses:

max
xv;Sþ;S�;z

1M :Sþ þ 1Nf :S
�

s:t
PK
k¼1

zkyk � Sþ ¼ φ�yp;PK
k¼1

zkx
f
k þ S� ¼ xfp;PK

k¼1
zkxvk ¼ xv;

xv � λxvp;
z ¼ ðz1; ¼ ; zKÞ 2 Λ;
xv � 0; Sþ � 0; S� � 0:

ð21Þ

The method is developed in two steps. First, from model
(21) an optimal activity vector zp

� ¼ ðzp�1 ; ¼ ; zp�K Þ is
provided for firm p under evaluation yielding capacity
output and optimal fixed and variable inputs:

y�p ¼ αoutp

XK
k¼1

zp�k yk; xf �p ¼
XK
k¼1

zp�k xfk; xv�p ¼
XK
k¼1

zp�k xvk:

ð22Þ

Moreover, the O-oriented efficiency improvement
imperative or correction factor αoutp , which indicates the
portion of adjustment for the technical inefficiency of firm
p, is less than or equal to unity ( 1

DFoðxp;ypÞ � αoutp � 1
� �

).
This is repeated for all firms p= 1,…,K.

In a second step, these ‘optimal’ frontier results (capacity
output, variable and fixed inputs) at the firm level are used
as parameters in the below SRJIM (hereafter referred to as
the attainable version (att)):

min
θatt ;watt ;Xv

θatt

s:t:
PK
k¼1

watt
k y�k � Y ;

PK
k¼1

watt
k xf �k � θattXf ;

PK
k¼1

watt
k xv�k � Xv;

watt ¼ ðwatt
1 ; ¼ ;watt

K Þ 2 Γatt;
θatt � 0;Xv � 0;

ð23Þ

where

Y ¼
XK
k¼1

yk1; ¼ ;
XK
k¼1

ykM

 !
and Xf ¼

XK
k¼1

xfk1; ¼ ;
XK
k¼1

xfkNf

 !
;

and

Γatt ¼ fðw1; ¼ ;wKÞjwk � 1; ðwkx
f �
k ;wkx

v�
k ;wky

�
kÞ 2 TΛ;

k ¼ 1; ¼ ;Kg;
ð24Þ

where y�p; x
f �
p and xv�p are now defined in (22) instead of (11).

Note that the variable inputs Xv in model (23) is a vector of
decision variables. Set Γatt determines the feasible area of
weights (w1,…,wK) such that the target point ðwpx

f �
p ;wpx

v�
p ;

wpy
�
pÞ, where p= 1,…,K, belongs to the technology.
The constraints wk ≤ 1, (k= 1, . . . ,K), in set Γatt guaran-

tee that the obtained target points ðwpxf �p ;wpxv�p ;wpy�pÞ can
be magnified at most by λ which is an attainable level of
variable inputs defined in model (18). Therefore, in model
(23) decision variable wk scales down the target point
ðxf �k ; xv�k ; y�kÞ of firm p such that the technology is respected.
Note that we have no relation between θatt

�
and θrv

�
in

optimality.
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To obtain a lower bound Lattp ; ðp ¼ 1; :::;KÞ; for watt
p in

model (23) we need to solve model (17) where y�p; x
f �
p and

xv�p are now defined in (22) instead of (11).
Note that the attainable SRJIM (23) can lead to infeasi-

bilities in practical applications. Proposition 5.2 proves
some necessary and sufficient conditions for which model
(23) is feasible.

Proposition 5.2 In technology (8), we have:

(i) Model (23) is feasible if and only if
PK

k¼1 y
�
k � Y .

(ii) If C2
k � λ for all k= 1,…,K, then model (23) is

feasible.
(iii) If we remove constraint ðwatt

1 ; ¼ ;watt
K Þ 2 Γatt in

model (23), then model (23) is always feasible.
(iv) If model (23) is infeasible under the convex case,

then it is infeasible under the nonconvex case.

