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Abstract
This contribution observes that plant capacity notions based on traditional radial efficiency
measures may leave substantial amounts of slacks or unmeasured inefficiency. These unmea-
sured inefficiencies can result in inaccurate assessments of production capabilities, potentially
leading to suboptimal operational and strategic decisions. To remedy this problem, we define
new nonradial output-oriented and input-oriented plant capacity concepts based on nonradial
Färe-Lovell efficiency measures. By leveraging nonradial measures, our approach captures
multidimensional inefficiencies, providing amore nuanced and accurate evaluation of produc-
tion performance across various input and output dimensions. Furthermore, we also explore
how the introduction of nonradial attainability levels can render the attainable output-oriented
plant capacity concept more flexible. This flexibility allows for the incorporation of realistic
operational constraints, ensuring that capacity assessments are both practical and adaptable to
diverse production environments. An empirical illustration on a secondary data set illustrates
the pertinent differences between radial and nonradial plant capacity notions. Our empirical
analysis demonstrates that nonradial measures offer a more detailed understanding of capac-
ity utilization. In particular, it shows that nonradial plant capacity concepts are especially
important on a nonconvex technology.

Keywords Capacity utilization · Slacks · Färe-Lovell efficiency measure · Convexity ·
Nonconvexity · Attainability
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1 Introduction

The concept of plant capacity, initially introduced in the production literature by Johansen
(1968), has since been rigorously examined and operationalized by Färe et al. (1989) and
Fare et al. (1989). The former focused on a single output scenario while the latter delved into
scenarios with multiple outputs within a non-parametric frontier framework. This concep-
tualization has found extensive application in various empirical contexts, including but not
limited to fisheries (e.g., Walden and Tomberlin (2010)), hospitals (e.g., Karagiannis (2015)),
and banking sectors (e.g., Sahoo and Tone (2009)). Such diverse applications underscore the
versatility and relevance of the plant capacity concept across different domains.

Over the past two decades, plant capacity utilization (PCU) measures have predomi-
nantly relied on a pair of output-oriented (O-O) radial efficiency metrics, as summarized by
Fukuyama et al. (2021). Tingley et al. (2003) propose an O-O radial PCUmeasure under non-
increasing return to scale. More recently, Cesaroni et al. (2017) introduce an input-oriented
(I-O) PCU measure, defined as the ratio of two I-O radial efficiency measures, following a
similar approach. Empirical studies comparing O-O and I-O PCU notions have been con-
ducted byChen andKerstens (2023),Kerstens andShen (2021), and Shen et al. (2022), among
others. Cesaroni et al. (2019) propose novel long-run O-O PCU measures and theoretically
and empirically compared short- and long-run PCU measures. The latter PCU notions have
been empirically applied by, for example, Kerstens and Shen (2021), Shen et al. (2022), and
Song et al. (2023).

Kerstens et al. (2019a) conducted a comparative analysis of O-O and I-O technical and
economic PCU measures, investigating the influence of convexity on these metrics. Their
empirical findings indicate that convexity plays a significant role in nearly all technical and
economic PCU measures. Within conventional parametric, semi-parametric, and nonpara-
metric technology frameworks, the incorporation of convexity is a common practice. The
prevalent adherence to the convexity axiom inmainstream literature often stems from its con-
venience or from the assumption of perfect time divisibility. In-depth discussions regarding
convexity and nonconvexity in both nonparametric technologies and cost functions are exten-
sively covered in Kerstens and Van de Woestyne (2021). The profound impact of convexity
on technologies is apparent, as highlighted by empirical evidence presented in Kerstens and
Van deWoestyne (2021).Moreover, beyondmere cost differentials, convexity also influences
economies of scale, as elucidated by their empirical analysis.

A notable repercussion of convexity on technology, extensively documented in literature,
is the tendency of traditional radial efficiencymeasures to leave considerable slack and surplus
variables. However, under nonconvexity, these measures can result in even greater amounts
of slack and surplus variables. This observation has been corroborated by studies conducted
on the same dataset of USA banks, with Ferrier et al. (1994) documenting this phenomenon
in the convex case, and De Borger et al. (1998) observing it in the nonconvex case.

Hence, there arises a potential challenge associated with PCU measures employing radial
efficiency measures. Radial efficiency measures assess performance relative to isoquants
rather than to efficient subsets, potentiallymisidentifying some technically inefficient units as
efficient (Färe & Lovell, 1978). Within the context of capacity utilization, this characteristic
can erroneously label plant capacity as optimal when, in reality, it is not. Generally, the
optimal capacity determined byO-O radial efficiencymeasuresmay be underestimated,while
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that determined by I-O radial efficiency measures may be overestimated. Consequently, the
primary objective of this study is to introduce novel nonradial PCU measures, incorporating
both input and output orientations. These measures are designed based on the premise that
optimal capacity should be situated within the efficient subset rather than merely on the
isoquant.

It is pertinent to mention that several nonradial PCU measures have been introduced in
the literature utilizing nonradial efficiency measures in the literature. Segerson and Squires
(1990) define a partial PCU measure in a parametric framework. This measure has been
transposed by Vestergaard et al. (2003) in a nonparametric context using an asymmetric Färe
efficiency measure. These authors focus on radial expansion of one specific output while
keeping other outputs unchanged. Recently, a generalized capacitymeasure based on a couple
of directional distance functions is developed by Yang and Fukuyama (2018). Kerstens et al.
(2020) introduce a novel graphPCUmeasure based on the generalizedFarrell graph efficiency
measure. However, these nonradialmeasures still ignore the effects of slacks on plant capacity
measurement, i.e., the inference of optimal capacity in plant capacity measurement may be
incorrect because of the existence of slacks. The proposed new nonradial plant capacity
measures fill this void by using weighted Färe-Lovell efficiency measures that fully consider
all slacks simultaneously.

The attainability of variable inputs is an endogenous issue from the definition of PCU
suggested by Johansen (1968). To explore this issue, an attainable O-O PCU measure is
defined by Kerstens et al. (2019b). They also highlight that the attainability issue only exists
for the O-O PCU measure, while the I-O PCU measure does not suffer from it. A recent
empirical application of the attainable O-O PCU notion is found in Cui et al. (2023).

Hence, this attainability issue is explored in the new nonradial O-O PCU measure. In
particular, the attainability constraints allow flexible proportional reduction or expansion
for each of the variable inputs, which differs from Kerstens et al. (2019b) that only allow
proportional reduction or expansion for all variable inputs by the same ratio. These new
constraints add great values to this plant capacity measurement because they are flexible to
reflect a variety of scenarios in reality.

This work is structured in the following way. Section2 defines the technology and reviews
some radial and nonradial efficiency measures. In Sect. 3, we define the I-O and O-O radial
PCUmeasures and the partialO-OPCUmeasure, afterwhichwequestion the radial efficiency
measure in plant capacitymeasurement.We then propose the newnonradial I-O andO-OPCU
measures by a couple of Färe-Lovell efficiency measures. We further explore the attainability
issue of the nonradial O-O PCU measure and define an attainable nonradial PCU measure
depending on the availability of variable inputs. Section4 provides an empirical illustration.
The contribution ends with some conclusions in Sect. 5.

2 Technology and efficiencymeasures

In this section we mainly define the technology and review radial and nonradial efficiency
measures. Technology T describe all production possibilities transforming input vectors
x = (x1, . . . , xm) ∈ R

m+ into output vectors y = (y1, . . . , ys) ∈ R
s+, i.e., T = {(x, y) ∈

R
m+s+ | x can produce at least y}.
Occasionally, the following standard axioms are imposedonT (see, for example,Hackman

(2008)).
Axiom 1:No free lunch and possibility of inaction, i.e., (0, y) ∈ T ⇒ y = 0 and (0, 0) ∈ T .

123



172 Annals of Operations Research (2025) 345:169–205

Axiom 2: T is a closed subset of Rm+s+ .
Axiom 3: Free disposability, i.e., (x, y) ∈ T , (x′, y′) ∈ R

m+s+ and (x,− y) ≤ (x′,− y′) ⇒
(x′, y′) ∈ T .
Axiom 4: T is a convex set, i.e., (x, y) ∈ T , (x′, y′) ∈ T , and λ ∈ [0, 1] ⇒ (λx + (1 −
λ)x′, λ y + (1 − λ) y′) ∈ T .

Note that Axioms 1–3 are conventional regularity conditions within classical production
theory, i.e., possibility of inaction, closeness and free disposability of inputs and outputs.
The assumption of convexity has been questioned because a wide range of reasons suggest
nonconvexities in technology, for example, indivisibilities, economies of specialization and
externalities (for details, see Kerstens and Van de Woestyne (2021)). Thus, in our analysis
not all the above axioms are simultaneously imposed. Specifically, we discuss both non-
convex and convex technologies by discarding the convexity axiom or not throughout this
contribution.

In addition, the output correspondence, which is relative to T , can be defined as P(x) =
{ y ∈ R

s+ | x can produce at least y}. By analogy, the input correspondence linked with
technology T can be depicted by L( y) = {x ∈ R

m+ | x can produce at least y}.
With regard to P(x), the following two subsets are important to characterize efficiency

measures (Färe & Lovell, 1978). The isoquant of P(x) can be defined as
Isoq P(x) := { y | y ∈ P(x), θ ∈ (1,∞) ⇒ θ y /∈ P(x)} for x > 0, and Isoq P(0) ≡ 0.

The efficient subset of P(x) is
Eff P(x) := { y | y ∈ P(x),∀ y′ ≥ y, y′ 	= y ⇒ y′ /∈ P(x)} for x > 0, and Eff

P(0) ≡ 0.
For L( y) we can also distinguish between the isoquant on the one hand:
Isoq L( y) := {x | x ∈ L( y), β ∈ [0, 1) ⇒ βx /∈ L( y)} for y > 0, and Isoq L(0) ≡ 0.

and the efficient subset on the other hand:
Eff L( y) := {x | x ∈ L( y),∀x′ ≤ x, x′ 	= x ⇒ x′ /∈ L( y)} for y > 0, and Eff

L(0) ≡ 0.
There is potentially a rather large variety of efficiency measures around in the literature.

The survey of Russell and Schworm (2009) delves into oriented efficiency models, providing
an in-depth analysis of their characteristics and applications. By contrast, the survey by
Russell and Schworm (2011) specifically addresses efficiency measures defined relative to
the graph of technology, offering valuable insights into this distinct approach to efficiency
assessment. Since plant capacitymeasures havemainly been defined using oriented efficiency
models, we ignore efficiency measures defined relative to the graph of technology.1 In the
terminology introduced by Russell and Schworm (2018), we focus on a selection of “path-
based indexes” rather than some alternative “slacks-based indexes”. In particular, apart from
the traditional radial efficiency measures we limit ourselves to the nonradial Färe-Lovell and
weighted Färe-Lovell efficiency measures for the purpose of defining new nonradial PCU
measures.

The radial input efficiencymeasure provides a comprehensive characterization of the input
correspondence L( y):

DFi (x, y) = min{β | βx ∈ L( y), β ∈ [0, 1]}. (1)

The radial input efficiency measure, denoted by DFi (x, y), exhibits the following two prop-
erties: (i) it is no greater than unity with (weakly) efficient production on the isoquant of

1 Kerstens et al. (2020) propose a graph-based PCU measure based on some efficiency measures defined in
relation to the graph of technology.
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L( y), i.e., DFi (x, y) ≤ 1 and DFi (x, y) = 1 ⇐⇒ x ∈ Isoq L( y); and (ii) it exhibits a cost
interpretation.

In a similar vein, the radial output efficiency measure provides a comprehensive
characterization of the output correspondence P(x):

DFo(x, y) = max{θ | θ y ∈ P(x), θ ∈ [1,+∞)}. (2)

By analogy, twomain properties of radial output efficiency measure DFo(x, y) are (i) it is no
less than unitywith (weakly) efficient production on the isoquant of P(x), i.e., DFo(x, y) ≥ 1
and DFo(x, y) = 1 ⇐⇒ y ∈ Isoq P(x); and (ii) it exhibits a revenue interpretation.

