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The eventual risk-loving nature of preferences of investors has largely been ignored in the existing frontier-
based fund rating literature. This contribution develops a series of nonparametric frontier-based methods to rate
mutual funds accounting for both mixed risk-loving and mixed risk-aversion preferences. These new methods
are proposed by defining the corresponding shortage functions that can allow for increases in all moments,
or increases in odd moments and reductions in even moments. The empirical part designs a buy-and-hold

backtesting to test the out-of-sample performance of the proposed rating methods corresponding to different
risk preferences on the actual MF selection. The evidence indicates that the backtesting strategies based on the
output frontier-based rating models with risk-loving preferences exhibit an overwhelming dominance compared
to most existing frontier-based and traditional financial ratings.

1. Introduction

A mutual fund (MF) is one of the typical pooled investment vehicles
that allows investors to aggregate smaller amounts of capital into a
larger amount for investment. MFs have become a popular investment
option for individuals and institutions, leading to a rapid growth in
terms of both the amount and the diversity (see Bogle, 2005). In
the actual investment process, investors rely heavily on performance
measures to identify MFs worthwhile investing in among the numerous
ones available. They are increasingly concerned with the ratings and/or
rankings of MFs determined by explicit performance measures. Clearly,
an effective MF performance appraisal provides strategic support for
investors’ MF screening, but also investment benchmarking for MF
managers can improve the performance of their managed portfolios.

Since the foundational work of Markowitz (1952) on modern port-
folio theory, it has been recognized that portfolio performance should
be measured by the trade-off between portfolio return and risk, mainly
based on the mean-variance (MV) portfolio optimization problem of
simultaneously maximizing returns and minimizing risk. This stems
from the theory of optimal investment choice, i.e., the ability to manage
assets that maximize expected utility (EU) under risk. Within the EU
framework, the utility function U(x) describes the risk appropriation
of decision makers, where the curvature of the utility function re-
flects whether one experiences risk-aversion (a concave utility function,

i.e., U"(x) < 0) or risk-loving (a convex utility function, i.e., U"(x) > 0),
where the inequalities hold for all x belonging to the domain of the
function U(x). However, it is fair to say that the overwhelming ma-
jority of theoretical and empirical work in portfolio analysis typically
maintains the assumption that the utility function of wealth is concave
(i.e., its marginal utility is diminishing) and hence investors are ab-
solutely and globally risk-averse (see Haering, Heinrich, & Mayrhofer,
2020). The classic financial efficiency indicators (e.g., the Sharpe ratio,
the Sortino ratio, among others) have basically been developed under
this modern portfolio theory and serve for investment decisions of
investors with risk-averse preferences solely.

More recently, the properties of the utility functions for risk-aversion
and risk-loving preferences in a more general setting have been stud-
ied. Eeckhoudt and Schlesinger (2006) discuss the broad class of
mixed risk-aversion (RA) utility functions that are characterized by
a preference for odd moments and an aversion for even moments.
In combination with the traditional risk preference like risk aversion,
the mixed risk-aversion utility function is related to the prudence
(i.e., U"'(x) > 0) and temperance (i.e., U""(x) < 0) of investors
corresponding to the third and fourth moments of the returns dis-
tribution. Crainich, Eeckhoudt, and Trannoy (2013) systematically
investigate the properties of mixed risk-loving (RL) utility functions,
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which agree with the RA ones for odd moments, but differ from them
in that they also have a preference for even moments.

Frontier-based methods used for assessing the performance of MF
have recently gained some popularity for portfolio performance eval-
uation in the context of RA preferences. With the help of efficiency
measures transposed from production theory, these frontier method-
ologies measure the efficiency of a MF by estimating the distance
between an observed portfolio and its reference portfolio on a portfolio
frontier (or rather the nonparametric estimators of this frontier) along
a given projection direction. In this framework, the portfolio frontier
is regarded as a benchmark to measure the portfolio efficiency, and
the projection direction serves to characterize investors’ preferences for
return, risk and higher-order moments.

Among the alternative efficiency measures, the shortage function
(Luenberger, 1995) has proven to be an excellent tool for gauging MF
performance compatible with general investor preferences by virtue
of its ability to seek for improvements in multidimensional directions
simultaneously.! Briec, Kerstens, and Lesourd (2004) are likely the first
to develop the shortage function to measure portfolio efficiency in
the context of RA preferences, whereby the investors can both expand
expected return and contract variance simultaneously in the MV case.
Using the shortage function, the efficiency of a given portfolio is mea-
sured based on the distance between it and the MV portfolio frontier
(theoretical frontier). This evaluation method based on the shortage
function has been extended to more generalized portfolio frameworks
to be compatible with general RA investor preferences. Briec, Ker-
stens, and Jokung (2007) use a general shortage function to look for
improvements in efficiency in MV-Skewness (MVS) space by looking
for simultaneous expansions in mean return and positive skewness
and reductions in risk. Even more general, for the class of RA utility
functions, Briec and Kerstens (2010) assess portfolio performance for
the general moments case by simultaneously looking for improvements
in odd moments and reductions in even moments. Examples of studies
based on the shortage function include in alphabetic order, e.g., Adam
and Branda (2020), Boudt, Cornilly, and Verdonck (2020), Branda
(2013, 2015), Jurczenko, Maillet, and Merlin (2006), Jurczenko and
Yanou (2010), Khemchandani and Chandra (2014), Kriiger (2021), Lin
and Li (2020) and Massol and Banal-Estafiol (2014), among others.

All of the above methods are based on diversified portfolio fron-
tiers. These are also referred to as diversified portfolio models in the
literature. These diversified models require nonlinear programming
in most cases, and their potential computational burden make these
models rather unsuitable for large-scale evaluations. Probably in view
of the complexity of these diversified portfolio models, nonparametric
production frontiers have been transposed into the financial literature
in an effort to offer alternative MF ratings, which are called nonpara-
metric (production) frontier-based rating methods. Intuitively, based
on a sample of observed units, one estimates nonparametric frontiers
of any multi-dimensional choice set and uses an efficiency measure to
position the benchmark of each observation on the boundary of such
choice set. For instance, Kerstens, Mounir, and Van de Woestyne (2011)
launch a new proposal in favour of the use of shortage function in terms
of convex/nonconvex nonparametric frontiers, and systematically test
for the need of nonparametric frontier specifications (i.e., returns to
scale, higher-order moments and convexity) in defining the efficiency
measures. Liu, Zhou, Liu, and Xiao (2015) state that a convex variable
returns to scale (VRS) nonparametric frontier estimator provides an
inner approximation to the portfolio frontier derived from the tradi-
tional MV diversified model. These arguments are of great relevance
in providing theoretical supports for the application of nonparametric
frontiers in MF rating in the context of general RA investor preferences.

1 Actually, the shortage function has also been named as the directional
distance function.
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In particular, there has been a great development on the shortage
function in combination with nonparametric frontier techniques for
assessing portfolio performance with RA preferences, e.g., Brandouy,
Kerstens, and Van de Woestyne (2015), Kerstens, Mazza, Ren, and
Van de Woestyne (2022), Matallin-Sdez, Soler-Dominguez, and Tortosa-
Ausina (2014), Nalpas, Simar, and Vanhems (2017), Xiao, Zhou, Ren,
and Liu (2022) and Zhou, Gao, Xiao, Wang, and Liu (2021). In this
literature, it is assumed that all investors behave similarly towards the
uneven moments and even moments, i.e., favouring uneven moments
and disliking even moments.