Based on Proposition 5.2, if there is an m∈ {1, . . . ,M}
such that

PK
k¼1 y

�
km<

PK
k¼1 ykm, then model (23) is infea-

sible. Also, if model (23) is infeasible, then there is some
k∈ {1, . . . ,K} such that we have C2

k > λ. However, since
C2
k � 1, if we assume that λ � 1, then the attainable SRJIM

(23) is feasible. Finally, when the attainable SRJIM need
not comply with the technology, this model is always fea-
sible. Again, the problem of infeasibility is potentially
worse under nonconvexity.

After solving model (23), the vector ðwatt�
p xf �p ;w

att�
p

xv�p ;w
att�
p y�pÞ can be a target for firm p which belongs to the

technology (8), and in which watt�
p is an optimal solution of

model (23) and xf �p ; x
v�
p and y�p are obtained from the rela-

tions (22). Note that if in the SRJIM (23) instead of mini-
mizing the fixed inputs, we maximize the outputs in a radial
way by reallocating production between firms, then Pro-
position 5.2 becomes redundant.

5.3 Short-run Johansen industry model with input-
oriented capacity measures: new proposal

The I-oriented short-run efficiency measure DFSR
vi ðxfp; xvp; 0Þ

is computed by optimizing the following program:

DFSR
vi ðxfp; xvp; 0Þ ¼ min

θ;z
θ

s:t
PK
k¼1

zkyk � ymin;

PK
k¼1

zkx
f
k � xfp;

PK
k¼1

zkxvk � θxvp;

z ¼ ðz1; ¼ ; zKÞ 2 Λ;
θ � 0:

ð25Þ

Note that the observed output levels on the right-hand side
of the output constraints are set equal to ymin. These output
levels are compatible with any output levels where
production is initiated and differs from zero. The reader is
referred to Kerstens et al. (2019a, Proposition B.1) for
additional interpretations (see also supra). Therefore, in
model (25), one can put y at the right-hand side of the first
constraint and make it a decision variable (instead of ymin).
In so doing, we are symmetric with the O-oriented model
(9) where the variable inputs are decision variables. Assume
that θ* is the optimal value of model (25), the following
model can be solved which maximizes slacks and surpluses:

max
z;Sþ;Sv�;Sf�

1M :Sþ þ 1Nf :S
f� þ 1Nv :S

v�

s:t
PK
k¼1

zkyk � Sþ ¼ ymin;

PK
k¼1

zkx
f
k þ Sf� ¼ xfp;

PK
k¼1

zkxvk þ Sv� ¼ θ�xvp;

z ¼ ðz1; ¼ ; zKÞ 2 Λ;
Sþ � 0; Sv� � 0; Sf� � 0;

ð26Þ

with 1Nv ¼ ð1; ¼ ; 1Þ 2 RNv
þ .

Similar to the O-oriented SRJIM above, we proceed in
two steps. First, from model (26) an optimal activity vector
zp� ¼ ðzp�1 ; ¼ ; zp�K Þ is provided for firm p under evaluation
allowing computation of capacity output and its optimal
levels of fixed and variable inputs:

y�p ¼
XK
k¼1

zp�k yk; xf �p ¼
XK
k¼1

zp�k xfk; xv�p ¼ αinpp

XK
k¼1

zp�k xvk: ð27Þ

This has to be repeated for all firms p= 1,…,K. The
I-oriented efficiency improvement imperative or correction
factor αinpp , which indicates the portion of adjustment for
variable I-oriented technical inefficiency of firm p is greater
than or equal to unity 1 � αinpp � 1

DFSR
vi ðxf ;xv;yÞ

� �
.