Since the radial efficiencymeasures projects on the isoquant instead of the efficient subset,
Färe and Lovell (1978) propose a nonradial Färe-Lovell input efficiency measure that allows
for proportional reductions in all input dimensions simultaneously. The measure is defined
as:

NDFi (x, y) = min{ 1
m

m∑

i=1

βi | β � x ∈ L( y), βi ∈ [0, 1]}. (3)

where the symbol � represents the Hadamard product of two vectors. This nonradial input
efficiencymeasure NDFi (x, y)minimizes the arithmeticmeanof dimension-wise reductions
in all input dimensions. In particular, its main properties are (i) it is no greater than unity
with efficient production on the efficient subset of L( y), i.e., NDFi (x, y) ≤ 1. Moreover,
NDFi (x, y) = 1 ⇔ x ∈ Eff L( y); (ii) strict monotonicity in inputs for given outputs, i.e.,
x ∈ L( y), x′ ≥ x, and x′ 	= x ⇒ NDFi (x, y) > NDFi (x′, y).

Furthermore, Ruggiero and Bretschneider (1998) define a weighted Färe-Lovell input
efficiency measure as:

WNDFi (x, y) = min{
m∑

i=1

ηiβi | θ � x ∈ L( y), βi ∈ [0, 1]}. (4)

where η ∈ R
m+ is the vector whose elements are ηi > 0 satisfying

∑m
i=1 ηi = 1. This

nonradial weighted input efficiency measureWNDFi (x, y) minimizes the weighted sum of
dimension-wise reductions in all input dimensions. It offers exactly the samemain properties
as NDFi (x, y).

By analogy, the nonradial Färe-Lovell output efficiencymeasure allowing for proportional
expansions in all output dimensions simultaneously can be defined as:

NDFo(x, y) = max{1
s

s∑

r=1

θr | θ � y ∈ P(x), θr ∈ [1,+∞)}. (5)

It maximizes the arithmetic mean of dimension-wise expansions in all output dimensions. Its
main characteristics include (i) it is no less than unity with efficient production on the efficient
subset of P(x), i.e., NDFo(x, y) ≥ 1. Moreover, NDFo(x, y) = 1 ⇔ y ∈ Eff P(x); and
(ii) strict monotonicity in outputs when inputs are fixed, i.e., y ∈ P(x), y′ ≤ y, and y′ 	=
y ⇒ NDFo(x, y) < NDFo(x, y′).

The corresponding weighted Färe-Lovell output efficiency measure is defined as (Zhu,
1996):

WNDFo(x, y) = max{
s∑

r=1

μrθr | θ � y ∈ P(x), θr ∈ [1,+∞)}. (6)
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where μ ∈ R
s+ is the vector whose elements are μr > 0 satisfying

∑s
r=1 μr = 1. The

nonradial weighted output efficiency measure WNDFo(x, y) maximizes the weighted sum
of dimension-wise expansions in all output dimensions. Its main properties are identical to
NDFo(x, y).

With regard to the definition of PCU concepts, it is necessary to partition the input vector x
into a fixed sub-vector x f ∈ R

m f
+ and a variable sub-vector xv ∈ R

mv+ wherem = m f +mv .
Following Färe et al. (1989), a short-run technology can be defined as T f = {(x f , y) ∈
R
m f +s
+ | there exists some xv such that (x f , xv) can produce at least y} (see Kerstens et

al. (2019a)). Its short-run input correspondence is L f ( y) = {x f ∈ R
m f
+ | (x f , y) ∈ T f },

and its short-run output correspondence is P f (x f ) = { y ∈ R
s+ | (x f , y) ∈ T f }. It is evident

that technology T f is a subset of technology T and can be derived by letting all variable
inputs xv be zero. Similarly, L f ( y) (resp. P f (x f )) is a subset of L( y) (resp. P(x)) and can
be derived by the same projection principles.

Similar to the definitions of Isoq P(x), Eff P(x), Isoq L( y) and Eff L( y), we can define
the isoquant and efficient subset of the short-run output and input correspondence P f (x f )

and L f ( y). To save space, we therefore omit the detailed definition here.
Accordingly, we can define a radial sub-vector input efficiency measure of L( y) that only

reduces variable inputs proportionally DFSR
i (x f , xv, y) as:

DFSR
i (x f , xv, y) = min{β | (x f , βxv) ∈ L( y), β ∈ [0, 1]}. (7)

In addition, the radial output efficiencymeasure DF f
o (x f , y)with respect to the short-run

output set P f (x f ) is defined as:

DF f
o (x f , y) = max{θ | θ y ∈ P f (x f ), θ ∈ [1,+∞)}. (8)

Finally, assume there exist n observations consisting of a (m+s)-dimensional vector incor-
porating inputs and outputs (x j , y j ) ∈ R

m+s+ , j = 1, ..., n. Defining nonparametric frontier
technologies, a unified mathematical characterization to technology T can be formulated as

T� = {(x, y) | x ≥
n∑

j=1

λ j x j , y ≤
n∑

j=1

λ j y j , λ ∈ �}, (9)

where

(i) � ≡ �C = {λ | ∑n
j=1 λ j = 1 and λ j ≥ 0};

(ii) � ≡ �NC = {λ | ∑n
j=1 λ j = 1 and λ j ∈ {0, 1}}.

Note that the above characterization assumes variable return to scale for simplicity, but
it can be extended to a general returns to scale framework (for detail, see Kerstens and
Van de Woestyne (2021)). The constraints on activity vector λ identify convex and non-
convex technologies, where all components summing to unity denote the convexity axiom
and all component with binary values summing to unity describes nonconvexity. The non-
convex technology is consistent with the free disposable hull developed by Deprins et al.
(1984).2 In the remainder, conventions NC and C are used to represent nonconvex and
convex nonparametric frontier technologies, respectively.

2 There are a variety of other nonconvex technologies, see for example, Petersen (1990), Post (2001), and
Podinovski and Kuosmanen (2011). This contribution focuses on the free disposable hull case for ease of
exposition.
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3 Plant capacity concepts

3.1 Plant capacity: basic definitions

Johansen (1968) initially offers a broad interpretation of plant capacity, defining it as the
maximum quantity that can be produced per unit of time using existing plant and equipment,
under the condition that the availability of variable factors of production is unrestricted. This
definition is intuitive, but it lacks an explicit mathematical characterization in this work. To
operationalize this definition, Fare et al. (1989) and Färe et al. (1989) develop an operational
O-O PCU measure using nonparametric technologies. This O-O PCU measure is defined as
follows.

Definition 3.1 The O-O PCU PCUo is defined as:

PCUo(x, x f , y) = DFo(x, y)

DF f
o (x f , y)

, (10)

where DFo(x, y) and DF f
o (x f , y) are radial output efficiency measures using production

correspondences P(x) and P f (x f ), respectively.

Note that 0 < PCUo(x, x f , y) ≤ 1, since 1 ≤ DFo(x, y) ≤ DF f
o (x f , y). In particular,

PCUo(x, x f , y) = 1 implies that the current combination of variable and fixed inputs is
sufficient to generate the maximum capacity outputs. Otherwise if PCUo(x, x f , y) < 1,
then the maximum capacity outputs cannot be reached because of the limited current variable
inputs.3 Taking a closer look at the PCUmeasure, Färe et al. (1994) denote DF f

o (x f , y) and
PCUo(x, x f , y) as a biased and an unbiased PCU measure, respectively.

To further explore the capacity utilization level of a specific output, a partial O-O PCU
measure, where only one output is variable while all other outputs are held fixed, is defined
by Vestergaard et al. (2003). This partial O-O PCU measure is defined as:

Definition 3.2 The partial O-O PCU of output r , DF f
o(r), r = 1, ..., s is defined as

DF f
o(r)(x

f , yr , y−r ) = max{θr | (θr yr , y−r ) ∈ P f (x f ), θr ∈ [1,+∞)}, (11)

where yr denotes the r th component of output vector y and y−r denotes the sub-vector of
output excluding yr .

Different from PCUo(x, x f , y), this new measure is derived from a nonradial efficiency
measure, which allows proportional expansion of the r th output only. DF f

o(r)(x
f , yr , y−r ) ≥

1 always holds by definition and the equality indicates the r th output has achieved itsmaximal
capacity when the fixed inputs are completely used and all other outputs maintain current
amounts. Particularly, following the terminology by Färe et al. (1994), DF f

o(r)(x
f , yr , y−r )

denotes a biased PCU measure rather than an unbiased one.
To our knowledge, an unbiased measure to the partial O-O PCU has not been defined

explicitly, therefore we define it here.

3 Note that PCUo(x, x f , y) = 1 does not imply that (x, y) is efficient because the efficiency status has no
impact on plant capacity measurement (Cesaroni et al. (2017)).
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Definition 3.3 The unbiased measure to the partial O-O PCU of output r (PPCUo(r)), r =
1, ..., s is defined as

PPCUo(r)(x, x f , yr , y−r ) = DFo(r)(x, yr , y−r )

DF f
o(r)(x

f , yr , y−r )
(12)

where DFo(r)(x, yr , y−r ) = max{θr | (θr yr , y−r ) ∈ P(x), θr ≥ 0}. Note that as

1 ≤ DFo(r)(x, yr , y−r) ≤ DF f
o(r)(x

f , yr , y−r ), 0 < PPCUo(r)(x, x f , yr , y−r ) ≤
1 holds, i.e., PPCUo(r)(x, x f , yr , y−r ) has an upper bound of unity. In particular,
PPCUo(r)(x, x f , yr , y−r ) = 1 indicates the current variable inputs, together with the cur-
rent fixed inputs, are enough to produce the maximal capacity of the r th output; otherwise,
the maximal capacity of the r th output is still limited by the current variable inputs.

In addition to the O-O PCU measure, an I-O PCU measure consisting of the ratio of two
I-O efficiency measures is first explored by Cesaroni et al. (2017).

Definition 3.4 The I-O PCU PCUi is defined as:

PCUi (x f , xv, y) = DFSR
i (x f , xv, y)

DFSR
i (x f , xv, ε)

, (13)

where ε is a non-Archimedean infinitesimal and DFSR
i (x f , xv, y) and DFSR

i (x f , xv, ε)
are sub-vector radial input efficiency measures using input correspondences L( y) and L(ε),
respectively.

Since 0 < DFSR
i (x f , xv, ε) ≤ DFSR

i (x f , xv, y), PCUi (x f , xv, y) ≥ 1 holds. In
particular, PCUi (x f , xv, y) = 1 implies that themaximal proportional reduction of variable
inputs to produce the current outputs is equal to that to produce ε outputs. By analogy, we
can differentiate between a biased I-O PCU measure denoted by DFSR

i (x f , xv, ε) and an
unbiased I-O PCU measure denoted by PCUi (x f , xv, y).

3.2 Plant capacity: questioning radial measures

Although theDefinitions 3.1 and 3.4 are sufficiently well-defined tomeasure PCU in practice,
we emphasize that these measures may be still biased in term of the usage of radial efficiency
measures.4 From an efficiency perspective, radial efficiency measures cannot completely
capture inefficiencies in all dimensions. As a result, these plant capacity measures may not
fully capture the optimal capacity of (variable) inputs or the optimal capacity of outputs in
the plant capacity concept.

For ease of exposition, it is useful to introduce the following definitions.

Definition 3.5 The maximal output capacity from the O-O PCU yo,(x f , y) is defined as

yo,(x f , y) = DF f
o (x f , y) y. (14)

Definition 3.6 The minimal variable input capacity from the I-O PCU xv i,(x f ,xv ,ε) is defined
as

xv i,(x f ,xv ,ε) = DFSR
i (x f , xv, ε)xv . (15)

4 The partial O-O PCU PPCUo(r)(x
f , yr , y−r ) from Definition 3.3 is defined by nonradial efficiency

measures: we discuss it later in more detail.
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Fig. 1 Overestimation of the optimal capacity of variable inputs with I-O PCU measure

Note that themaximal output (resp.minimal input) capacity are denoted by the biased PCU
measure times current outputs (resp. inputs). As DF f

o (x f , y) ≥ 1 and DFSR
i (x f , xv, ε) ≤

1, yo,(x f , y) ≥ y and xv i,(x f ,xv ,ε) ≤ xv always hold. The potential increment on outputs and
decrement on variable inputs are described by yo,(x f , y) − y and xv − xv i,(x f ,xv ,ε). Such
potentials are denoted as slacks in the context of production economics (see, for example,
Cooper et al. (1999) and Tone (2001)).