Summarizing the above discussion, it is prudent to conclude that
almost all these studies on portfolio performance appraisal build upon
the assumption of RA preferences of investors following the traditional
paradigm in modern finance. However, a plethora of empirical studies
shows that the limitations of modern finance to explain some market
anomalies (such as the equity premium, small firm effect, and the
diversification puzzle) is to some extent related to such a strong as-
sumption on risk preferences (see, e.g., Statman, 2004). As behavioural
portfolio theory emerged (see Shefrin & Statman, 2000 for a survey),
and especially as prospect theory gradually became well understood
(see the seminal work of Kahneman & Tversky, 1979), the RL (or risk-
seeking) preferences of investors towards return and risk have been
increasingly studied in the literature. One of the seminal articles that
inspired behavioural finance theory is Friedman and Savage (1948)
who note that both RA and RL preferences share roles in investment
behaviour: investors who buy insurance policies often also buy lottery
tickets. It implies that there exists both risk lovers and risk averters in
actual investment.

Relatively recently, there has emerged experimental evidence that
both RA and RL decision makers exist, and the characteristics of RL
preferences have become better understood. For instance, Deck and
Schlesinger (2014) show that a nonnegligible minority of individuals
make consistently second-order RL choices in their experiments, and
most of the risk lovers tend to exhibit prudent and intemperate be-
haviour. Based on the binary lotteries in the context of experimental
studies, the behaviour of risk lovers is interpreted as a preference for
taking a chance on the “good” outcomes or all the “bad” ones, rather
than combining some of the “good” outcomes with some of relatively
“bad” ones (i.e., the preferences of RA). Combining the classic EU
theory, Crainich et al. (2013) formally introduces the concept of RL
preferences, i.e., a preference for all odd and even moments. In fact,
mixed risk lovers are distinct from mixed risk averters by the signs
of even derivatives of their utility function, while they agree on the
signs of odd derivatives. These innovative articles have given rise to
an extensive discussion on RL preferences: e.g., /f\stebro, Mata, and
Santos-Pinto (2015), Bleichrodt and van Bruggen (2022), Hongwei and
Wei (2019), Jokung and Mitra (2019), Nocetti (2016), among others.
Overall, these observations inspire our fundamental thought of account-
ing for RL preferences of general investors in portfolio performance
evaluation.

Given the literature on portfolio performance appraisal reviewed
previously, even though the nonparametric frontier-based models have
been intensively used in the finance literature, we are unaware of any
discussion applying these methods to MF performance evaluation in
the context of RL preferences. Therefore, the aim of this contribution
is threefold. First, we develop a series of nonparametric frontier-based
MF rating methods to handle MFs rating in the contexts of RA and RL
preferences. On the one hand, this contribution defines performance
measures by generalizing the shortage function within the traditional
nonparametric input-output frontier allowing for both RA and RL
preferences of investors. While a large body of contributions use the
traditional input-output frontier-based methods to assess MF perfor-
mance, all of these use RA preferences by default. On the other hand,
given the characteristics of RL preferences, i.e., the preference for
odd and even moments, we further propose new shortage functions
based on the output nonparametric frontiers (see Lovell & Pastor,



T. Ren et al.

1999 for output frontiers) as the benchmark compatible with general
RL investor preferences. To the best of our knowledge, the idea of
introducing a nonparametric output frontier to tackle MF evaluation
in the framework of RL preferences is novel.

Second, applying these proposed models to a large database of
actual MFs, we test the impacts of these risk preferences and benchmark
settings (i.e., nonparametric frontiers) in MF appraisal. The ability of
the shortage function to seek for improvements in several directions
simultaneously makes it an excellent tool for gauging performance
compatible with investor preferences. Therefore, we employ a Li-test
statistic to empirically evaluate differences in inefficiency results com-
puted relative to the above proposed nonparametric frontiers under
different RA and RL risk preferences.

Third, our key research question is that we explore the potential
benefit of the proposed nonparametric frontier-based methods on MF
rating and selection by a buy-and-hold backtesting analysis. To the best
of our knowledge, we offer a first detailed backtesting analysis com-
paring the out-of-sample performance of the proposed frontier-based
MF ratings with RA and RL preferences, as well as some traditional fi-
nancial performance measures. The superior performance of the output
frontier-based MF ratings with RL preferences is verified in extensive
backtesting exercises and their robustness checks. These backtesting
results may make some investors adopt RL behaviour and may make
MF management companies to consider introducing new MF managed
using RL behaviour because of the high gains.

The structure of this contribution is as follows. Section 2 presents
the discussion on the nonparametric frontier methodology dealing
with MF rating in the context of both RA and RL preferences. Sec-
tion 3 describes the details of the backtesting setup based on the
proposed nonparametric frontier-based methods, as well as the tradi-
tional finance performance measures. Section 4 presents an empirical
illustration using actual MF data. Conclusions and issues for future
work are summarized in the final section.

2. Methodology

This contribution focuses on gauging MFs performance for both RA
and RL preferences of investors by integrating the shortage function
with nonparametric frontiers. Therefore, we start by introducing a
mathematical formulation of the shortage function and some basic
notation. As stated previously, the shortage function is a perfectly
general efficiency measure that is compatible with general investor
preferences and it can easily be employed to handle negative data
commonly occurring in a financial context.

Basically, there are two basic issues that need to be distinguished:
(i) the choice of reference (projection) direction vector for a MF to
be evaluated and (ii) the identification of the nonparametric frontier
linking the different dimensions as a benchmark. First, the reference
direction depends on the investor’s preferences, which can be either RA
or RL preference structure: the former aims to increase odd moments
and decrease even moments, while the latter seeks increase in both even
and odd moments. Second, the nonparametric frontier benchmarking
indicates the potential improvements in multidimensional performance
for this observed MF along the given reference direction.

In the remainder, we develop different types of nonparametric
frontier models based on an extended shortage function for MF rating in
the frameworks of RA or RL preferences. In particular, in Section 2.1 we
develop a traditional frontier (TF) with inputs and outputs and both the
possibility to evaluate RA and RL preferences. In Section 2.2 we develop
an output frontier (OF) without input dimensions that only serves to
evaluate RL preferences.

2.1. Nonparametric frontier models with inputs and outputs (TF)

To introduce some basic notations and definitions, consider that
there are n MFs under evaluation, where the jth MF (j € {1,...,n}) can
be characterized by m input-like values x; 5 (i € {1,...,m}) and s output-
like values y,; (r € {1, ..., s}). Input-like variables need to be minimized
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and output-like variables need to be maximized. Hereafter, we refer to
the input-like and output-like variables as inputs and outputs for short
and for consistency with the nonparametric frontier technology in a
production context.

We employ one widely used nonparametric production frontier-
based model with VRS and strong disposability. A unified algebraic
representation of convex and nonconvex input-output possibility sets
for this sample of n MFs is:

n
PIO={(x,y) ER" XR* | Vi € {1,...,m} : x; > ) A;x;,
j=1

n
s}y < Zijy,j,/ie A},

vre{l,... (@D)]

j=1
where: A= A€ ={1€R"| YA =landVje({l...n}: 4 20}if
convexity is assumed, and A = ANC = {1 € R" | Z;’zl A;=1andVje

{1,...,n} : 4; € {0,1}} if nonconvexity is assumed.

If there exists an input-output combination (}}_; 4;x;;, X7_; 4; ;)
in the convex or nonconvex set using less inputs and producing more
outputs than the observed MF, then this MF is considered inefficient
since it can improve on its inputs and/or outputs. MFs are efficient if no
improved input-output combinations can be found. The input-output
combinations of these efficient MFs are all located on the boundary of
P19 which is called the convex or nonconvex VRS nonparametric TF.