In a second step, these ‘optimal’ frontier results (capacity
output and capacity variable and fixed inputs) at the firm
level are used as parameters in the below SRJIM (hereafter
referred to as the I-oriented version (inp)):

min
θinp;winp;Xv

θinp

s:t:
PK
k¼1

winp
k y�k � Y ;

PK
k¼1

winp
k xf �k � θinpXf ;

PK
k¼1

winp
k xv�k � Xv;

winp ¼ ðwinp
1 ; ¼ ;winp

K Þ 2 Γinp;
θinp � 0;Xv � 0:

ð28Þ
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where

Y ¼
XK
k¼1

yk1; ¼ ;
XK
k¼1

ykm

 !
and Xf ¼

XK
k¼1

xfk1; ¼ ;
XK
k¼1

xfkNf

 !
;

ð29Þ

and

Γinp ¼ fðw1; ¼ ;wKÞjwk � 1; ðwkx
f �
k ;wkx

v�
k ;wky

�
kÞ 2 TΛ;

k ¼ 1; ¼ ;Kg: ð30Þ

This set Γinp determines the feasible weights (w1,…,wK)
such that the target points ðwpx

f �
p ;wpx

v�
p ;wpy

�
pÞ belong to the

technology. Note that for the weights (w1,…,wK)∈ Γinp, we
have wp ≥ 1 for all p= 1,…,K. Therefore, in model (28)
decision variable wk scales up the target point ðxf �k ; xv�k ; y�kÞ
of firm p such that the technology is respected. Note that
θinp

�
cannot be compared to θbv

�
; θrv

�
and θatt

�
in optimality.

To obtain an upper bound Uinp
p , where p= 1, . . . ,K, for

winp
p we need to solve the next model (31):

Uinp
p ¼ max

δ;z
δ

s:t:
PK
k¼1

zkyk � δy�p;

PK
k¼1

zkx
f
k � δxf �p ;

PK
k¼1

zkxvk � δxv�p ;

z ¼ ðz1; ¼ ; zkÞ 2 Λ;
δ � 0;

ð31Þ

where y�p; x
f �
p and xv�p are defined in (27). By solving this

model we scale up the output and input capacity targets
such that they become feasible within the technology.
Notice that in all previous models based on O-oriented plant
capacity we start from output and input capacity targets that
are situated in point A at the horizontal section in Fig. 1a,
while here we start from I-oriented plant capacity targets
that are situated at the vertical section in Fig. 1a: in Fig. 1b
one can note another point A at the vertical section.

Therefore, model (31) can be interpreted as expanding
the capacity targets to obtain the upper bound of weights
while respecting the technology. Note that all weights
winp
k � 1 since the optimal solution starts out from the

vertical section in Fig. 1b and moves up to the right in
input-output space, while all previous models based on
O-oriented plant capacity start from output and input
capacity targets that are situated at the horizontal section in
Fig. 1a and move down to the left in input-output space.

Hence, in model (31) we need to scale up capacity outputs
and capacity variable and fixed inputs to meet all
requirements.

Note that the I-oriented SRJIM (28) can lead to infeasi-
bilities in practical applications. But, if there are no upper
bounds in the I-oriented short-run Johansen industry model
(28) (i.e., we do not need to respect the technology by
ignoring constraint ðwinp

1 ; ¼ ;winp
K Þ 2 Γinp in model (28)),

then model (28) is always feasible. Proposition 5.3 proves
some necessary and sufficient conditions for which model
(28) is feasible.

Proposition 5.3 In technology (8), we have:

(i) Model (28) is feasible if and only if
PK

k¼1 U
inp
k y�k � Y .

(ii) If we remove constraint ðwinp
1 ; ¼ ;winp

K Þ 2 Γinp in
model (28), then model (28) is always feasible.

(iii) If model (28) is infeasible under the convex case, then it
is infeasible under the nonconvex case.

After solving model (28), the vector ðwinp�
p xf �p ;w

inp�
p

xv�p ;w
inp�
p y�pÞ can be a target for DMUp which belongs to the

technology (8) where winp�
p is an optimal solution of model

(28) and xf �p ; x
v�
p and y�p are obtained from the relations (27).

To foster understanding, the reader may consult the
numerical example in Supplementary Appendix D.3. It is
now shown graphically that by solving the I-oriented
SRJIM (28) one obtains a solution that again respects the
technology.