In addition, by using radial efficiency measures, we can state the results for the maximal
output capacity as well as the corresponding isoquants.

Proposition 3.1 The maximal output capacity yo,(x f , y) has the following properties:

(i) It belongs to the isoquant of P f (x f ), i.e., yo,(x f , y) ∈ Isoq P f (x f ).

(ii) It belongs to the isoquant of P(x f ,+∞), i.e., yo,(x f , y) ∈ Isoq P(x f ,+∞).

Proposition 3.2 The minimal input capacity xv i,(x f ,xv ,ε) with the fixed inputs x
f belongs to

the isoquant of L(ε), i.e., (x f , xv i,(x f ,xv ,ε)) ∈ Isoq L(ε).

The proofs of all propositions are provided in the Appendix A.
We next argue the optimality of yo,(x f , y) and x

v
i,(x f ,xv ,ε) in plant capacity measurement.

As shown in Propositions 3.1 and 3.2, yo,(x f , y) and xv i,(x f ,xv ,ε) is related to isoquants Isoq

P f (x f ), Isoq P(x), and Isoq L(ε). Note that the isoquants cannot capture all inefficiencies
because they are defined by radial efficiency measure. This property inevitably has impact on
the maximal output capacity and minimal input capacity, which may lead to inaccurate O-O
and I-O PCU measures. To illustrate, we argue the optimality of yo,(x f , y) and xv i,(x f ,xv ,ε)
with the help of Figures 1 and 2. The observations are denoted by triangles and projections
by circles.

Given specific fixed inputs, Fig. 1 depicts the overestimation of the optimal capacity of
variable inputs and elucidates its impacts on the I-O PCU measure in a space of two variable
inputs (xv

1 , xv
2 ). The isoquant of L( y) is the line cd , its horizonal extension at d , and vertical

extension at c. The line ab, its horizonal extension at b, and vertical extension at a describe
the isoquant of L(ε).We focus on observation e. The I-O PCUmeasure compares observation
e to its radial projection e′ on the segment cd of Isoq L( y), i.e., DFSR

i (x f , xv, y) = ‖oe′‖
‖oe‖ .
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Fig. 2 Underestimation of the optimal capacity of outputs with O-O PCU measure

It also compares observation e to its radial projection e′′ on the vertical extension of segment
ab at a of Isoq L(ε), i.e., DFSR

i (x f , xv, ε) = ‖oe′′‖
‖oe‖ . Consequently, the I-O PCU measure

is denoted as PCUi (x f , xv, y) = DFSR
i (x f ,xv , y)

DFSR
i (x f ,xv ,ε)

= ‖oe′‖
‖oe′′‖ (> 1). In particular, the minimal

input capacity from I-O PCU is denoted by projection e′′. Clearly, the minimal input capacity
is not optimal although it belongs to Isoq L(ε) because of the ignored slacks in variable
input xv

2 (denoted by distance ‖ae′′‖). Compared with the minimal input capacity e′′, obser-
vation a uses less variable input xv

2 but produces identical outputs ε. As a consequence,
the projection e′′ overestimates the optimal capacity of variable input xv

2 , where the optimal
capacity of variable inputs (xv

1 , xv
2 ) should be denoted as observation a. The overestimated

input capacity is not embodied in Definition 3.4, which may lead to inaccurate I-O plant
capacity measurement.

By analogy, given specific (fixed and variable) inputs, Fig. 2 visualizes the underestimation
of the optimal capacity of outputs and illustrates its impacts on the O-O PCU measure in a
two outputs (y1, y2) space. The isoquant of P(x) is the line ab, its horizonal extension at a,
and vertical extension at b. The line cd , its horizonal extension at c and vertical extension
at d constitute the isoquant of P f (x f ). We use observation e for illustration.5 The O-O
PCU measure compares observation e to its radial projections e′ on the segment ab of Isoq
P(x), i.e., DFo(x, y) = ‖oe′‖

‖oe‖ . It also compares observation e to its radial projection e′′

on the horizonal extension of segment cd at c of Isoq P f (x f ), i.e., DF f
o (x f , y) = ‖oe′′‖

‖oe‖ .

Accordingly, the O-O PCUmeasure is denoted as PCUo(x, x f , y) = DFo(x, y)

DF f
o (x f , y)

= ‖oe′‖
‖oe′′‖ (<

1). Particularly, the maximal output capacity fromO-O PCU is denoted by projection e′′. It is
obvious that the maximal output capacity is not optimal although it belongs to Isoq P f (x f )

due to the slacks in output y1 (denoted by distance ‖e′′c‖). Compared with the maximal
output capacity e′′, observation c consumes identical fixed inputs (x f ) but generates more
output y1. As a consequence, the radial projection e′′ underestimates the optimal capacity of
output y1, where the optimal capacity of outputs (y1, y2) should be denoted as observation
c. Such underestimated output capacity is not captured in Definition 3.1, thereby resulting in
incorrect O-O plant capacity measurement.

5 The observations and projections in Fig. 2 differ from those in Fig. 1 although we use the same letters.
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Wrapping up, the biased estimations on the optimal input/output capacity question the
practicality of radial efficiency measures in plant capacity measurement. It is useful to stress
that the biases disappear when output is a singleton (i.e., s = 1) in O-O PCU measure, and
when variable input is a singleton (i.e.,mv = 1) in I-O PCUmeasures. Therefore, Definitions
3.1 and 3.4 are theoretically applicable in scenarios involving either single variable input or
single output cases. However, they may be biased for the production processes considering
multiple variable inputs or multiple outputs. To solve this question, nonradial efficiency
measures are introduced to define new nonradial plant capacity measures based on optimal
input and output capacities.6 The widely used traditional radial efficiency measures often
overlook the complexities inherent in multi-dimensional input and output structures. These
measures assume proportional adjustments across all dimensions, which may not reflect real-
world production processes where inputs and outputs can be adjusted in a non-uniform way.
By contrast, the nonradial models allow for non-proportional adjustments, enabling a more
nuanced evaluation of production performance.

In the next subsection, we propose a nonradial PCU framework that leverages Färe-Lovell
efficiency measures. This framework is designed to comprehensively capture multidimen-
sional inefficiencies and incorporate realistic operational constraints, thereby providing a
more accurate and flexible assessment of production capacities.

3.3 Nonradial plant capacity measures: proposals

We now proceed to outline the formulation of nonradial plant capacity measures using the
Färe-Lovell efficiencymeasures.We first define a Färe-Lovell O-OPCUmeasure. Thereafter,
we explore how to define a Färe-Lovell I-O PCU measure.

3.3.1 Nonradial output-oriented plant capacity measure

To begin with, we first define the biased Färe-Lovell O-O PCU measure utilizing the Färe-
Lovell output efficiency measure as

NDF f
o (x f , y) = max{1

s

s∑

r=1

θr | θ � y ∈ P f (x f ), θr ∈ [1,+∞)}. (16)

Accordingly, we can define an unbiased Färe-Lovell O-O PCU measure
N PCUo(x, x f , y) involving two Färe-Lovell output efficiency measures in relation to
both production correspondence P(x) and the same correspondence exposing no restrictions
on variable inputs P f (x f ).

Definition 3.7 The Färe-Lovell O-O PCU N PCUo(x, x f , y) is defined as:

N PCUo(x, x f , y) = NDFo(x, y)

NDF f
o (x f , y)

, (17)

where NDFo(x, y) and NDF f
o (x f , y) are Färe-Lovell O-O efficiency measures related to

production correspondences including and excluding variable inputs, respectively.

Since 0 < NDFo(x, y) ≤ NDF f
o (x f , y), 0 < N PCUo(x, x f , y) ≤ 1. Thus, the

Färe-Lovell O-O PCU measure attains a maximum value of unity.

6 The optimal input capacity should be located on segment ab with Fig. 1, and the optimal output capacity
should be located on segment cd with Fig. 2.
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The Färe-Lovell output efficiency measures relative to production correspondence P(x)

(NDFo(x, y)) can be obtained by solving the linear program (B.3) in Appendix B.
The Färe-Lovell output efficiency measure relative to production correspondence P f (x f )

(NDF f
o (x f , y)) is computed as the linear program (B.4) in Appendix B.

Definition 3.7 gives rise to the O-O decomposition below:

NDFo(x, y) = N PCUo(x, x f , y) · NDF f
o (x f , y). (18)

As a consequence, the Färe-Lovell output efficiency measure NDFo(x, y) can be decom-
posed into a biased Färe-Lovell O-O PCU measure NDF f

o (x f , y) and an unbiased
Färe-Lovell O-O PCU measure N PCUo(x, x f , y).

In addition, a new definition of weighted Färe-Lovell O-O PCU measure
WNPCUo(x, x f , y) involves two weighted Färe-Lovell output efficiency measures related
to both output sets P(x) and the same correspondence assuming no restrictions on variable
inputs P f (x f ), respectively. The weighted Färe-Lovell output efficiency measure relative to
production correspondence P f (x f ) is defined as

WNDF f
o (x f , y) = max{

s∑

r=1

μrθr | θ � y ∈ P f (x f ), θr ∈ [1,+∞)}. (19)

We are now ready to define a weighted Färe-Lovell O-O PCU measure.

Definition 3.8 The weighted Färe-Lovell O-O PCU WNPCUo(x, x f , y) is defined as

WNPCUo(x, x f , y) = WNDFo(x, y)

WNDF f
o (x f , y)

, (20)

where WNDFo(x, y) and WNDF f
o (x f , y) are weighted Färe-Lovell O-O efficiency

measures relative to production correspondences including and ignoring variable inputs,
respectively.

Note that since 0 < WNDFo(x, y) ≤ WNDF f
o (x f , y), then 0 <

WNPCUo(x, x f , y) ≤ 1. Hence, the weighted Färe-Lovell O-O PCU attains a maximum
value of unity. This weighted Färe-Lovell O-O PCUmeasure evaluates themaximal weighted
sumof dimension-wise expansions in all output dimensions in the sample against themaximal
weighted sum of dimension-wise expansions in outputs with potentially unlimited variable
inputs.

Referring to nonparametric frontier technologies, we can obtain the weighted Färe-Lovell
output efficiency measure relative to production correspondence P(x) (WNDFo(x, y))
using the linear program (B.1) in Appendix B. The weighted Färe-Lovell output efficiency
measure relative to production correspondence P f (x f ) (WNDF f

o (x f , y)) for observation
(xk, yk), k = 1, ..., n is computed as the linear program (B.2) in Appendix B.

In particular, Definition 3.8 gives rise to the O-O decomposition below:

WNDFo(x, y) = WNPCUo(x, x f , y) · WNDF f
o (x f , y). (21)

Therefore, theweightedFäre-Lovell output efficiencymeasureWNDFo(x, y) canbe decom-
posed into a biased weighted Färe-Lovell O-O PCU measure WNDF f

o (x f , y) and an
unbiased weighted Färe-Lovell O-O PCU measure WNPCUo(x, x f , y).

Accordingly, that the corresponding optimal output capacity can be defined.
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Definition 3.9 The optimal output capacity from the weighted Färe-Lovell O-O PCU
yWN
o,(x f , y)

is defined as:

yWN
o,(x f , y)

= θ∗ � y, (22)

where θ∗ ∈ R
r+ whose elements are θ∗

r ≥ 1 is the optimal solution of (19). The optimal
output capacity is denoted by the element-by-elment operands of two s-dimensional vectors
θ∗ relative to the weighted Färe-Lovell O-O PCU measure and y. As θ∗ ≥ 1, yWN

o,(x f , y)
≥ y

always holds. In addition, by using such nonradial efficiency measure, we can state the result
for the optimal output capacity as well as the corresponding efficient subsets.