Using the nonparametric TF defined in (1), the shortage function of
any observed MF is now defined as follows:

Definition 2.1. Let g = (g,,g) € R" XR* and g # 0. For any
observation z = (x,y) € R™ x R, the shortage function S1° in the
direction of vector g is defined as:

S10(z;8) = sup{p e R | z + pg € PI°}. (2

In Definition 2.1, if g = (gy,g,) € R” x R}, then the variables
to be reduced (inputs) and variables to be expanded (outputs) can,
for example, be a vector of even and odd moment characteristics
for RA preferences. This shortage function simultaneously permits the
enhancement of output-like variables and the reduction of input-like
variables. In contrast, if g = (g,,g,) € R} XxR?, then the corresponding
shortage function seeks for the increases in all variables (e.g., both even
and odd moments) for RL preferences.

Generally speaking, if the shortage function value Sﬁo(zo; g) =0,
then z,, is efficient and located on the frontier. By contrast, if the short-
age function value Sﬁo(z{,;g,,) > 0 for the input-output combination
z, = (x,,¥,) of a specific MF, then z, is inefficient and not located on
the frontier of P/{O. Hence, its inputs and/or outputs can be improved
according to the specific risk preferences to catch up with the VRS
nonparametric TF.?

Consider a MF with index o € {1,...,n} in need of assessment by
means of the shortage function with direction vector g, = (gy,,&,,) €
R™ x RS. Combining (1) and Definition 2.1, the inefficiency value of
this MF can be determined by solving the following model:

max fro

n

St 2 Aixij £ Xio + Bro8&ies i=1,...,m,
j=l
n

zijy”‘ > yr0+ﬂ10gr0’ r=1,...s,

j=1 3)
n
2’1/ =1 fr020,
j=1
> 3
Vi=l,...n: 4; 20, under convex1ty,.
A; €{0,1}, under nonconvexity.

2 The shortage function is actually a measure of inefficiency. However, it

is sometimes, perhaps misleadingly, called a measure of efficiency for MFs or
portfolios in several literature (see, e.g., Kriiger, 2021 or Xiao et al., 2022).
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Model (3) is not new (see, e.g., Kerstens et al., 2011 in TF MF
rating), but it can be interpreted as a general model for both RA
and RL preferences simultaneously: the latter aspect is new. More
specifically, for the RA preferences that aim to increase odd moments
and decrease even moments, model (3) projects the benchmarked MF

with index o in the direction g, = (=[xol, ..., =1Xp0ls V1ol -5 [Vol)s
whereby all input-like values x;,, (i = 1,...,m) are decreased, and all
output-like values y,,, (r=1,...,s) are increased in proportion to their

initial values. By contrast, with respect to the RL preference seeking to
increase all moments, model (3) projects this MF along the direction
g = (Ix1ol, -5 [%mols [V16]s -+ » [¥g]) such that all input- and output-like
values are increased in proportion to their initial values. Furthermore,
the optimal value of fj, indicates the amount of inefficiency for MF
with index o, whereby an efficient MF obtains a zero-valued shortage
function (ﬂ;‘o = 0). Thus, the MF, is more efficient if its inefficiency
value f7, is closer to zero.

We can now particularize the above formulation to characterize
the efficient frontier based on the nonparametric TF with either the
classic moments (e.g., mean and variance) or the higher-order moments
(e.g., skewness, kurtosis, etc.) for both RA and RL preferences. Since
the mean return and skewness can be negative, we take the directions
allowing for negative values by the absolute value of the coordinates
of the position vector of the initial points, as has been proposed in Ker-
stens and Van de Woestyne (2011). This guarantees the proportionality
and transforms the shortage function into the proportional distance
function, which satisfies the commensurability property in productivity
measurement (see Briec, Dumas, Kerstens, & Stenger, 2022 for the
proof).

In the mean-variance-skewness-kurtosis (MVSK) space, suppose
that there are n MFs to be evaluated and each MF j can be identified
by its random return R;, where j € {l,...,n}. Let the variance, the
skewness and the kurtosis be defined as follows: V(R;) = E[(R; -
E(R))’l, S(R)) = E[(R; = E(R;)’], and K(R)) = E[(R; = E(R))"]*
Therefore, the direction vector in the MVSK framework can be specified
as g = (|JE(R)I,V(R,), |S(R)I, K(R,)) for RL preferences, whereby all
four moments are simultaneously increased in proportion to their initial
values respectively, and g = (|E(R)|,-V(R,). |S(R,)|.—K(R,)) for RA
preferences, whereby all output-like values (i.e., mean and skewness)
and input-like values (i.e., variance and kurtosis) are simultaneously
increased and decreased in proportion to the corresponding initial
values, respectively.

The estimation of MVSK are expressed as follows: let r; , denote the
sample of historical raw returns over a given time period ¢t (t = 1, ...,T)
for the jth MF (j € {l,...,n}). Then, the first four moments can be
estimated by using the observed sample data as follows:

E(R) =1 5 o @
1 I=Tl

V(R) = 5 D (rjs = E(R)Y, 5)
1 t;l

S(R)) = 5 Y (rje = E(R)Y (6)
T

K(R)) = = ¥ (rj = E(R))". @

These estimators for the first four moments are simple and straightfor-
ward, and thus are commonly used in fund (or portfolio) evaluation

3 Note that skewness and kurtosis sometimes refer to specific trans-

formations of the third and fourth central moments presented here. These
transformations serve a statistical purpose comparable to standardization.
Since these transformations are not essential in developing a multi-moment
portfolio framework, we stick to central moments to avoid unnecessary
complexity.
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when higher-order moments are considered. In the literature on port-
folio optimization emphasizing the use of sample historical returns to
estimate the future characteristics of asset (or portfolio) returns, alter-
native methods for estimating the higher-order moments of funds (or
portfolios) can also be found: for instance, robust estimators based on
quantiles (see Kim & White, 2004) and shrinkage estimation methods
(see Kriiger, 2021).

2.2. Nonparametric output frontier models without inputs (OF)

Based on the notations and definitions in the above general case,
the MFs with the RL preferences look for possible extensions in all
moments: it assumes that both even moments and odd moments are
considered as output-like variables (to be increased). Therefore, there is
in our view a need to define a new performance measure that is capable
to handle the nonparametric OF (without inputs) as a benchmark for
the potential expansion of all output-like variables with the use of short-
age function. In a production context, the nonparametric OF without
explicit inputs have been rather widely discussed in the literature (see,
e.g., Lovell & Pastor, 1999).

To the best of our knowledge, we are the first to discuss the
adoption of nonparametric OF in a MF performance evaluation context.
Motivated by the above existing studies, by analogy we first define a
unified algebraic representation of convex and nonconvex OF under the
VRS assumption for a sample of n MFs. Let jth MF (j € {1,...,n}) be
characterized by p output-like values /;; (k € {L. ..., p}): these output-
like variables need to be maximized. The OF for this sample of » MFs
is:

n
PO={IeR| VkE (1, ....p} : [, <Y Al A € A},
j=1

(®

where: A = A€ = {1 e R" | Z;=1 A;=landVj e {l,....n} : 4; >0} if
convexity is assumed, and A = ANC = {1 € R" | Z;?:] A;=1andVje
{1,....n} : 4; € {0,1}} under nonconvexity. To compare it with (1),
since we consider the same MFs for both RL and RA preferences in
later sections, the dimensions for observations are the same as (1),
ie,p=m+s.

If there exists an output combination 2;;1 A;l;; in this convex or
nonconvex OF larger than the observed MF, then this MF is considered
inefficient under the RL preferences (since its output-like variables can
be increased). MFs are efficient if no expanded output combinations
can be found in that OF. The output combinations of these efficient
MFs are all located at the boundary of P/? which is called the convex
or nonconvex VRS nonparametric OF.