Figure 1b shows the intersection of the technology with
the plane passing through the origin and the I-oriented
target point of observation 13, i.e., point ðxv�13; xf �13; y�13Þ ¼
ð2; 2; 2Þ which is obtained from Eq. (27). The horizontal
axis shows the amount of simultaneous changes in fixed and
variable inputs (α) for the I-oriented target point 13 in a
radial way and the vertical axis shows the amount of
changes in outputs (φ). Therefore, for (α, φ)= (1, 1) we
have ðxv�13; xf �13; y�13Þ ¼ ð2; 2; 2Þ (black solid box A).

Note that by implementing the I-oriented SRJIM (28) by
using the numerical data in Supplementary Table B.1, we
have θinp

� ¼ 0:81. In this case, the target point A (i.e., the
target point of unit 13) remains unchanged at point A in
Fig. 1b (see Supplementary Appendix D, Section D.3).

6 Empirical illustration

6.1 Data

Our sample is from 170 fishing vessels operating in the
northwest Atlantic Ocean during a single year (exact year
not disclosed for confidentiality purposes). All vessels use
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similar technology and catch their fish by dragging a net
behind their vessels just off the ocean floor. Catches were
grouped into three distinct categories based on species:
flatfish, roundfish, and “other”. There are three fixed inputs:
vessel length, engine horsepower, and vessel gross tonnage.
The only variable input is days spent at sea.

Table 1 presents basic descriptive statistics. Vessels are
between 36 and 88 feet in length (average 63). Their
horsepower ranges from 180 to 1380 (494 average) and
their tonnage is between 5 and 199 (average 90). On
average, these vessels fish 67 days per year with a range
between 2 and 242 days. Their average roundfish catch is
99,113 pounds with a range between zero and 750,976.
Flatfish catch is between 9 and 265,617 pounds (average
50,602). The “other” category average catch is 154,253
pounds with a range between 299 and 1,462,807 pounds.

An important remark needs to be made with respect to
the sole variable input time spent at sea in days. Based on

Eq. (11) we have xv�p ¼PK
k¼1 z

p�
k xvk and since

PK
k¼1 z

p�
k ¼ 1,

then min
k¼1;:::;K

xvkn � xv�pn ¼
PK

k¼1 z
p�
k xvkn � max

k¼1;:::;K
xvkn for all

n= 1,…,Nv. Hence, we have 2:222 � xv�p1 � 242:195 for

all p= 1,…,K. Thus, the optimal amount of variable inputs
is always bounded by the minimum and maximum levels of
observed variable inputs in the data, and it can certainly not
reach the absolute upper bound of 365 days in the year
analyzed.

Table 2 reports the descriptive statistics of I-oriented,
O-oriented and AO-oriented PCU for our vessels using
convex and nonconvex technologies. These results reflect
output- and I-oriented efficiency improvement imperatives
of unity (i.e., αoutp ¼ αintp ¼ 1). The main motivation to
differentiate between convex and nonconvex technologies
is that recently Kerstens et al. (2019a) revealed significant
differences between convex and nonconvex PCU. Note that
for both the AO-oriented efficiency measure ADFf

oðxf ; y; λÞ
and the AO-oriented PCU APCUoðx; xf ; y; λÞ, we have
chosen λ ¼ 2.

Analyzing Table 2, first we conclude that on average the
PCUi(x, x

f, y) indicates that one needs 16.55 times more
variable inputs (days) with current outputs than with zero
outputs under C, while under NC one employs 28.12 times

more variable inputs (days). Second, on average the biased
PCU measure DFf

oðxf ; yÞ indicates that outputs can be
increased 8.05 times under C and 3.86 times under NC.
There is substantial variation in DFf

oðxf ; yÞ as indicated by
the standard deviation and range: the maximum increase in
outputs amounts to 129.824 times under C and 129.558
under NC. Third, on average the unbiased PCU measure
PCUo(x, x