Proposition 3.3 The optimal output capacity yWN
o,(x f , y)

has the following properties:

(i) It pertains to the efficient subset of P f (x f ), i.e., yWN
o,(x f , y)

∈ Eff P f (x f ).

(ii) It pertains to the efficient subset of P(x f ,+∞), i.e., yWN
o,(x f , y)

∈ Eff P(x f ,+∞).

Proposition 3.3 indicates the optimal output capacity yWN
o,(x f , y)

from nonradial efficiency

measures is located on the efficient subsets of P f (x f ) and P(x f ,+∞) rather than on the
isoquants from radial efficiency measures in Proposition 3.1. These properties ensure that all
slacks in outputs are completely captured in this nonradial O-O PCU measure.

With regard to the new nonradial O-O PCU measure, we can now develop a general-
ized framework for the biased O-O PCU measure whereby radial and nonradial O-O PCU
measures are its special cases. This result is as follows.

Proposition 3.4 The generalized framework for the biased O-O PCU measure is defined as:

GDF f
o (x f , y | �,	) = max{

s∑

r=1

μrθr | θ � y ∈ P f (x f ), μ ∈ �, θ ∈ 	}. (23)

whereby:

(i) � = �1 = {μ | μ1 = μ2 = · · · = μs = 1
s }, 	 = 	1 = {θ | θ1 = θ2 = · · · = θs ≥

1} ⇒ GDF f
o (x f , y | �,	)=DF f

o (x f , y);
(ii) � = �2 = {μ | μr = 1, μ−r = 0}, 	 = 	2 = {θ | θr ≥ 1, θ−r = 1} ⇒

GDF f
o (x f , y | �,	) = DF f

o(r)(x
f , yr , y−r );

(iii) � = �3 = {μ |
s∑

r=1
μr = 1, μr > 0, r = 1, ..., s}, 	 = 	3 = {θ | θ ≥ 1} ⇒

GDF f
o (x f , y | �,	) = WNDF f

o (x f , y);
(iv) � = �1 = {μ | μ1 = μ2 = ··· = μs = 1

s },	 = 	3 = {θ | θ ≥ 1} ⇒ GDF f
o (x f , y |

�,	) = NDF f
o (x f , y);

Note that μ is a prior vector rather than a variable vector in the proposed generalized
framework. Proposition 3.4 indicates that the biased radial O-O PCU measure DF f

o (x f , y)
and the nonradial O-O PCU measures DF f

o(r)(x
f , yr , y−r ) and WNDF f

o (x f , y) can be
integrated into one generalized framework. In particular, the biased radial O-O PCUmeasure
is a special case of the biased weighted Färe-Lovell O-O PCU measure because of �1 ⊂ �3

and 	1 ⊂ 	3. Specifically, the biased radial O-O PCU measure assigns same values to the
components of vectors μ and θ in tandem.

With regard to the generalized framework and its special cases, we are now in a position
to identify the linkages between biased radial and nonradial O-O PCU measures.
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Proposition 3.5 The following linkages can be established among biased radial O-O PCU
measure, partial O-O PCU measure, and Färe-Lovell O-O PCU measure (s ≥ 1):

1 ≤ DF f
o (x f , y) ≤ DF f

o(r)(x
f , yr , y−r ) ≤ NDF f

o (x f , y), r = 1, ..., s. (24)

In particular,
(i) a sufficient condition for DF f

o(r)(x
f , yr , y−r ) < NDF f

o (x f , y), r = 1, ..., s is that

y /∈ Eff P f (x f ), i.e., N DF f
o (x f , y) > 1;

(ii) a sufficient condition for DF f
o (x f , y) = NDF f

o (x f , y) = DF f
o(r)(x

f , yr , y−r ) is
that output is a singleton, i.e., s = 1.

Proposition 3.5 shows that the biased radial O-O PCU measure is no more than the two
biased nonradial O-O PCUmeasures. This property is important because it implies the result
that plant capacity measurement using the radial output efficiency measure may be biased
downwards. In particular, when the outputs are not located on the efficient subset of the
output set P f (x f ), then the partial O-O PCUmeasure is less than the Färe-Lovell O-O PCU
measure. This result indicates that the partial O-O PCU measure is strictly biased downward
for inefficient observations in plant capacity measurement. Proposition 3.5 also reports the
equivalence property of the three biased O-O PCU measure and its sufficient condition. The
equivalence property shows that the biased radial O-O PCU measure and partial O-O PCU
measure are unbiased estimations of the biased Färe-Lovell O-O PCU measure when the
output is a singleton.

By contrast, such linkages are not established for the unbiased radial and nonradial O-
O PCU measures. Although both numerators (1 ≤ DFo(x, y) ≤ DF f

o(r)(x, yr , y−r ) ≤
NDFo(x, y), r = 1, ..., s) and denominators (1 ≤ DF f

o (x f , y) ≤ DFo(r)(x f , yr , y−r ) ≤
NDF f

o (x f , y), r = 1, ..., s) can be ranked completely, the ratios of them
(PCUo(x, x f , y), PPCUo(r)(x, x f , yr , y−r ) and N PCUo(x, x f , y)) can not be ranked.7

3.3.2 Nonradial input-oriented plant capacity measure

We first define a new measure, called the biased Färe-Lovell I-O PCU measure, referring to
the Färe-Lovell input efficiency measure relative to input set L(ε) as:

NDFSR
i (x f , xv, ε) = min{ 1

mv

mv∑

i=1

βi | (x f , β � xv) ∈ L(ε), βi ∈ [0, 1]}. (25)

The sub-vector Färe-Lovell input efficiency measure relative to input set L( y) can be
defined as:

NDFSR
i (x f , xv, y) = min{ 1

mv

mv∑

i=1

βi | (x f , β � xv) ∈ L( y), βi ∈ [0, 1]}. (26)

Accordingly, we can define an unbiased Färe-Lovell I-O PCU measure
N PCUSR

i (x f , xv, y) involving two Färe-Lovell input efficiency measures relative to input
sets L( y) and L(ε).

7 1 ≤ DFo(x y) ≤ DFo(r)(x, yr , y−r ) ≤ NDFo(x, y), r = 1, ..., s can be proven analogous to the proof
of Proposition 3.5. The corresponding proof is not provided to save space.
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Definition 3.10 The Färe-Lovell I-O PCU N PCUSR
i (x f , xv, y) is defined as

N PCUi (x f , xv, y) = NDFSR
i (x f , xv, y)

NDFSR
i (x f , xv, ε)

. (27)

Since NDFSR
i (x f , xv, y) ≥ NDFSR

i (x f , xv, ε), N PCUi (x f , xv, y) ≥ 1. Therefore,
the Färe-Lovell I-O PCU measure attains a minimum value of unity. But, it does not possess
a maximum limit.

To compute the sub-vector Färe-Lovell input efficiency measure relative to input set L( y)
(NDFSR

i (x f , xv, y)) one needs to solve the linear program (B.7) in Appendix B. The biased
Färe-Lovell I-O PCU measure in relation to input set L(ε) (NDFSR

i (x f , xv, ε)) can be
obtained by calculating the linear program (B.8) in Appendix B.

In addition, a new definition of a weighted Färe-Lovell I-O PCU measure
WNPCUi (x f , xv, y) involves two sub-vector weighted Färe-Lovell input efficiency mea-
sures relative to both input correspondences L( y) and L(ε), respectively. The sub-vector
weighted Färe-Lovell input efficiency measure in relation to the input set L( y) that only
reduces variable inputs can be defined as:

WNDFSR
i (x f , xv, y) = min{

mv∑

i=1

ηiβi | (x f , β � xv) ∈ L( y), βi ∈ [0, 1]}. (28)

Next, the sub-vector weighted Färe-Lovell input efficiencymeasure in relation to the input
set L(ε) that reduces variable inputs only is defined as:

WNDFSR
i (x f , xv, ε) = min{

mv∑

i=1

ηiβi | (x f , β � xv) ∈ L(ε), βi ∈ [0, 1]}. (29)

Now we are in a position to define a weighted Färe-Lovell I-O PCU measure.

Definition 3.11 The weighted Färe-Lovell I-O PCU WNPCUi (x f , xv, y) is defined as

WNPCUi (x f , xv, y) = WNDFSR
i (x f , xv, y)

WNDFSR
i (x f , xv, ε)

. (30)

where WNDFSR
i (x f , xv, y) and WNDFSR

i (x f , xv, ε) are sub-vector weighted Färe-
Lovell input efficiency measures relative to input correspondences with y and ε outputs
levels, respectively.

Note that 0 < WNDFSR
i (x f , xv, ε) ≤ WNDFSR

i (x f , xv, y) due to ε < y,
WNPCUi (x f , xv, y) ≥ 1. Therefore, the weighted Färe-Lovell I-O PCU measure attains
a minimum value of unity. But, it does not possess a maximum limit. This PCU measure
compares the minimal weighted sum of dimension-wise reductions in all variable inputs
dimensions in the sample to the minimal weighted sum of dimension-wise reductions in all
variable inputs dimensions with an ε output level.

One can obtain the sub-vector weighted Färe-Lovell input efficiency measure relative
to input correspondence L( y) (WNDFSR

i (x f , xv, y)) using the linear program (B.5) in
Appendix B. The sub-vector weighted Färe-Lovell input efficiency measure relative to input
correspondence L(ε) (WNDFSR

i (x f , xv, ε)) is computed as the linear program (B.6) in
Appendix B.
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In addition, Definition 3.11 leads to the following I-O decomposition:

WNDFSR
i (x f , xv, y) = WNDFSR

i (x f , xv, ε) · WNPCUi (x f , xv, y). (31)

Thus, the sub-vector weighted Färe-Lovell input efficiency measure WNDFSR
i (x f , xv, y)

can be decomposed into a biased weighted Färe-Lovell I-O PCU measure
WNDFSR

i (x f , xv, ε) and an unbiased weighted Färe-Lovell I-O PCU measure
WNPCUi (x f , xv, y).

Accordingly, the corresponding optimal input capacity can be defined.

Definition 3.12 The optimal input capacity from the weighted Färe-Lovell I-O PCU
(xv,WN

i,(x f ,xv ,ε)
) is defined as:

xv,WN
i,(x f ,xv ,ε)

= β∗ � xv, (32)

whereβ∗ ∈ R
mv

+ whose elements areβ∗
i > 0 is the optimal solution of (29). The optimal input

capacity is denoted by the element-by-element operands of two mv-dimensional vectors β∗
relative to the weighted Färe-Lovell I-O PCUmeasure and y. Since β∗ ≤ 1, xv,WN

i,(x f ,xv ,ε)
≤ xv

always holds.

Moreover, by using a nonradial input efficiency measure, the following result for the
optimal input capacity as well as the corresponding isoquant can be reported.

Proposition 3.6 The optimal input capacity xv,WN
i,(x f ,xv ,ε)

with the fixed inputs x f belongs to

the isoquant of L(ε), i.e., (x f , xv,WN
i,(x f ,xv ,ε)

) ∈ Isoq L(ε).

Proposition 3.6 indicates that the optimal input capacity xv,WN
i,(x f ,xv ,ε)

with the fixed inputs

x f from nonradial efficiency measure is merely located on the isoquant of L(ε). Different
from the optimal output capacity, it does not belong to the corresponding efficient subset
Eff L(ε) because the optimal input capacity only eliminates all inefficiencies in variable
inputs xv but the slacks in fixed inputs x f are ignored. However, the optimal input capacity
deals with the underestimation issue as shown in Fig. 1 since all slacks in variable inputs are
completely captured in I-O PCU measure.

With regard to the new nonradial I-O PCU measure, we now can propose a general-
ized framework for the biased I-O PCU measure where both radial and nonradial I-O PCU
measures are special cases.