Based on the OF proposed in (8), the shortage function of any
observed MF accounting for RL preferences is defined as:

Definition 2.2. Letg=g € ]R’jr. For any observation z =/ € R?, the
shortage function S/? in the direction of vector g is defined as:

S§O(z;g) =sup{f R | z+ fg € PY}. ©)

This shortage function permits the enhancement of all output-like
variables (since there are no input-like variables). If the shortage func-
tion value S9(z,; g,) > 0 for the output z, = I, of a specific MF, then z,
is inefficient and not located on the OF of P/?. Hence, its outputs can
be improved to catch up with the VRS nonparametric OF. By contrast,
if the shortage function value S/‘f(zoggo) = 0, then z, is efficient and
located on this OF.

Turning now to consider a MF with index o € {I,...,n} in need
of assessment by means of the shortage function with direction vector
g = &, € R’J’r, combining (8) and Definition 2.2, one can compute
the following mathematical programming problem to determine the
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Fig. 1.

inefficiency value of this MF under evaluation:

max fo

n
st Y Al 2l + Bk k=1,....p,
j=1

n
Dh=1 =0,
j=1

Observe that there is no input constraint included in model (10).*
Model (10) allows a scaling of outputs upwards to the nonparametric
OF along the given direction vector g,,. If the direction vector is set
as g, = (I1ol, ..., 1) (-e., we have RL preferences), then the optimal
value ﬂg of model (10) measures the maximum proportion for a MF
with respect to extension in y, along this direction based on a set of
nonparametric OF. When fj = 0, then this means the evaluated MF
is on the VRS nonparametric OF. When this optimum f, is non-zero,
then this MF is inefficient and located away from the OF.

By analogy, we explain in detail how to adopt model (10) to
compute the inefficiency of MF o with an example of the MVSK
case. In a RL preference context, both even moments and odd mo-
ments are considered as output-like variables to be maximized. There-
fore, the corresponding direction vector can be specified as g
(|ER)I,V(R),|S(R)|,K(R,) such that the output-like variables
(i.e., MVSK) are simultaneously increased in proportion to the initial
position of o with respect to the VRS nonparametric OF. The applica-
tions of model (10) in MV and MVS cases can be specified in a similar
vein.

To intuitively compare the two types of nonparametric frontiers
related to model (3) and model (10) for assessing MF performance
under RL preferences, we consider a simple case with an MV setting
depicted in Fig. 1. In particular, we generate the nonparametric TF
and the nonparametric OF based upon 20 French MFs in MV space,
i.e., the convex (c-VRS)/nonconvex (nc-VRS) nonparametric efficient
TF (marked as blue lines in solid and in dashed, respectively) and the
c-VRS/nc-VRS nonparametric efficient OF (marked as red lines in solid
and in dashed, respectively).

Let us consider the measurement of inefficiency with regard to
these different types of nonparametric frontiers in Fig. 1. Consider

(10)

0

A under convexity,
{0, 1},

under nonconvexity.

4j
4

m v

4 In simple terms, one can set x;; =0 and g, =0 for all i € m and j € n in
model (3). Consequently, the input-like constraints are always satisfied. Thus,
these constraints can be removed from model (3) to yield model (10).

25 30 35 40 45

Variance
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Traditional and output c-VRS/nc-VRS nonparametric frontiers.

the MF operating at point A with a given MV level, and recall that
this MF simultaneously looks for increases of both return and risk
dimensions. As explained previously, here we set the direction vector
as the absolute value of the coordinates of the position vector of
observed point A. As presented in Fig. 1, taking the convex case as
an example, the inefficiency amount of observed point A based on the
nonparametric TF is the proportional distance from an observed point
to a projection point A, on the TF, whereas the inefficiency value of this
point calculated by the nonparametric OF is the proportional distance
to A,. Clearly, there is a significant distinction in MFs rating under
RL preferences obtained by these two types of nonparametric frontiers
as benchmarks. Keeping the difference of these two rating methods in
mind, we further explore the potential benefits of the proposed rating
methods based on TF and OF in the following agenda.

3. Backtesting strategy

One of the main aims of this contribution is to compare and rank
the out-of-sample performance of different rating methods in the actual
selection of MFs. In this regard, we adopt a comparative approach
based on a backtesting analysis, which has been commonly used to
evaluate the out-of-sample performance of investment strategies or
portfolio models using historical data of assets. Recent examples in-
clude Brandouy et al. (2015), DeMiguel, Garlappi, and Uppal (2009),
Kerstens et al. (2022), Tu and Zhou (2011) and Zhou, Xiao, Jin, and
Liu (2018), among others.

As introduced in Section 2, one can evaluate a MF under the RL
preference using either the TF or the new OF. Instead of extensively
discussing each of the alternative input-like and output-like variables
of these nonparametric models, we specify the rating scenarios as a
convex or nonconvex frontier model with the first two (MV), three
(MVS), or four (MVSK) moments, respectively, so as to narrow down
the number of potential models worthwhile considering.

For a comprehensive comparison, we also consider several typ-
ical nonparametric frontier rating models corresponding to the RA
preference, where MF ratings under the RA preference are based on
the combination of shortage function with the TF, as in most of the
existing literature. In addition, we collect three traditional financial
indicators (in particular, Sharpe, Sortino and Omega ratios) into our
comparison. In total, we end up with 21 rating methods considered in
our backtesting analysis as summarized in Table 1. The details on how
to implement these 18 frontier rating models are available in Section 2.
The exact definitions for Sharpe and Sortino ratio can be found in Feibel
(2003, p. 187 and p. 200), and the definitions for all three traditional
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Table 1
List of various rating models considered.
# Models Abbreviation
Traditional financial measures.
1 Sharpe ratio Sharpe
2 Sortino ratio Sortino
3 Omega ratio Omega
Traditional frontier rating corresponding to the RA preferences.
4 Model (3) under convexity in MV framework with convexity TF-RA: MVc
5 Model (3) under convexity in MVS framework with convexity TF-RA: MVSc
6 Model (3) under convexity in MVSK framework with convexity TF-RA: MVSKc
7 Model (3) under nonconvexity in MV framework with nonconvexity TF-RA: MVnc
8 Model (3) under nonconvexity in MVS framework with nonconvexity TF-RA: MVSnc
9 Model (3) under nonconvexity in MVSK framework with nonconvexity TF-RA: MVSKnc
Traditional frontier rating corresponding to the RL preferences.
10 Model (3) under convexity in MV framework with convexity TF-RL: MVc
11 Model (3) under convexity in MVS framework with convexity TF-RL: MVSc
12 Model (3) under convexity in MVSK framework with convexity TF-RL: MVSKc
13 Model (3) under nonconvexity in MV framework with nonconvexity TF-RL: MVnc
14 Model (3) under nonconvexity in MVS framework with nonconvexity TF-RL: MVSnc
15 Model (3) under nonconvexity in MVSK framework with nonconvexity TF-RL: MVSKnc
Output frontier rating corresponding to the RL preferences.
16 Model (10) under convexity in MV framework with convexity OF-RL: MVc
17 Model (10) under convexity in MVS framework with convexity OF-RL: MVSc
18 Model (10) under convexity in MVSK framework with convexity OF-RL: MVSKc
19 Model (10) under nonconvexity in MV framework with nonconvexity OF-RL: MVnc
20 Model (10) under nonconvexity in MVS framework with nonconvexity OF-RL: MVSnc
21 Model (10) under nonconvexity in MVSK framework with nonconvexity OF-RL: MVSKnc

financial indicators can be found in Eling and Schuhmacher (2007, p.
2634 and p. 2635).

Following the backtesting setup in Kerstens et al. (2022), we design
a simple buy-and-hold backtesting strategy where investors select the
10, 20, or 30 best performing MFs depending on the ranking of these 21
rating methods and hold these selections to the end of sample period.
This strategy is a useful tool to compare the out-of-sample performance
of different rating methods for MF selection in the actual investment
process, as it is constructed with a specific asset allocation method
and this selection is maintained without changing the asset components
over the given holding period.