f, y) indicates that current outputs are 63% of
maximal plant capacity outputs under C and 67% under NC.
Heterogeneity in PCUo(x, x

f, y) is large as indicated by the
standard deviation and the range: the minimum of 2.2%
under C and 1.4% under NC are quite low. Fourth, for the
biased attainable PCU measure ADFf

oðxf ; y; λ ¼ 2Þ the
average of the output magnification under C is higher than
under NC. For a twofold increase in variable inputs (i.e.,
λ ¼ 2), we obtain on average a 3.892 output magnification
under C and 1.454 under NC. Fifth, the average of
APCUoðx; xf ; y; λ ¼ 2Þ is smaller under C than under NC.

In conclusion, the different PCU measures behave sub-
stantially different under C and NC technologies. This is in
line with earlier results reported by Kerstens et al. (2019a).

6.2 Key results

Turning to the results of the four SRJIM, Table 3 shows
basic descriptive statistics of their efficiency scores (θ),
weights (wp), lower and upper bounds (Lp and Up), the
number of units for which their weights coincide to their
lower bound (#wp= Lp), the number of units for which their
weights coincide to their upper bound (#wp=Up), and the
number of units which are located outside of the technology
(# DMUp∉ T). The rows of Table 3 include results under
the convex and nonconvex cases.

We draw the following conclusions from Table 3. First,
fixed inputs can be reduced by 70% in the basic version
(bv), but only 16% in the revised version (rv). This dramatic
difference is because 117 of the 170 vessels are not part of
the frontier technology, an issue largely ignored in the
SRJIM literature. This is due to low average weights in the
basic version compared to the revised version. In the revised
version all 170 observations have weights equal to their
lower bound. Second, applying a nonconvex technology
slightly attenuates these results: fixed inputs can be reduced

Table 1 Descriptive statistics for 170 observed data

Fixed input 1 Fixed input 2 Fixed input 3 Variable input Output 1 Output 2 Output 3

Horsepower Length Tonnage Days Roundfish Flatfish Other

Average 494.4824 62.67194 90.14706 67.79868 99113.2254 50601.95 154252.701

St. Dev. 210.1697 14.60609 54.59042 66.21814 154640.012 54758.96 233021.661

Min 180 35.8 5 2.222 0 9 299

Max 1380 88.4 199 242.195 750976 265616.9 1462806.89
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by 65% in the basic version and by just 8% in the revised
version. Average weights are higher under nonconvexity in
both versions.

Third, opting for an AO-oriented PCU slightly improves
the results compared to the revised version of the
O-oriented PCU because capacity inputs and outputs are
somewhat reduced. Under convexity fixed inputs can be
reduced by 16% in the revised version and by 18% in the
attainable case, while in the nonconvex case fixed inputs
can be reduced by 8% in the revised version and by 9% in
the attainable case. While the average weight slightly
increases under convexity, it marginally decreases under
nonconvexity. Also in the attainable version all 170
observations have weights equal to their lower bound.
Fourth, the I-oriented SRJIM (28) is infeasible for this
empirical application under both convex and nonconvex
cases. Thus, it is impossible to scale up the I-oriented
capacity targets of units such that these are capable to
generate the current aggregate output levels while
respecting the technology. The reader should realize that
the I-oriented SRJIM (28) does yield a solution for the
numerical example (see Supplementary Appendix D), but

that the configuration of the empirical data leads to an
infeasibility. More detailed results are found in Supple-
mentary Appendix E.

We think it is safe to conclude the following from our
empirical illustration. First, the basic version of the SRJIM
is both conceptually wrong and leads to overly optimistic
reductions in fixed inputs. Secondly, the degree of reallo-
cation is somehow conditioned on the type of PCU to which
one adheres. Our results indicate that the traditional
O-oriented PCU may still be a bit too optimistic compared
to the AO-oriented PCU that leads to fewer reductions in
fixed inputs. Regrettable, the conceptually appealing
I-oriented SRJIM results in an infeasible solution for our
data.