Proposition 3.7 The generalized framework for the biased I-O PCU measure is defined as:

GDFSR
i (x f , xv, ε | ϒ,�) = min{

mv∑

i=1

ηiβi | (x f , β � xv) ∈ L(ε), η ∈ ϒ, β ∈ �},(33)

where

(i) ϒ = ϒ1 = {η | η1 = η2 = · · · = ηmv = 1
mv },� = �1 = {β | 0 ≤ β1 = β2 = · · · =

βmv ≤ 1} ⇒ GDFSR
i (x f , xv, ε | ϒ,�) = DFSR

i (x f , xv, ε);

(ii) ϒ = ϒ2 = {η |
mv∑
i=1

ηi = 1, ηi > 0, i = 1, ...,mv},� = �2 = {β | 0 ≤ β ≤ 1} ⇒
GDFSR

i (x f , xv, ε | ϒ,�) = WNDFSR
i (x f , xv, ε).
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(iii) ϒ = ϒ1 = {η | η1 = η2 = · · · = ηmv = 1
mv },� = �2 = {β | 0 ≤ β ≤ 1} ⇒

GDFSR
i (x f , xv, ε | ϒ,�) = NDFSR

i (x f , xv, ε).

Note that η is a prior vector instead of a variable vector in the proposed framework.
Proposition 3.7 reports that the biased (sub-vector) radial I-OPCUmeasure DFSR

i (x f , xv, ε)
and nonradial I-O PCU measure WNDFSR

i (x f , xv, ε) can be integrated into a generalized
framework. In particular, the biased radial I-O PCU measure is a special case of the biased
weighted Färe-Lovell I-O PCU measure due to ϒ1 ⊂ ϒ2 and �1 ⊂ �2. The biased (sub-
vector) radial I-O PCU measure assigns the same values to the components of vector η and
β.

With regard to the generalized framework and its special cases, we now establish a linkage
between the biased (sub-vector) radial and nonradial I-O PCU measures.

Proposition 3.8 The following linkage can be established between the biased (sub-vector)
radial I-O PCU measure and the biased Färe-Lovell I-O PCU measure (mv ≥ 1):

N DFSR
i (x f , xv, ε) ≤ DFSR

i (x f , xv, ε) ≤ 1. (34)

In particular, a sufficient condition for N DFSR
i (x f , xv, ε) = DFSR

i (x f , xv, ε) is that the
variable input is a singleton, i.e., mv = 1.

Proposition 3.8 reveals that the biased (sub-vector) radial I-O PCU measure is no smaller
than the biased Färe-Lovell I-O PCU measure. This characteristic is valuable because it
points out that the result of plant capacity measurement using the (sub-vector) radial input
efficiency measure may be biased upward. Proposition 3.8 also suggests the equivalence
property between the biased (sub-vector) radial and nonradial I-O PCU measure and its
sufficient condition. This property indicates that the biased (sub-vector) radial I-O PCU
measure is an unbiased estimation of the biased Färe-Lovell I-O PCU measure when the
variable input is a singleton.

In contrast, no such linkage can be established for the unbiased sub-vector radial and
nonradial I-O PCU measure. Despite the fact that both numerators (NDFSR

i (x f , xv, y) ≤
DFSR

i (x f , xv, y) ≤ 1) and denominators (NDFSR
i (x f , xv, ε) ≤ DFSR

i (x f , xv, ε) ≤ 1)
can be ranked, the ratios of these (N PCUi (x f , xv, y) and PCUi (x f , xv, y)) cannot be
ranked accordingly.8

Building upon the foundation of these nonradial efficiency measures, it becomes impera-
tive to consider the practical constraints that firms may face when adjusting their input and
output levels. This leads us to explore the concept of attainability in Sect. 3.4: this ensures
that the proposed capacity measures are not only theoretically sound but also practically
feasible. By doing so, we ensure that the capacity measures reflect feasible adjustments in
variable input levels, thereby providing a more accurate assessment of capacity utilization.

3.4 Nonradial plant capacity measures: exploration on attainability

We are now in a position to analyse the specification of attainability of the proposed nonradial
O-O PCU measure. Johansen (1968) first points out the O-O PCU measure may not be
attainable if the additional variable inputs required to achieve maximal output capacity are
unavailable.Kerstens et al. (2019b) investigate such attainability issue and define an attainable

8 NDFSR
i (x f , xv, y) ≤ DFSR

i (x f , xv, y) ≤ 1 can be proven analogous to Proposition 3.8. To save space,
its proof is not provided.
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O-O PCUmeasure using a radial output efficiencymeasure. They also stress that attainability
is not a concern for the I-O PCU measure because of free disposability in (variable) inputs.
Thus, we only focus on the attainability of a nonradial O-O PCU measure.

Specifically, Kerstens et al. (2019b) define a scalar entitled attainability level for each
observation to reflect the restriction on variable inputs. The scalar is consistent with the radial
output efficiency measure, but it may be implausible in nonradial plant capacity measures
because it imposes tight restrictions on all variable inputs, i.e., the available variable inputs
just are proportional to the observed variable inputs for any observation. For instance, both
doctors and nurses are quasi-fixed factors (i.e., factors that cannot be expanded rapidly)
in hospital capacity measurement. The number of new hiring doctors and nurses often are
restricted by other factors like hospital protocol and hospital area, whichmay not characterize
a complete proportional relation to the observed doctors and nurses. Therefore, we explore
the attainability issue using more flexible restrictions on variable inputs for the nonradial
plant capacity measures.

Recall that the standard axiom of free disposability indicates that the expansion of variable
inputs is unlimited. However, in the context of O-O PCU, we clearly observe that this unlim-
ited expansion may lead to a potential attainability issue because of the limited resources
in practice. As a potential solution, an attainability level of an observation ξ̄ ∈ R

mv

+ whose
component is ξ̄i is defined as follows.

Definition 3.13 An attainability level ξ̄ of observation (x, y) is defined as: ∀ξ̄ ∈ R
mv

+ , ∃ξ ∈
R
mv

+ with ξ ≤ ξ̄ and ∃θ ∈ R
s+ such that (x f , ξ � xv, θ � y) ∈ T .

Note that ξ and θ are vectors rather than scalars. The attainability level allows non-
proportional reduction or expansion for all variable inputs. In particular, every vector ξ̄ ≥ 1
is feasible to be an attainability level for all observations by the standard axiom of free
disposability. An attainability level ξ̄ ≤ 1 might be infeasible for some observations because
of variable returns to scale on technology T . However, the attainability level should be
selected exogenously to reflect the realistic restriction on all variable inputs. For instance,
ξ̄ = (2, 3) implies that doubling the first variable input and tripling the second variable input
is achievable.

Following the Definition 3.13 of an attainability level, we can now define the attainable
Färe-Lovell output efficiency measure as follows.

Definition 3.14 The attainable Färe-Lovell O-O efficiency measure (ANDFo) at level ξ̄ ∈
R
mv

+ is: ANDF f
o (x f , y, ξ̄ ) = max{ 1s

s∑
r=1

θr | θ � y ∈ P(x f , ξ � xv), θ ≥ 0, 0 ≤ ξ ≤ ξ̄}.

Thevariable inputs is now restricted by vector ξ̄ whose components determine themaximal
available variable input in each dimension. Thus, ANDF f

o (x f , y, ξ̄ ) ≤ NDF f
o (x f , y).

We are now in a position to define a new attainable Färe-Lovell O-O PCU measure using
the attainable Färe-Lovell O-O efficiency measure in Definition 3.14.

Definition 3.15 An attainable Färe-Lovell O-O PCU (AN PCUo) at level ξ̄ ∈ R
mv

+ is

AN PCUo(x, x f , y, ξ̄ ) = NDFo(x, y)

ANDF f
o (x f , y,ξ̄ )

,

where NDFo(x, y) and ANDF f
o (x f , y, ξ̄ ) are defined previously.

By analogy, NDFo(x, y) is a biased attainable Färe-Lovell PCU measure, but
ANDF f

o (x f , y, ξ̄ ) is an unbiased one. In particular, since ANDF f
o (x f , y, ξ̄ ) ≤
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Fig. 3 Joint effect of ξ1 and ξ2 on

ANDF f
o (x f , y, ξ)

NDF f
o (x f , y), then AN PCUo(x, x f , y, ξ̄ ) ≥ N PCUo(x, x f , y) always holds. There-

fore, the unbiased attainable Färe-Lovell O-O PCU measure is no smaller than the unbiased
Färe-Lovell O-O PCU measure. The attainable Färe-Lovell O-O efficiency measure at level
ξ̄ (ANDF f

o (x f , y, ξ̄ )) can be solved by the linear program (B.9) in Appendix B.
We now can report the linkage between the attainable Färe-Lovell O-O PCUmeasure and

the Färe-Lovell O-O PCU measure as follows.

Proposition 3.9 There exists a set , such that for any ξ̂ ∈ , we have:

(i) ∀ξ ≥ ξ̂ , we have AN PCUo(x, x f , y, ξ) = N PCUo(x, x f , y).
(ii) ∀ξ ≤ ξ̂ and ξ 	= ξ̂ , we have AN PCUo(x, x f , y, ξ) > N PCUo(x, x f , y).

It follows from Proposition 3.9 that there exist multiple thresholds to the conver-
gence of AN PCUo(x, x f , y, ξ) to N PCUo(x, x f , y). In particular, it also implies that
AN PCUo(x, x f , y, ξ) = N PCUo(x, x f , y) if the supply of variable inputs is sufficiently
large, i.e., lim

ξ→+∞ AN PCUo(x, x f , y, ξ) = N PCUo(x, x f , y).

To illustrate the above general result, it can be useful to present a numerical example. To do
so, let us consider twoobservations A and B, where a single fixed input and twovariable inputs
are employed to generate two outputs. Their productionmixes are (x f

A , xv
1A, xv

2A, y1A, y2A) =
(2, 1, 2, 1, 2) and (x f

B , xv
1B , xv

2B , y1B , y2B) = (1, 4, 5, 2, 2). Suppose ξ1 ∈ [1, 5] and ξ2 ∈
[2, 6]. Take observation A for example, note that N PCUo(x, x f , y) is not contingent on
ξ1 and ξ2, we can clearly compute it for observation A as N PCUo(x, x f , y) = 0.667
by Definition 3.7. Subsequently,the joint effects of ξ1 and ξ2 on ANDF f

o (x f , y, ξ) and
AN PCUo(x, x f , y, ξ) are presented in Figs. 3 and 4, respectively.

Figure3 illustrates that for any vector (ξ1, ξ2) ≥ (4, 2.5), ANDF f
o (x f , y, ξ) =

1.5 always holds; for any vector (ξ1, ξ2) ≤ (4, 2.5) and (ξ1, ξ2) 	= (4, 2.5),
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Fig. 4 Joint effect of ξ1 and ξ2 on AN PCUo(x, x f , y, ξ)

ANDF f
o (x f , y, ξ) < 1.5. It also presents the result that ANDF f

o (x f , y, ξ) is non-

decreasing as ξ increases in its components ξ1 and ξ2, i.e.,
∂ANDF f

o (x f , y,ξ)
∂ξ1

≥ 0 and

∂ANDF f
o (x f , y,ξ)
∂ξ2

≥ 0.

Figure4 indicates that for any vector (ξ1, ξ2) ≥ (4, 2.5), AN PCU f
o (x, x f , y, ξ) =

N PCUo(x, x f , y) = 0.667 always holds; but for any vector (ξ1, ξ2) ≤ (4, 2.5) and
(ξ1, ξ2) 	= (4, 2.5), AN PCU f

o (x, x f , y, ξ) > N PCUo(x, x f , y) = 0.667. It suggest that
 = {(4, 2.5)} in this numerical example. It is useful to stress that as the dimensionality of
variable inputs increases (i.e., mv > 2), then the elements in set  increase as well, i.e.,  is
built by more than one elements. Figure4 also reports the result that AN PCU f

o (x, x f , y, ξ)

is non-increasing as ξ increases in its components ξ1 and ξ2, i.e.,
∂AN PCU f

o (x,x f , y,ξ)
∂ξ1

≤ 0

and ∂AN PCU f
o (x,x f , y,ξ)
∂ξ2

≤ 0.
Kerstens and Sadeghi (2024) review the existing PCU concepts and define some new

variations. Furthermore, for the radial O-O, I-O, and attainable O-O PCU notions discussed
here, they investigate the existence of solutions at both the firm and industry level. While all
three PCU concepts exist under variable returns to scale at the firm level, only the I-O PCU
measure exists at the industry level in that all firms can simultaneously achieve full capacity.
This further emphasizes the importance and practicality of the I-O PCU measure.