Based on the fundamental setting of backtesting, we opt for two
main indicators to evaluate the out-of-sample performance of the cor-
responding buy-and-hold strategy: (i) the realized terminal wealth, and
(ii) the shortage function with identical risk preferences as the ones
used in the MF rating. First, the realized terminal wealth mainly focuses
on the potential gains that can actually be realized out of sample
per buy-and-hold backtesting strategy. This is regarded as a universal
performance indicator for all the different backtesting strategies: a
greater terminal value is better for both RA and RL preferences of
investors. Second, the shortage function as an assessment tool that is
compatible with different investor preferences is adopted to gauge the
multidimensional performance associated with the holding return that
can be achieved out of sample for each strategy. It is capable to assess
either RA or RL preferences by a variety of model specifications.®

To empirically examine the performance of these backtesting strate-
gies, we first collect 750 active French MFs with monthly returns from
February 2011 to August 2021. The detailed description for these sam-
ple MFs is presented in the following Section 4. Then, our backtesting
analysis is performed multiple times relying on a rolling time window
(similar to the “rolling sample” approach in DeMiguel et al., 2009).
To be specific, we split the period from the beginning of the sample
period to the end of January of 2019 with a time window of 5 years
(60 months). The first backtesting starts from February 2016, where
the frontier-based and financial ratio-based ratings are computed with

5 Remark that while the financial indicators (e.g., Sharpe, Sortino and
Omega ratios) are also commonly used to evaluate the out-of-sample per-
formance of backtesting strategies (see Brandouy et al., 2015), these are
traditionally conceived as only suitable for the RA world.
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the use of 5 years of historical return data from February 2016 onward
used to construct the corresponding buy-and-hold strategy for the first
backtesting exercise. This exercise is repeated 36 times by sliding the
time window one month at the time.

From a statistical perspective, it is commonly assumed that a sample
data size larger than 30 (recall that we have 60 months) is already
statistically sufficient to estimate the first four moments of the return
distribution. Of course, the larger the sample of observations to es-
timate the MVSK of MFs, the smaller the potential bias. Therefore,
given the whole sample period length of our data set in Section 4,
we select an appropriate 5-year estimation window length (i.e., 60
monthly historical returns) to estimate the MVSK per MF for each
backtesting exercise. Furthermore, Appendix A discusses the empirical
results pertaining to the performance of the same 21 buy-and-hold
backtesting strategies when using only a 3-year estimation window
length (i.e., 36 monthly historical returns) to calculate the MVSK per
MEF.

Depending on an updated set of ratings in each period thereafter,
the 10, 20 or 30 best performing MFs are selected for the backtesting
exercise, and then one holds these selected MFs till the end of the
whole sample period. In each of the above three selecting scenarios,
the out-of-sample holding return per buy-and-hold backtesting strategy
is computed and stored.® For each of the buy-and-hold scenarios, the
out-of-sample performance of all these 21 strategies are evaluated and
compared in terms of the terminal wealth, including the average val-
ues and overall distribution of realized out-of-sample terminal wealth
across the 36 backtesting time windows. Moreover, these strategies
are divided into three groups based on their initial risk preferences
associated with the rating models, which are separately assessed using
three types of shortage functions: (i) the three financial ratio-based
and six TF-RA frontier-based strategies are evaluated by the shortage
functions computed by TF-RA models, (ii) the six TF-RL frontier-based
strategies are evaluated by the shortage functions computed by TF-RL
models, and (iii) the six OF-RL frontier-based strategies are assessed
by the shortage functions computed by OF-RL models. The average
inefficiency scores and the number of efficient units for the values of
shortage function resulting from the 36 backtesting time windows are

6 Note that each buy-and-hold strategy starts with the same initial capital
(e.g., 1 Euro), and this initial capital is invested equally in these selected MFs.
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Table 2
Descriptive statistics for all 750 MFs over the entire period.

Mean Variance Skewness Kurtosis Jarque-Bera
Min. —-0.4596 0.0017 —7919.3325 0.0000 1.6930
Q1 0.2488 3.7136 —128.9169 139.5807 64.4734
Median 0.4699 14.3466 —44.7947 1630.7688 203.9937
Mean 0.4662 14.5948 —108.4061 5619.3998 1441.8449
Q3 0.6656 22.5781 —9.5462 4248.9220 860.4685
Max. 1.3121 107.0492 962.7422 785104.9172 74124.5492

adopted to the inter-group comparisons. Remark that the buy-and-hold
strategies driven by Sharpe, Sortino and Omega ratios are regarded as
relevant for RA preferences.

4. Empirical testing
4.1. Sample description

We illustrate the RA and RL preferences of investors by using
a sample of French MFs with at least 10 years of historical prices
available in the Datastream database (Thomson Reuters). The dataset
contains monthly prices of 750 MFs from February 2011 to August
2021. Prices are converted into a common currency (i.e., Euro) from
which the monthly returns are computed. It needs to be stated that
we initially specify these nonparametric frontier-based rating methods
following the idea of Kerstens et al. (2011) that higher order moments
and cost components are included. However, since the cost data is
unavailable in this database, our empirical analysis is limited to focus
on the characteristics of the return distributions for these MFs (while
ignoring cost factors).

In the following, we first make a basic analysis of the monthly return
characteristics of the 750 MFs in the sample over the whole sample
period. The return distributions of the sample have been tested for
normality using Jarque-Bera tests. Normality is rejected for 99.47%
of MFs in the data set. Analysing the characteristics of the return
distribution for this sample of MFs over the whole period (February
2011 to August 2021), Table 2 reports descriptive statistics on the first
four moments and the Jarque-Bera statistics of the monthly returns
series over the entire sample period which are used for the subsequent
computations.

From Table 2, one can observe positive mean monthly returns for
the majority of MFs (at least 75%) in the sample. The dispersion is
quite high, as evidenced by the large positive variance, by the negative
skewness, and by the positive kurtosis of these MFs throughout. It
reveals that the monthly return distributions of most MFs in our sample
are more negatively skewed and more fat tailed compared to the normal
distribution, where both skewness and kurtosis lead to strong rejections
of normality for most MFs by the Jarque-Bera tests. When negative
skewness is present in the data, this implies that the payoffs of MFs
are subject to the downside risk more than normally distributed MFs,
while the large positive kurtosis signifies a higher probability of big
gains or losses than traditional normal distributions.

4.2. Evaluation results of frontier-based methods

In this subsection, we empirically compare the differences among
inefficiencies computed by various nonparametric frontier-based rating
methods under the RA and RL preferences (i.e., the 18 frontier-based
models listed in Table 1 of Section 2), as well as the differences among
the corresponding rankings. We extract the monthly returns of these
750 MFs for the first 5 years and calculate the central moments from
these return data and then we project each MF in turn against each of
the 3 frontier-based ratings (i.e., TF-RA, TF-RL, and OF-RL) resulting in
the inefficiencies (i.e., the values of the shortage function) and rankings
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of each MF relative to this sample. The resulting descriptive statis-
tics, Li-test statistics and Kendall rank correlations of the computed
frontier-ratings are shown in Table 3.

Table 3 is structured in the following way. First, the basic descrip-
tive statistics for the inefficiencies computed by frontier-based rating
methods are reported in the columns 3-8, including all models corre-
sponding to RA and RL preferences specified in the rating frameworks
of MV, MVS and MVSK with convexity and nonconvexity. Second,
explaining the rows in Table 3, the first two blocks of numbers contain
summary statistics for the inefficiencies of these MFs obtained by the TF
corresponding to both RA and RL preferences, respectively. The third
block of numbers contains summary statistics for the inefficiencies of
all 750 French MFs in the sample computed by the OF corresponding
to the RL preferences. The first row in each of these three horizontal
blocks reports the number of efficient observations (i.e., the number
of times the relevant measure of performance is estimated to be 0).
The next three rows in each horizontal block report the averages,
standard deviations, and median of the relevant measures. The last
two horizontal blocks contain test results with respect to the first three
horizontal blocks and are explained in detail below.