7 Conclusions

This contribution has provided a cursory review of the
historic development of the SRJIM, and distinguishes
between the traditional average practice version and the
more recent best practice or frontier-based version. The

Table 2 Descriptive statistics of input and output plant capacity utilization for 170 DMUs in both convex and nonconvex cases

Convex DFvi(x
f, xv, y) DFvi(x

f, xv, 0) PCUi(. ) DFo(. ) DFf
oð:Þ PCUo(. ) ADFf

oð:Þ APCUo(. )

Average 0.576 0.201 16.557 2.283 8.056 0.631 3.892 0.712

St. Dev. 0.242 0.279 21.297 1.735 14.286 0.342 3.777 0.246

Min 0.109 0.009 1.000 1.000 1.000 0.022 1.000 0.134

Max 1.000 1.000 108.999 11.546 129.824 1.000 28.865 1.000

Nonconvex

Average 0.984 0.222 28.120 1.056 3.866 0.679 1.454 0.862

St. Dev. 0.064 0.300 30.095 0.230 10.792 0.344 1.189 0.220

Min 0.543 0.009 1.000 1.000 1.000 0.014 1.000 0.094

Max 1.000 1.000 108.999 2.675 129.558 1.000 11.282 1.000

Table 3 The results of weights, lower and upper bounds for all methods

Weights Lower or upper bound

Convex θ Average St. Dev. Min Max Average St. Dev. Min Max # wp= Lp # wp=Up # DMUp∉ T

bv 0.3 0.330 0.466 0 1 111 54 117

rv 0.84 0.937 0.108 0.5802 1 0.9366 0.1076 0.580 1 170 170 0

att 0.82 0.946 0.104 0.5802 1 0.9464 0.1040 0.580 1 170 170 0

inp Inf Inf Inf Inf Inf 61.0550 25.4301 1 116.19 Inf Inf Inf

Nonconvex

bv 0.35 0.350 0.474 0 1 109 56 114

rv 0.92 0.996 0.025 0.817 1 0.996 0.025 0.817 1 170 170 0

att 0.91 0.995 0.033 0.6858 1 0.995 0.033 0.686 1 170 170 0

inp Inf Inf Inf Inf Inf 14.567 35.205 1 116.19 Inf Inf Inf

bv basic version of O-oriented SRJIM, rv revised version of O-oriented SRJIM, att AO-oriented SRJIM, inp I-oriented SRJIM
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goals of this contribution are twofold. First, we remedy a
remaining problem in the Johansen (1972) SRJIM by
relaxing the assumption of constant returns to scale up to
full capacity for individual production units. Hence, capa-
city inputs and outputs remain technically feasible and
remain within the technology. Second, we have opened up
the methodological choices of the SRJIM by introducing a
new I-oriented PCU, and an AO-oriented PCU.

In order to demonstrate our findings, we provided a basic
numerical example to illustrate the differences and simila-
rities between these modeling options, as well as an
empirical illustration using US based fishery data. Both
these illustrations have shown the viability of our new
modeling options.

To conclude, we mention some avenues for future
research. One possibility is to further extend the choice of
PCU by including a graph-oriented plant capacity concept
(see Kerstens et al. 2020) or some of the new plant capacity
concepts introduced in Kerstens and Sadeghi (2023). Fur-
thermore, this presentation may perhaps benefit from
introducing a directional distance function to unify all types
of specialized efficiency measures that are currently
employed.

Another possibility is to use nonradial instead of radial
efficiency measures to measure plant capacity concepts and
to evaluate possibilities for reallocation in the SRJIM. One
may conjecture that this is especially important in the case
of nonconvex technologies where slacks and surpluses are
plentiful. Another avenue is to trace the evolution of the
frontier-based SRJIM over time. Finally, the link between a
vintage-based model and the metafrontier framework as the
union of several vintage group technologies needs to be
worked out in more detail.

Supplementary information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11123-023-00704-0.
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