4 Empirical illustration

To illustrate how the nonradial capacity measures can be implemented, a secondary data is
used to support the replicability of our empirical results. The data selected have been used to
illustrate convex and nonconvex I-O technical and economic PCUmeasures in Kerstens et al.
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Table 1 Descriptive statistics of inputs and outputs for French fruit producers

Input/output Trimmed meana Minimum Maximum

Capital (=fixed input) 85,602.58 8891 500,452

Labor (=variable input 229,569 79,569 1,682,201

Materials (=variable input) 157,610.9 19,566 1,523,776

Apple production (output) 2.146273 0.00061 37.98153

Other products (output) 1.37793 0.000672 25.895

a10% trimming level

(2019a).9 Similarly, we select a three-year panel accounting data of French fruit producers
(1984–1986) in a survey from Ivaldi et al. (1996). In particular, we only opt for farms whose
production of apples is larger than zero and the orchard’s productive land needs to be at
least five acres. The three inputs are (i) labor, (ii) capital (including land), and (iii) materials.
The two outputs are (i) the apple production, and (ii) an aggregation of remaining products.
Detailed definitions of these variables are found in the Appendix 2 of Ivaldi et al. (1996).

Table 1 summarizes the descriptive statistics for the input and output variables of 405
observations: we can infer some heterogeneity in all inputs and outputs. We select capital as
the fixed input in the empirical application.

4.1 Comparing radial and nonradial plant capacity notions

Table 2 reports the descriptive statistics for all radial and unweighted nonradial PCU
notions.10 In particular, both convex and nonconvex technologies are taken into account
for these PCU notions. The average, the standard deviation, the maximum, and the minimum
are presented in Table 2. The results align with the findings presented in the preceding sec-
tion. For example, in all cases (i.e., radial vs nonradial, convex vs nonconvex), the minima
of PCU notions DFo(x, y), DF f

o (x f , y), and PCUi (x f , xv, y) are unity, with the inter-
pretation that unity is the lower bounds of them as shown previously. By analogy, as the
upper bounds of PCU notions PCUo(x, x f , y), DFSR

i (x f , xv, ε), and DFSR
i (x f , xv, y)

are unity, the maxima of them in all cases are unity as shown in Table 2. On average, the radial
and nonradial PCU results are rather markedly different. In addition, on average convexity
has a non-negligible impact on PCU notions. As a consequence, the outcomes for convex
and nonconvex scenarios also exhibit distinct differences.

To further investigate the differences of capacity notions above,we use theLi-test proposed
byLi (1996) andmodified byLi et al. (2009) in this section. TheLi-test is a nonparametric test,
which focuses on the differences between entire distributions rather than the first moments
(for example,Wilcoxon signed-ranks test). It evaluates whether two kernel-based estimations
of density functions f (x) and g(x) (where x is a random variable) differ in a way that is

9 In the current empirical analysis, the attainable O-O PCU measure introduced in Sect. 3.4 is not imple-
mented due to data limitations and the focused scope of the study. Our primary objective is to compare radial
and nonradial plant capacity measures under convex and nonconvex technologies. However, recognizing its
potential value, we plan to incorporate this procedure in future research utilizing more detailed data sets. This
will allow for a comprehensive assessment of plant capacity utilization that fully accounts for operational
constraints.
10 While the weighted nonradial plant capacity concepts are more general, in practice it is difficult to come
up with a reasonable weight vector.
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statistically significant. The null hypothesis of the Li-test is the equality of both density
functions almost everywhere, i.e., H0 : ∀x, f (x) = g(x). The alternative hypothesis states
the inequality of both density functions somewhere, i.e., H1 : ∃x, f (x) 	= g(x). Note that
the Li-test can be applied for both dependent and independent variables.11

Table 3 reports the Li-test statistics between radial and nonradial capacity notions with
convex technology. The Li-test statistic between radial and nonradial capacity notions are
reported by components on the diagonal (in bold). For the convex capacity notions, Table 3
indicates that almost all capacity notions follow two by two significantly different contribu-
tions at the 1% level, though the Li-test statistics between NDFo(x, y) and DF f

o (x f , y),
NDFo(x, y) and DFSR

i (x f , xv, y), NDFSR
i (x f , xv, y) and DFSR

i (x f , xv, y) have indis-
tinguishable distributions. The results of components on the diagonal (in bold) imply that
radial and nonradial capacity notions follow different contributions with the exception that
DFSR

i (x f , xv, y) and NDFSR
i (x f , xv, y) have indistinguishable distributions.

Table 4 presents the Li-test statistics between radial and nonradial capacity notions with
nonconvex technology. The Li-test statistic between radial and nonradial capacity notions are
reported by components on the diagonal (in bold) again.One observes that all capacity notions
follow two by two significantly different distributions at the 1% level. It should be stressed
that all radial and nonradial capacity notions follow different contributions on the diagonal
(in bold). This results differ from that in the convex case shown in Table 4. Consequently,
we can infer that nonconvex technology exhibits a stronger power to discriminate radial and
nonradial capacity notions compared with the convex technology. This is linked to the fact
mentioned in the introduction that the amounts of slack and surplus variables under convexity
is lower than the amounts of slack and surplus variables under nonconvexity.

Wrapping up, radial and nonradial capacity notions present different distributions in
both convex and nonconvex cases. This result indicates the overestimation of the optimal
capacity of variable inputs, and the underestimation of the optimal capacity of outputs have
non-negligible impacts on I-O andO-O capacity notions. Consequently, we suggest that prac-
titioners should reconsider radial capacity notions carefully in practice because of potential
biased estimations from radial efficiency measures. Nonradial capacity notions are feasible
alternatives because they are generalized plant capacity notions that exhibit more desirable
theoretical properties.

4.2 Comparing convex and nonconvex nonradial plant capacity notions

Focusing now on the nonradial plant capacity notions, we compare convex and nonconvex
nonradial capacity notions following a similar structure of arguments as in the preceding sub-
section. By analogy, we implement a Li-test for convex and nonconvex nonradial capacity
notions similar to Tables 3 and 4. The Li-test for radial capacity notions is not presented in
this subsection as it has been fully investigated in the literature (see for example, Kerstens et
al. (2019a)). Table 5 reports the Li-test statistics between convex and nonconvex nonradial
capacity notions. The structure of Table 5 is as follows. First, the Li-test statistics between
convex and nonconvex nonradial capacity notions are presented by components on the diag-
onal (in bold). Second, the components above the diagonal is the Li-test statistics between
nonconvex capacity notions. Third, the components under the diagonal depict the Li-test
statistics between convex capacity notions.

11 Matlab code for the Li-test based on Li et al. (2009) is available at:
https://github.com/kepiej/DEAUtils.
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The following conclusions can be drawn from Table 5. First, the components on the diag-
onal (in bold) suggest that capacity notions under convex and nonconvex technologies follow
different distributions. One exception is that the Li-test statistics of NDFSR

i (x f , xv, ε) is
marginally significant at the 5% level. Second, the components above the diagonal show that
all nonconvex capacity notions exhibit significantly different distributions when compared
two by two. Third, the components under the diagonal reporting all convex capacity notions
exhibit significantly different distributions when compared two by two, apart from the Li-
test statistics between NDFo(x, y) and NDFSR

i (x f , xv, y) where the two convex capacity
notions have indistinguishable distributions.

5 Conclusions

This main focus of this contribution is on defining PCU notions based on nonradial rather
than traditional radial efficiency measures. These alternative nonradial PCU concepts are
based on nonradial weighted Färe-Lovell efficiency measures. First, we define the traditional
radial O-O PCU, the new partial O-O PCU, and the rather recent I-O PCU notions. Then, we
use graphical illustrations to shed light on the possibility that radial PCU notions may well
leave ample amounts of slacks or unmeasured inefficiency. This underscores the need for
more comprehensive nonradial measures that can accurately capture inefficiencies in multi-
dimensional production environments. Thereafter, we have first formally defined weighted
and unweighted Färe-Lovell O-O PCU notions and we explore their main properties. We also
formally defineweighted and unweighted Färe-Lovell I-O PCUnotions andwe consider their
properties.

Finally, we also investigate how the introduction of vectors of nonradial attainability
levels rather than a simple scalar specification can render the attainable O-O PCU concept
proposed by Kerstens et al. (2019b) more flexible. This enhancement allows for a more
nuanced assessment of capacity utilization under varying operational constraints.

The empirical section makes use of a secondary data set of French fruit producers and
finds pertinent differences between radial and nonradial plant capacity notions. Additionally,
it demonstrates the significance of nonradial plant capacity ideas especially in the context
of a nonconvex technology. These empirical findings validate the theoretical advantages of
our nonradial models, showcasing their effectiveness in capturing capacity utilization more
accurately than traditional radialmeasures. These results provide convincing arguments to the
non-negligible role of nonconvexity in nonradial plant capacity notions. Thus, practitioners
should reconsider imposing the convexity axiom in plant capacity measurement because
convexity is clearly not harmless.

One avenue for future research is to expand on the application of nonradial efficiency
measures towards the long-run O-O and I-O PCU measures proposed in Cesaroni et al.
(2019). Current empirical applications of these PCU notions (see, for instance, Kerstens and
Shen (2021), Shen et al. (2022), or Song et al. (2023)) rely so far on radial efficiencymeasures
only. Also an empirical application of the nonradial attainable O-O PCUmeasure introduced
in Sect. 3.4 remains to be developed.
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Appendices: Supplementarymaterial

A Proofs

Proposition A.1 The maximal output capacity yo,(x f , y) has the following properties:

(i) It belongs to the isoquant of P f (x f ), i.e., yo,(x f , y) ∈ Isoq P f (x f ).

(ii) It belongs to the isoquant of P(x f ,+∞), i.e., yo,(x f , y) ∈ Isoq P(x f ,+∞).

Proof First, suppose yo,(x f , y) /∈ Isoq P f (x f ), then there exists θ ∈ (1,∞), such that

θ yo,(x f , y) ∈ P f (x f ). As yo,(x f , y) = DF f
o (x f , y) y (see Definition 3.5), we obtain

θDF f
o (x f , y) y ∈ P f (x f ). Let θ∗ = θDF f

o (x f , y) > DF f
o (x f , y), θ∗y ∈ P f (x f )

holds. As a consequence, there exists a feasible solution θ∗(> DF f
o (x f , y)) to Program (8).

Therefore, DF f
o (x f , y) is not the optimal solution of Program (8), which contradicts to the

the definition of DF f
o (x f , y) as shown in (8). Hence, yo,(x f , y) ∈ Isoq P f (x f ).

Second, to prove yo,(x f , y) ∈ Isoq P(x f ,+∞), we only need to prove Isoq P f (x f ) =
Isoq P(x f ,+∞) as yo,(x f , y) ∈ Isoq P f (x f ). Recall that P(x f ,+∞) = { y |
(x f ,+∞, y) ∈ T } and T f = {(x f , y) | (x f , xv, y) ∈ T }, P(x f ,+∞) can be
reformulated as P(x f ,+∞) = { y | (x f , y) ∈ T f } because of free disposability in
variable inputs (i.e., xv < +∞). Combining P f (x f ) = { y | (x f , y) ∈ T f }, we
have P(x f ,+∞) = P f (x f ). Consequently, Isoq P(x f ,+∞) = Isoq P f (x f ). Thus,
yo,(x f , y) ∈ Isoq P(x f ,+∞). ��

Proposition A.2 The minimal input capacity xv i,(x f ,xv ,ε) with the fixed inputs x
f belongs to

the isoquant of L(ε), i.e., (x f , xv i,(x f ,xv ,ε)) ∈ Isoq L(ε).