Before analysing the empirical results, two remarks need to be
made. First, the descriptive statistics in Table 3 are specific to the short-
age function calculated by the various frontier-based models: i.e., TF-
RA, TF-RL, and OF-RL. Larger inefficiency values correspond with
larger distances to the corresponding efficient frontier. In general, the
choice of direction depends on the investor’s preferences. Let us look
at the three types of frontier-based rating methods TF-RA, TF-RL and
OF-RL in turn. First, TF-RA inefficiency results indicate the possible
reductions in its input-like variables (i.e., variance and kurtosis) and
increases in its output-like variables (i.e., mean and skewness) relative
to its projection on the nonparametric TF using RA preferences. Second,
TF-RL inefficiency results show the potential increase in all of its
input-like and output-like variables with respect to the TF using RL
preferences. Third, OF-RL inefficiency results equally indicate the ex-
pansion in all input-like variables and output-like variables for this MF,
but now relative to the nonparametric OF using RL preferences. Thus,
the TF-RA rating seems to provide useful information for investors with
RA preferences, whereas the TF-RL and OF-RL ratings are more likely
to serve investors with RL preferences.

Second, the calculation of the shortage function value depends on
both nonparametric frontier specifications and the choice of direction
vector. For the three types of frontier-based rating methods (i.e., TF-
RA, TF-RL and OF-RL), the TF-RA and TF-RL rating methods join the
same nonparametric TF, but have different directions of projection. By
contrast, the TF-RL and OF-RL ratings concern two different nonpara-
metric frontiers, but with the same direction of projection respecting RL
preferences. Overall, these three rating methods can be probably best
compared two by two: (i) TF-RA and TF-RL share the same frontier
with different projections and allow to assess the role of these different
projections; and (ii) TF-RL and OF-RL have a different frontier, but the
same projection, and allow to assess the role of these different frontiers.

Several conclusions can be drawn from the results reported in
Table 3. The descriptive statistics for the inefficiencies computed by
various frontier-based rating methods (i.e., TF-RA, TF-RL and OF-RL)
all show certain differences in each rating framework (i.e., the MV,
MVS and MVSK frameworks with convexity and nonconvexity). First,
we focus on the comparison between the inefficiencies calculated by
the TF-RA and TF-RL models. The inefficiencies of most MFs calculated
by the TF-RL model is substantially higher than those calculated by
the TF-RA model in all rating frameworks. This is reflected in both
a higher average inefficiency score and a smaller number of efficient
observations under the TF-RL model compared to those under the TF-
RA model. Thus, it is clear that the difference between holding the RA
and RL preferences has a great implication for the current sample of
MFs in terms of ratings. This result can be seen as one indication of a
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Table 3

Descriptive statistics, Li-test and Kendall rank correlations of various frontier-based ratings.
Sample MVce MVSc MVSKc MVnc MVSnc MVSKnc
# Eff. Obs 12 19 32 37 65 66
Average 0.4622 0.4544 0.4458 0.3961 0.3720 0.3714

TF-RA Stand. Dev 0.2502 0.2516 0.2538 0.2585 0.2639 0.2644
Med. 0.4313 0.4261 0.4201 0.3675 0.3523 0.3518
# Eff. Obs 11 18 32 21 58 59
Average 30.9006 16.6501 1.1084 30.1994 4.8654 0.6626

TF-RL Stand. Dev 268.8115 114.9035 0.8368 267.5325 58.6348 0.4496
Med. 1.5817 1.0872 0.9676 1.5382 0.7159 0.7129
# Eff. Obs 2 6 6 8 32 67
Average 20.0169 16.9509 16.9425 18.3108 7.8775 7.8056

OF-RL Stand. Dev 108.5379 93.9800 93.9815 101.7275 43.0974 43.1099
Med. 1.6037 1.2836 1.2640 1.3202 0.5705 0.4889
Li-test 86.6477 52.8880 41.5621 82.5265 28.6757 28.4953
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

TE-RA vs. TF-RL Rank cor 0.6160 0.6525 0.7057 0.5843 0.7191 0.7151
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Li-test 4.1523 4.0902 9.3959 22.9907 24.2094 32.7104
p-value (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

TF-RL vs. OF-RL Rank cor 0.6603 0.6597 0.4337 0.4936 0.3773 0.2814
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

greater improvement on the inefficiency for a MF along the direction
of RL preference versus along the RA preference relative to the TF.

Second, we turn to an analysis between the inefficiencies obtained
by the TF-RL and OF-RL models, whereby the MFs under evaluation are
assumed to be consistent with RL preference, and are appraised through
the nonparametric TF and OF, respectively. Although the inefficiencies
obtained by the OF-RL model can in theory be either higher or lower
than those obtained by the TF-RL model, Table 3 reveals that in our
application the former model yields in most cases higher inefficiency
scores compared to the latter model. This is reflected in the higher
average inefficiency score and the smaller number of efficient observa-
tions under the OF-RL model in most rating frameworks. For instance,
in the MVSK case with convexity, the number of efficient observations
and the average inefficiency score for the OF-RL frontier-based rating
amounts to 6 and 16.9509, while the TF-RL frontier-based rating yields
the number of efficient observations and the average inefficiency score
of 32 and 1.1084, respectively. To some extent, this result signifies that
a greater improvement in inefficiency can be obtained for MFs under
the RL preference based on the nonparametric OF compared to the TF.

To formally assess the reported differences among these various
frontier-based ratings in these rating frameworks (TF-RA vs. TF-RL,
and TF-RL vs. OF-RL in the MV/MVS/MVSK framework with and
without convexity, respectively), the distributions of inefficiency values
computed for all these models are compared by means of Li-tests. We
employ the modified version of the Li-test by Li, Maasoumi, and Racine
(2009): it is a nonparametric test to compare the inefficiency distri-
butions based on the shortage function of the 18 frontier-based rating
methods. It tests for the eventual statistical significance of differences
between two kernel-based estimates of density functions f and g of a
random variable x. The null hypothesis proposes the equality of both
the density functions almost everywhere: H;, : f(x) = g(x) V x. The
alternative hypothesis negates this equality: H, f(x) # g(x) for
some x. Since the Li-test statistic measures the deviation between two
inefficiency distributions obtained by different frontier-based rating
methods, the higher the value of the Li-test statistic, the bigger the
differences between both inefficiency distributions. In addition, the
Kendall rank correlations is applied to test the degree of concordance
in rankings determined by these rating methods. The results of compar-
isons mainly aim to illustrate the difference among these frontier-based
ratings for our data. The corresponding results on both Li-test statistic
and Kendall rank correlations are reported in the last two horizontal
blocks in Table 3.

We start by conducting Li-tests to test the null hypothesis that the
inefficiency distributions computed by the TF-RA versus TF-RL models,
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and the TF-RL versus OF-RL models are equal in each rating framework.
From Table 3, one can draw two findings. First, the inefficiencies
obtained under the TF-RA model and those obtained under the TF-
RL model are significantly different at the 1% significance level for
all rating frameworks. A similar result can also be observed for the
comparisons of the other computed frontier-ratings (i.e., TF-RL vs.
OF-RL).

Second, there are variations in the Li-test statistics under different
rating frameworks. Regarding the cases of the TF-RA versus TF-RL mod-
els, one can notice that the difference of the inefficiency distributions
calculated by the TF-RA and TF-RL models is more pronounced under
the MV framework than under the MVS/MVSK frameworks. Further-
more, the obtained inefficiency distributions between both models in
the convex case show a more considerable difference compared to the
corresponding nonconvex model results. In contrast, for the case of the
TF-RL versus OF-RL models, the difference between their computed
inefficiency distributions under the MV framework is less significant
than those under the MVS/MVSK frameworks. It to some extent reveals
that the identification of the nonparametric benchmarking frontier has
a greater effect on the inefficiency estimates under the RL preferences
than under the RL preferences towards return and risk solely. In ad-
dition, the difference between the TF-RL and OF-RL results is more
significant in the case of nonconvexity than in the case of convexity.

Looking at the results of the Kendall ranking correlations presented
in Table 3, to a large extent the findings obtained from the Kendall
ranking correlations are compatible with those obtained from the Li-
test statistic. In each rating framework, all the different frontier-based
ratings yield a low correlation in terms of rankings for our MF samples.
For the case of TF-RA versus TF-RL models in different rating frame-
works, the correlation between the computed rankings is lower in the
MV setting than that in the MVS/MVSK settings. For the case of TF-RL
versus OF-RL models, the correlation between the rankings calculated
by these two models is lower when higher order moments are included.
Furthermore, the correlation between the rankings computed by TF-RL
and OF-RL models in a nonconvex framework is lower than that in a
convex framework. Similar observations also can be found for the case
of TF-RA versus TF-RL. This indicates that nonconvexity has a stronger
discrimination in the impacts of investor’s preferences and the frontier
benchmarking on the MF ratings compared to convexity.

Overall, we find that the TF-RA rating method has the lowest
inefficiencies on average and thus has the best fit with the data. When
comparing the TF-RL and OF-RL rating methods, we find on average
that OF-RL improves the fit in MV compared to TF-RL, but this is
reversed in higher moments (i.e., MVS and MVSK). Thus, the traditional
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Table 4
Performance results for 21 backtesting strategies: Descriptive statistics of the values of
terminal wealth.

MEF(10) MEF(20) MF(30)
Average Rank Average Rank Average Rank
Sharpe 103.6187 19 106.3515 18 108.0535 17
Sortino 102.3691 20 105.5446 20 107.3213 19
Omega 102.0042 21 105.1201 21 106.7430 21
TF-RA: MVc 113.3696 9 116.7350 8 119.6208 8
TF-RA: MVSc 106.3280 18 107.5696 16 110.9056 16
TF-RA: MVSKc 106.3564 17 105.8614 19 106.7540 20
TF-RA: MVnc 115.2394 7 113.3482 12 115.2600 10
TF-RA: MVSnc 113.2660 10 114.0830 9 113.6405 13
TF-RA: MVSKne  112.7304 11 113.6401 11 114.2276 11
TF-RL: MVc 114.7282 8 123.2749 7 127.2493 7
TF-RL: MVSc 108.0001 16 108.6046 15 113.9245 12
TF-RL: MVSKc 108.3181 15 107.2575 17 107.5854 18
TF-RL: MVnc 112.6617 12 113.9459 10 118.5963 9
TF-RL: MVSnc 110.5223 14 110.9234 14 111.9707 14
TF-RL: MVSKne  110.5960 13 111.6203 13 111.2350 15
OF-RL: MVc 131.0051 3 138.0682 1 140.0498 1
OF-RL: MVSc 124.6991 5 136.4635 2 138.6793 2
OF-RL: MVSKc 124.6991 5 136.3746 3 138.6793 2
OF-RL: MVnc 127.1522 4 136.1215 5 138.2332 4
OF-RL: MVSnc 131.3708 2 135.2009 6 137.4538 6
OF-RL: MVSKnc  133.8089 1 136.1764 4 137.9792 5

TF-RA rating seems to offer by far the best fit with the data. It is an open
question to which extent these excellent results of the TF-RA rating
method carry over to the backtesting results.

4.3. Backtesting results

As stated in Section 3, we have on purpose designed a simple
buy-and-hold backtesting strategy to empirically compare the out-of-
sample performance of 21 rating methods listed in Table 1, i.e., 18
frontier-based rating methods discussed above, as well as 3 traditional
financial performance gauges. To assess the magnitude of the potential
benefits that can actually be realized by the investors, it is necessary
to analyse the out-of-sample performance of the strategies from the
rating methods. In our backtesting exercises, the performance of all
these buy-and-hold backtesting strategies is gauged by evaluating and
ranking two types of indicators: (i) the realized terminal value starting
with a capital of unity, and (ii) the shortage function with identical
risk preferences as the ones applied in the MF rating. To some extent,
the former indicates the level of the gain or loss realized by each
backtesting strategy, and the latter reveals the impacts of the model
specifications (i.e., higher-order moments and convexity) on various
frontier-based ratings.

4.3.1. Terminal wealth

We first calculate the average value of the terminal wealth for
each buy-and-hold strategy across 36 time windows of backtesting as
displayed in Table 4. It is to be noted that the rankings listed in this
table are based on the average values of terminal wealth over all
strategies for each of the three alternative selection scenarios (i.e., a
selection of the 10, 20 or 30 best rated MFs).

Analysing Table 4 yields the following key conclusions. First, focus-
ing on the comparison between the two families of ratings (frontier-
based vs. financial ratings), the buy-and-hold strategies based on the
frontier-based ratings outperform the strategies based on the financial
ratings in the majority of cases. This reveals that the frontier-based
ratings under the RA and RL preferences systematically guarantee a bet-
ter gain than the traditional financial ratings. In particular, the OF-RL
strategies largely perform better than the financial ratio-based strate-
gies in all six rating frameworks (i.e., the MV/MVS/MVSK frameworks
with convexity and nonconvexity). Taking the selection of 10 best
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ranked MFs, for example, the percentage gap in the average terminal
wealth between the strategy driven by the OF-RL frontier-based rating
and that based on the Sharpe-driven rating is 27.39% (i.e., (131.0051
- 103.6187)/100) and 23.53% (i.e., (127.1522 - 103.6187)/100) in
the MV models with convexity and nonconvexity, respectively. With
respect to the TF-RL frontier-based ratings, the strategies driven by
the TF-RL frontier-based ratings present superior results compared to
those driven by all three financial ratings, except for the case of MVSK
with convexity. For instance, in the case of MV with convexity and
nonconvexity, the terminal wealth of the TF-RL strategy is on average
11.11% (i.e., (114.7282 - 103.6187)/100) and 9.04% (i.e., (112.6617
- 103.6187)/100) higher than that of Sharpe-driven strategy when the
10 best MFs are selected, for instance. A similar pattern emerges for the
comparisons between the TF-RA and financial ratings. This conclusion
is confirmed when buying the 20 and 30 best MFs.

Second, when one moves to the comparisons of different frontier-
based ratings (i.e., TF-RA vs. TF-RL, TF-RA vs. OF-RL, and TF-RL vs.
OF-RL) in these rating frameworks, it rather clearly appears that the
strategies constructed by the OF-RL frontier-based rating exhibit a
significant dominance over those constructed by both TF-RA and TF-
RL frontier-based ratings in all rating frameworks under consideration.
In each rating framework, the out-of-sample terminal wealth of the
OF-RL strategy is on average significantly higher than those of the
strategies according to both TF-RA and TF-RL frontier-based ratings.
This indisputable result can be seen as a strong indication that, at the
aggregate level, the proposed OF-RL frontier-based rating allows for a
greater potential gain to actually be realized for the investors in MF
selection compared to both TF-RA and TF-RL frontier-based ratings. As
for the comparison of TF-RA and TF-RL frontier-based ratings, only a
slight difference can be observed between both of these in terms of
average terminal wealth. All of this is valid when selecting the 10, 20
and 30 best MFs.