Proof Suppose (x f , xv i,(x f ,xv ,ε)) /∈ Isoq L(ε), then there exists β ∈ [0, 1) such that

β(x f , xv i,(x f ,xv ,ε)) ∈ L(ε). By the assumption of free disposability in (variable) inputs,

we have (x f , βxv i,(x f ,xv ,ε) ∈ L(ε) because of x f > βx f . As xv i,(x f ,xv ,ε) =
DFSR

i (x f , xv, ε)xv (see Definition 3.6), we obtain (x f , βDFSR
i (x f , xv, ε)xv ∈ L(ε)).

Let β∗ = βDFSR
i (x f , xv, ε) < DFSR

i (x f , xv, ε),(x f , β∗xv) ∈ L(ε) holds. Conse-
quently, there exists a feasible solution β∗ < DFSR

i (x f , xv, ε) to Program (7). Hence,
DFSR

i (x f , xv, ε) is not the optimal solution of Program (7) when y = ε, which contra-
dicts to the definition of DFSR

i (x f , xv, ε) as shown in (7). Therefore, (x f , xv i,(x f ,xv ,ε)) ∈
Isoq L(ε). ��
Proposition A.3 The optimal output capacity yWN

o,(x f , y)
has the following properties:

(i) It pertains to the efficient subset of P f (x f ), i.e., yWN
o,(x f , y)

∈ Eff P f (x f ).

(ii) It pertains to the efficient subset of P(x f ,+∞), i.e., yWN
o,(x f , y)

∈ Eff P(x f ,+∞).

Proof First, suppose yWN
o,(x f , y)

/∈ Eff P f (x f ), then there exists y′ ≥ yWN
o,(x f , y)

, y′ 	=
yWN
o,(x f , y)

, such that y′ ∈ P f (x f ). Since yWN
o,(x f , y)

= θ∗ � y (see Definition 3.9), we obtain

θ∗ � y + z ∈ P f (x f ) where z ∈ R
r+ = y′ − yWN

o,(x f , y)
. Suppose the t th element of vector

z denoted by zt , t = 1, ..., s is strictly greater than zero while other elements are equal to
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zero, then we get (θ∗
1 y1, ..., θ

∗
t yt + zt , ..., θ∗

s ys) ∈ P f (x f ). Let θ ′
t = zt

yt
> 0 and θ∗∗

t =
θ ′
t + θ∗

t > θ∗
t , we have (θ∗

1 y1, ..., θ
∗∗
t yt , ..., θ∗

s ys) ∈ P f (x f ). Thus, (θ∗
1 , ..., θ∗∗

t , ..., θ∗
s )

is a feasible solution to Program (19), the corresponding value of objective function is
s∑

r=1,r 	=t
μrθ

∗
r + μtθ

∗∗
t . Since

s∑
r=1,r 	=t

μrθ
∗
r + μtθ

∗∗
t >

s∑
r=1,r 	=t

μrθ
∗
r + μtθ

∗∗
t =

s∑
r=1

μrθ
∗
r ,

(θ∗
1 , ..., θ∗

t , ..., θ∗
s ) is not the optimal solution of Program (19), which contracts to the

definition of WNDF f
o (x f , y) as shown in (19). Hence, yWN

o,(x f , y)
∈ Eff P f (x f ).

Second, as P(x f ,+∞) = P f (x f ) (see the proof of Proposition 3.1), it is obvious that
Eff P(x f ,+∞) = Eff P f (x f ). As a consequence, yWN

o,(x f , y)
∈ Eff P(x f ,+∞). ��

Proposition A.4 The generalized framework for the biased O-O PCUmeasure is defined as:

GDF f
o (x f , y | �,	) = max{

s∑

r=1

μrθr | θ � y ∈ P f (x f ), μ ∈ �, θ ∈ 	}. (A.1)

whereby:

(i) � = �1 = {μ | μ1 = μ2 = · · · = μs = 1
s }, 	 = 	1 = {θ | θ1 = θ2 = · · · = θs ≥

1} ⇒ GDF f
o (x f , y | �,	)=DF f

o (x f , y);
(ii) � = �2 = {μ | μr = 1, μ−r = 0}, 	 = 	2 = {θ | θr ≥ 1, θ−r = 1} ⇒

GDF f
o (x f , y | �,	) = DF f

o(r)(x
f , yr , y−r );

(iii) � = �3 = {μ |
s∑

r=1
μr = 1, μr > 0, r = 1, ..., s}, 	 = 	3 = {θ | θ ≥ 1} ⇒

GDF f
o (x f , y | �,	) = WNDF f

o (x f , y);
(iv) � = �1 = {μ | μ1 = μ2 = ··· = μs = 1

s },	 = 	3 = {θ | θ ≥ 1} ⇒ GDF f
o (x f , y |

�,	) = NDF f
o (x f , y);

Proof First, when μ1 = μ2 = · · · = μs = 1
s , let θ̄ = θ1 = θ2 = · · · = θs ≥ 1, we have

GDF f
o (x f , y | �,	) = max{θ̄ | θ̄ y ∈ P f (x f ), θ̄ ∈ [1,+∞)}=DF f

o (x f , y).
Second, when μr = 1, μ−r = 0, and θr ≥ 1, θ−r = 1, we have GDF f

o (x f , y | �,	) =
max{θr | (θr yr , y−r) ∈ P f (x f ), θr ∈ [1,+∞)}=DF f

o(r)(x
f , yr , y−r ).

Third, when
s∑

r=1
μr = 1, μr > 0, r = 1, ..., s and θ ≥ 1, GDF f

o (x f , y | �,	) =
WNDF f

o (x f , y) by (19).
Fourth, when μ1 = μ2 = · · · = μs = 1

s , GDF f
o (x f , y | �,	) = NDF f

o (x f , y) by
(16). ��
Proposition A.5 The following linkages can be established among biased radial O-O PCU
measure, partial O-O PCU measure, and Färe-Lovell O-O PCU measure (s ≥ 1):

1 ≤ DF f
o (x f , y) ≤ DF f

o(r)(x
f , yr , y−r ) ≤ NDF f

o (x f , y), r = 1, ..., s. (A.2)

In particular,
(i) a sufficient condition for DF f

o(r)(x
f , yr , y−r ) < NDF f

o (x f , y), r = 1, ..., s is that

y /∈ Eff P f (x f ), i.e., N DF f
o (x f , y) > 1;

(ii) a sufficient condition for DF f
o (x f , y) = NDF f

o (x f , y) = DF f
o(r)(x

f , yr , y−r ) is
that output is a singleton, i.e., s = 1.
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Proof First, DF f
o (x f , y) ≥ 1 is satisfied by definition (see measure (8)).

Second, let θ∗ ≥ 1 be the optimal solution to program max{θ | θ y ∈ P f (x f ), θ ∈
[1,+∞)}, i.e., θ∗ = DF f

o (x f , y), then we have (θ∗yr , θ∗ y−r ) ∈ P f (x f ). By the
assumption of free disposability in outputs, we obtain (θ∗yr , y−r) ∈ P f (x f ) due to
y−r ≤ θ∗ y−r . Thus, θ∗ is a feasible solution to program max{θr | (θr yr , y−r ) ∈
P f (x f ), θr ∈ [1,+∞)}, r = 1, ..., s, thereby DF f

o(r)(x
f , yr , y−r ) ≥ θ∗ (see Definition

3.2), i.e., DF f
o(r)(x

f , yr , y−r ) ≥ DF f
o (x f , y).

Third, to prove DF f
o(r)(x

f , yr , y−r ) ≤ NDF f
o (x f , y), r = 1, ..., s, we should con-

sider the following two cases: (i) NDF f
o (x f , y) = 1 and (ii) NDF f

o (x f , y) > 1. In
the former case, we have θ∗

1 = ... = θ∗
s = 1 where θ∗ is the optimal solution of

Program (16) whose component is θ∗
r , r = 1, ..., s. Clearly, DF f

o(r)(x
f , yr , y−r ) = 1

must be satisfied according Definition 3.2, which can be proven by contradiction as fol-
lows. Suppose θ∗

r = 1 is not the optimal solution of Program (11), then there exists
θ∗∗
r > 1 such that (θ∗∗

r yr , y−r ) ∈ P f (x f ). Thus, (11, ..., θ∗∗
r , ..., 1s) is a feasible solu-

tion to Program (16). The corresponding value of objective function is s−1+θ∗∗
r

s > 1
because of θ∗∗

r > 1, thereby θ∗
1 = ... = θ∗

s = 1 is not the optimal of Program (16)

and NDF f
o (x f , y) 	= 1, which contradicts to NDF f

o (x f , y) = 1. Hence, we obtain
NDF f

o (x f , y) = DF f
o(r)(x

f , yr , y−r ), r = 1, ..., s. In the latter case, we consider the

following two subcases (ii-1) DF f
o(r)(x

f , yr , y−r ) = 1 and (ii-2) DF f
o(r)(x

f , yr , y−r ) > 1.

In sub-case (ii-1), NDF f
o (x f , y) > DF f

o(r)(x
f , yr , y−r ) holds clearly. In sub-case (ii-

2), suppose θ ′
r is the optimal solution of Program (11), i.e., DF f

o(r)(x
f , yr , y−r ) = θ ′

r .
Then (11, ..., θ ′

r , ..., 1s) is a feasible solution to Program (16), from which we obtain
s−1+θ ′

r
s ≤ NDF f

o (x f , y). Reformulate the formula above, we get NDF f
o (x f , y)−1
θ ′
r−1 ≥ 1

s .

Therefore, NDF f
o (x f , y)−1

DF f
o(r)(x

f ,yr , y−r )−1
> 0, i.e., NDF f

o (x f , y) > DF f
o(r)(x

f , yr , y−r ). Wrapping

up, DF f
o(r)(x

f , yr , y−r ) ≤ NDF f
o (x f , y), r = 1, ..., s.

Fourth, when NDF f
o (x f , y) > 1, DF f

o(r)(x
f , yr , y−r ) < NDF f

o (x f , y), r = 1, ..., s
have been proven above (see subcases (ii-1) and (ii-2)).

Finally, when the output is a singleton, DF f
o (x f , y) = NDF f

o (x f , y) =
DF f

o(r)(x
f , yr , y−r ) always holds by definition. ��

Proposition A.6 The optimal input capacity xv,WN
i,(x f ,xv ,ε)

with the fixed inputs x f belongs to

the isoquant of L(ε), i.e., (x f , xv,WN
i,(x f ,xv ,ε)

) ∈ Isoq L(ε).

Proof Suppose (x f , xv,WN
i,(x f ,xv ,ε)

) /∈ Isoq L(ε), then there exists β ∈ [0, 1) such that

β(x f , xv,WN
i,(x f ,xv ,ε)

) ∈ L(ε). By the assumption of free disposability in (variable) inputs, we

can induce that (x f , βxv,WN
i,(x f ,xv ,ε)

∈ L(ε) due to x f > βx f . Since xv,WN
i,(x f ,xv ,ε)

= β∗ � xv

(see Definition 3.12), we obtain (x f , β · β∗ � xv) ∈ L(ε). Let β∗∗ = β · β∗ < β∗, then
(x f , β∗∗ � xv) ∈ L(ε). As a consequence, there exists a feasible solution β∗∗ < β∗ to Pro-

gram (29) whose corresponding value of objective function is
mv∑
i=1

ηiβ
∗∗. β∗ is not the optimal
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solution of Program (29) because of
mv∑
i=1

ηiβ
∗∗ <

mv∑
i=1

ηiβ
∗, contradicting to the definition of

WNDFSR
i (x f , xv, ε) as shown in (29). Therefore, (x f , xv,WN

i,(x f ,xv ,ε)
) ∈ Isoq L(ε). ��

Proposition A.7 The generalized framework for the biased I-O PCU measure is defined as:

GDFSR
i (x f , xv, ε | ϒ,�) = min{

mv∑

i=1

ηiβi | (x f , β � xv) ∈ L(ε), η ∈ ϒ, β ∈ �},(A.3)

where

(i) ϒ = ϒ1 = {η | η1 = η2 = · · · = ηmv = 1
mv },� = �1 = {β | 0 ≤ β1 = β2 = · · · =

βmv ≤ 1} ⇒ GDFSR
i (x f , xv, ε | ϒ,�) = DFSR

i (x f , xv, ε);

(ii) ϒ = ϒ2 = {η |
mv∑
i=1

ηi = 1, ηi > 0, i = 1, ...,mv},� = �2 = {β | 0 ≤ β ≤ 1} ⇒
GDFSR

i (x f , xv, ε | ϒ,�) = WNDFSR
i (x f , xv, ε).

(iii) ϒ = ϒ1 = {η | η1 = η2 = · · · = ηmv = 1
mv },� = �2 = {β | 0 ≤ β ≤ 1} ⇒

GDFSR
i (x f , xv, ε | ϒ,�) = NDFSR

i (x f , xv, ε).

Proof First, when η1 = η2 = · · · = ηmv = 1
mv , let β̄ = β1 = β2 = · · · = βmv ,

we have GDFSR
i (x f , xv, ε | ϒ,�) = min{β̄ | (x f , β̄xv) ∈ L(ε), β̄ ∈ [0, 1]} =

DFSR
i (x f , xv, ε).

Second, when
mv∑
i=1

ηi = 1, ηi > 0, i = 1, ...,mv and 0 ≤ β ≤ 1, GDFSR
i (x f , xv, ε |

ϒ,�) = WNDFSR
i (x f , xv, ε) holds by (29).

Third, when η1 = η2 = · · · = ηmv = 1
mv , GDFSR

i (x f , xv, ε | ϒ,�) =
NDFSR

i (x f , xv, ε) holds by (25).

Proposition A.8 The following linkage can be established between the biased (sub-vector)
radial I-O PCU measure and the biased Färe-Lovell I-O PCU measure (mv ≥ 1):

N DFSR
i (x f , xv, ε) ≤ DFSR

i (x f , xv, ε) ≤ 1. (A.4)

In particular, a sufficient condition for N DFSR
i (x f , xv, ε) = DFSR

i (x f , xv, ε) is that the
variable input is a singleton, i.e., mv = 1.

Proof First, DFSR
i (x f , xv, ε) ≤ 1 is satisfied by setting y = ε in measure (7).

Second, letβ∗ ∈ [0, 1]be the optimal solution of programmin{β | (x f , βxv) ∈ L(ε), β ∈
[0, 1]}, i.e., β∗ = DFSR

i (x f , xv, ε), then we get β1 = β2 = · · · = βmv = β∗ is a feasible

solution to program min{ 1
mv

mv∑
i=1

βi | (x f , β � xv) ∈ L(ε), βi ∈ [0, 1]}. The corresponding
value of objective function is β∗. Hence, β∗ ≥ NDFSR

i (x f , xv, ε) (see measure (25)), i.e.,
NDFSR

i (x f , xv, ε) ≤ DFSR
i (x f , xv, ε).

Proposition A.9 There exists a set , such that for any ξ̂ ∈ , we have:

(i) ∀ξ ≥ ξ̂ , we have AN PCUo(x, x f , y, ξ) = N PCUo(x, x f , y).
(ii) ∀ξ ≤ ξ̂ and ξ 	= ξ̂ , we have AN PCUo(x, x f , y, ξ) > N PCUo(x, x f , y).
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Proof ANDF f
o (x f , y, ξ̂ ) is non-decreasing with ξ̂ because the feasible region of Model

(B.9) is enlarged as ξ̂ increases. Combined with ANDF f
o (x f , y, ξ̂ ) ≤ NDF f

o (x f , y), we
clearly obtain that there exists a set , such that for any ξ̂ ∈ , we have (i) ∀ξ ≥ ξ̂ ,

ANDFo(x f , y, ξ) = NDFo(x f , y); and (ii) ∀ξ ≤ ξ̂ and ξ 	= ξ̂ , ANDFo(x f , y, ξ) <

NDFo(x f , y). By the definitions of N PCUo(x, x f , y) and AN PCUo(x, x f , y, ξ̄ ) (see
Definitions 3.7 and 3.15), we can induce that for any ξ̂ ∈ , we have (i)∀ξ ≥
ξ̂ , AN PCUo(x, x f , y, ξ) = N PCUo(x, x f , y); and (ii) ∀ξ ≤ ξ̂ and ξ 	= ξ̂ ,

AN PCUo(x, x f , y, ξ) > N PCUo(x, x f , y).

B Computing nonradial plant capacity notions

This appendix presents the estimation of various capacity concepts’ components within a
non-parametric frontier framework, assuming VRS. To formulate the models, we will first
review the notations introduced in this contribution. The vector of m inputs, denoted as
x ∈ R

m+, is capable of generating a vector of s outputs, denoted as y ∈ R
s+. The input vector

x can be divided into two parts: a fixed component (x f ) and a variable component (xv),
represented as x = (x f , xv). For each observed production unit k under evaluation, and the
corresponding output vector (yk) are known. The fixed and variable input components for the
unit are denoted as x f

k and xvk , respectively. Lastly, since non-parametric frontier technologies
are based on activity analysis, we require a vector of activity variables, λ = (λ1, . . . , λn),
which indicates the intensity levels at which each of the n observed activities is conducted.

Note that to save space, we only present linear programs of efficiency and plant capacity
measures under C . The efficiency and plant capacity measures under NC can be computed
by adding the binary integer constraint λ j ∈ {0, 1} to the linear programs under C .

Usingnonparametric frontier technologies, one canobtain theweightedFäre-Lovell output
efficiency measure relative to production correspondence P(x) for an evaluated observation
(xk, yk), k = 1, ..., n as

WNDFo(xk, yk) = max
θr ,λ j

s∑
r=1

μrθr

s.t
n∑
j=1

λ j xi j ≤ xik, i = 1, ...,m,

n∑
j=1

λ j yr j ≥ θr yrk, r = 1, ..., s,

n∑
j=1

λ j = 1,

θr ≥ 1, λ j ≥ 0, r = 1, ..., s, j = 1, ..., n.

(B.1)

By analogy, the weighted Färe-Lovell output efficiency measure relative to production
correspondence P f (x f ) observation (xk, yk), k = 1, ..., n is computed as
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WNDF f
o (x f

k , yk) = max
θr ,λ j ,xv

k

s∑
r=1

μrθr

s.t
n∑
j=1

λ j x
f
i j ≤ x f

ik, i = 1, ...,m f ,

n∑
j=1

λ j xv
i j ≤ xv

k , i = 1, ...,mv,

n∑
j=1

λ j yr j ≥ θr yrk, r = 1, ..., s,

n∑
j=1

λ j = 1,

xv
k ≥ 0, θr ≥ 1, λ j ≥ 0, r = 1, ..., s, j = 1, ..., n.

(B.2)

The Färe-Lovell output efficiency measures relative to production correspondence P(x)

for observation (xk, yk), k = 1, ..., n as

NDFo(xk, yk) = max
θr ,λ j

1
s

s∑
r=1

θr

s.t
n∑
j=1

λ j xi j ≤ xik, i = 1, ...,m,

n∑
j=1

λ j yr j ≥ θr yrk, r = 1, ..., s,

n∑
j=1

λ j = 1,

θr ≥ 1, λ j ≥ 0, r = 1, ..., s, j = 1, ..., n.

(B.3)

By analogy, the Färe-Lovell output efficiency measure relative to production correspon-
dence P f (x f ) observation (xk, yk), k = 1, ..., n is computed as

NDF f
o (x f

k , yk) = max
θr ,λ j ,xv

k

1
s

s∑
r=1

θr

s.t
n∑
j=1

λ j x
f
i j ≤ x f

ik, i = 1, ...,m f ,

n∑
j=1

λ j xv
i j ≤ xv

k , i = 1, ...,mv,

n∑
j=1

λ j yr j ≥ θr yrk, r = 1, ..., s,

n∑
j=1

λ j = 1,

xv
k ≥ 0, θr ≥ 1, λ j ≥ 0, r = 1, ..., s, j = 1, ..., n.

(B.4)

We can obtain the sub-vector weighted Färe-Lovell input efficiency measure relative to
input correspondence L( y) for observation (xk, yk) as:
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WNDFSR
i (x f

k , xvk , yk) = min
βi ,λ j

mv∑
i=1

ηiβi

s.t
n∑
j=1

λ j x
f
i j ≤ x f

ik, i = 1, ...,m f ,

n∑
j=1

λ j xv
i j ≤ βi xv

ik, i = 1, ...,mv,

n∑
j=1

λ j yr j ≥ yrk, r = 1, ..., s,

n∑
j=1

λ j = 1,

0 ≤ βi ≤ 1, λ j ≥ 0, i = 1, ...,mv, j = 1, ..., n.

(B.5)

By analogy, the sub-vector weighted Färe-Lovell input efficiencymeasure relative to input
correspondence L(ε) is computed as:

WNDFSR
i (x f

k , xvk , ε) = min
βi ,λ j

mv∑
i=1

ηiβi

s.t
n∑
j=1

λ j x
f
i j ≤ x f

ik, i = 1, ...,m f ,

n∑
j=1

λ j xv
i j ≤ βi xv

ik, i = 1, ...,mv,

n∑
j=1

λ j yr j ≥ ε, r = 1, ..., s,

n∑
j=1

λ j = 1,

0 ≤ βi ≤ 1, λ j ≥ 0, i = 1, ...,mv, j = 1, ..., n.

(B.6)

One can obtain the sub-vector Färe-Lovell input efficiency measure relative to input set
L( y) for observation (xk, yk) as:

NDFSR
i (x f

k , xvk , yk) = min
βi ,λ j

1
mv

mv∑
i=1

βi

s.t
n∑
j=1

λ j x
f
i j ≤ x f

ik, i = 1, ...,m f ,

n∑
j=1

λ j xv
i j ≤ βi xv

ik, i = 1, ...,mv,

n∑
j=1

λ j yr j ≥ yrk, r = 1, ..., s,

n∑
j=1

λ j = 1,

0 ≤ βi ≤ 1, λ j ≥ 0, i = 1, ...,mv, j = 1, ..., n.

(B.7)

By analogy, the biased Färe-Lovell I-O PCUmeasure for observation (xk, yk) is computed
as:
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NDFSR
i (x f

k , xvk , ε) = min
βi ,λ j

1
mv

mv∑
i=1

βi

s.t
n∑
j=1

λ j x
f
i j ≤ x f

ik, i = 1, ...,m f ,

n∑
j=1

λ j xv
i j ≤ βi xv

ik, i = 1, ...,mv,

n∑
j=1

λ j yr j ≥ ε, r = 1, ..., s,

n∑
j=1

λ j = 1

0 ≤ βi ≤ 1, λ j ≥ 0, i = 1, ...,mv,

(B.8)

We can model the attainable Färe-Lovell output efficiency measure at level ξ̄ as

ANDF f
o (x f

k , yk, ξ̄ ) = max
θr ,λ j

1
s

s∑
r=1

θr

s.t
n∑
j=1

λ j x
f
i j ≤ x f

ik, i = 1, ...,m f ,

n∑
j=1

λ j xv
i j ≤ xv

i , i = 1, ...,mv,

n∑
j=1

λ j yr j ≥ θr yrk, r = 1, ..., s,

xv
i ≤ ξ̄i xv

ik, i = 1, ...,mv,
n∑
j=1

λ j = 1,

θr ≥ 0, λ j ≥ 0, r = 1, ..., s, j = 1, ..., n.

(B.9)

The constraint xv
i ≤ ξ̄i xv

ik, i = 1, ...,mv establishes a link between the observed i th variable
input and the decision variable xv

i via ξ̄i .

Data availability The data used in this study are available in the Journal ofAppliedEconometricsDataArchive:
http://qed.econ.queensu.ca/jae/1996-v11.6/ivaldi-ladoux-ossard-simioni/.
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