Third, we turn to the comparisons of the terminal wealth ob-
tained under different rating frameworks for each frontier-based rating.
Regarding the cases of TF-RA and TF-RL frontier-based ratings, the
terminal wealth of the strategies constructed in the MV framework
performs better than those constructed in the MVS/MVSK frameworks
regardless of the convexity or nonconvexity. Furthermore, the non-
convex TF-RA and TF-RL frontier-based ratings yield higher terminal
wealths than their convex counterparts on average in the MVS/MVSK
frameworks, while a contrary result emerges in the comparison of
convex and nonconvex models in the MV framework. For the case of
OF-RL frontier-based ratings, there is not a clear difference among these
average terminal wealths obtained based on these OF-RL strategies
across the six rating frameworks. Again, these results are confirmed
when buying the 10, 20 and 30 best MFs for our data.

To compare the 21 buy-and-hold backtesting strategies intuitively,
Fig. 2 provides box-plots to describe the entire distributions of the ter-
minal wealth values per strategy across 36 time windows of backtesting
exercises. In each figure, the sub-figures (a) to (c) correspond to the
performance results of the buying scenarios with 10, 20 and 30 best
MFs selected. The box of these box-plots indicates the interquartile
range whereas the small vertical line reports the location of the median.
Straightforwardly, the location of the box closer to the right indicates
that the entire distribution of terminal wealth values for one strategy
is somewhat at a higher level.

It is clear from Fig. 2 that the buy-and-hold backtesting strategies
depending on the OF-RL frontier-based ratings establish an overwhelm-
ing dominance over the strategies depending on the financial ratings as
well as the other two frontier-based ratings (i.e., the TF-RA and TF-RL
frontier-based ratings) in all rating frameworks. From the above back-
testing results, one can conclude that the proposed nonparametric OF
models corresponding to RL preferences provide a useful measurement
tool for the actual MF rating and selection, allowing investors to obtain
higher potential earnings.
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Fig. 2. Distributions of terminal wealth for the 21 buy-and-hold backtesting strategies.

To verify the robustness of these findings, we test the performance
of the same 21 buy-and-hold backtesting strategies when the estimation
window length is set to 3 rather than 5 years in each backtesting exer-
cise. Table A.1 and Figure A.1 in Appendix A present the performance
results of the 21 backtesting strategies with the use of this 3-year esti-
mation window. This sensitivity analysis yields in general backtesting
results that are consistent with those under a 5-year estimation window
length presented above. This implies that the effect of a smaller sample
and its eventual resulting bias in estimation does not seem to impact
our backtesting results. A more detailed discussion on this sensitivity
analysis is provided in Appendix A.

In addition, we also report the performance of the same 21 strategies
held for 1 year only to check the robustness of backtesting results with
respect to the holding period. The performance of these backtesting
strategies can be regarded as their short-term holding performance,
whereas the above strategies held to the end of the whole sample
period are concerned with their long-term holding performance. The
performance results of the 21 strategies held for 1 year are presented
in Table B.1 and Figure B.1 of Appendix B. Overall, one finds that
the backtesting strategies driven by the OF-RL frontier-based ratings
still show remarkably superior performance compared to the other
strategies, and the other main findings also remain consistent with
those in the buy-and-hold (held-to-end) long-term holding scenario.

4.3.2. Shortage function assessments

Having evaluated the performance of all the 21 buy-and-hold back-
testing strategies based on their realized terminal wealth, in this subsec-
tion we focus specifically on the inter-group comparisons with identical
risk preferences based on the shortage function by a variety of model
specifications. Furthermore, we do some testing on the impacts of
high-order moments and convexity on different frontier-based ratings.

Following to the detailed backtesting setup in Section 3, we adapt
the shortage function to evaluate the MVSK performance of the hold-
ing period return series for each group of buy-and-hold strategies
separately over 36 backtesting time windows. (i) The buy-and-hold
strategies in Group 1 (i.e., three financial ratio-based and six TF-
RA frontier-based strategies) are evaluated by the shortage functions
computed by TF-RA models involving a total of 324 MVSK observations
(9 x 36 observations). (ii) The strategies in Group 2 (six TF-RL frontier-
based strategies) are evaluated by the shortage functions computed by
TF-RL models involving a total of 216 MVSK observations (6 x 36
observations). (iii) Finally, the strategies in Group 3 (six OF-RL frontier-
based strategies) are assessed by the shortage functions computed by
OF-RL models also involving a total of 216 MVSK observations (6 x 36
observations). Note that the shortage functions used in these three

341

inter-group comparisons are obtained in the MVSK rating frameworks
(with convexity or nonconvexity).

Tables 5 to 7 present an overall analysis with respect to the resulting
shortage functions for the strategies in each of the Groups 1 to 3 ((i)-
(iii)) across 36 backtesting time windows, respectively. Each of the
tables is structured as follows. The first series of four columns list
the results with regard to the 10 MFs selected for the backtesting
exercise, and the second and third series of four columns present the
results for selecting the 20 and the 30 MFs, respectively. Within each
selecting (buying) scenario, the first two columns report the average
inefficiency scores and the number of efficient units for each strategy
when evaluated using the corresponding shortage function in the MVSK
framework with convexity (MVSKc), while the last two columns report
these results in the MVSK framework with nonconvexity (MVSKnc).

Looking at the results of Table 5 corresponding to the comparisons
among the buy-and-hold backtesting strategies in Group 1, one can
draw the following observations in the selection of 10, 20 and 30
MFs for our data. First, most of the TF-RA frontier-based strategies
have lower average inefficiency scores and a larger number of efficient
units than the financial ratio-based strategies. As the number of MFs
selected increases, the TF-RA frontier-based ratings have a clearer
superiority over financial ratio-based ratings. This somewhat confirms
earlier comparative results between frontier-based rating models and
traditional financial ratios in Brandouy et al. (2015) and Kerstens et al.
(2022). Second, combining the average inefficiency scores and efficient
units in Table 5, the TF-RA frontier-based strategies in the MVS and
MVSK rating frameworks perform better than those in the basic MV
rating framework, and the strategies under the convex settings are
superior to those under the nonconvex settings for our MF samples.

From the results in Table 6 corresponding to the comparisons among
the strategies in Group 2, it is found that the consideration of higher-
order moments makes a significant contribution to the MVSK perfor-
mance of the holding period return series for TF-RL frontier-based
strategies. This is evidenced in the observation that the TF-RL frontier-
based strategies in the MVS and MVSK settings generally yield lower
average inefficiency scores and more efficient units compared to the
TF-RL frontier-based strategies in the MV setting. When comparing con-
vex and nonconvex TF-RL frontier-based strategies, the buy-and-hold
strategies determined by the nonconvex TF-RL frontier-based ratings
outperform those determined by those convex TF-RL frontier-based
ratings in the majority of cases, except the strategies constructed by
the MVSK rating framework. All of these conclusions are found when
selecting the 10, 20 and 30 best MFs.

Table 7 reports the descriptive statistics of the shortage functions
corresponding to the comparisons among the six OF-RL frontier-based
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Table 5
Descriptive statistics of the values of shortage function computed by TF-RA models in MVSK frameworks.
Methods MF(10) MF(20) MF(30)
TF-RA: MVSKc TF-RA: MVSKnc TF-RA: MVSKc TF-RA: MVSKnc TF-RA: MVSKc TF-RA: MVSKnc
Average  #Ef. Obs. Average  #Ef. Obs. Average  #Ef. Obs. Average  #Ef. Obs. Average  #Ef. Obs. Average  #Ef. Obs.
Sharpe 0.0481 1 0.0333 5 0.0455 3 0.0328 8 0.0556 3 0.0417 9
Sortino 0.0368 0 0.0292 3 0.0444 2 0.0350 8 0.0537 0 0.0443 4
Omega 0.0369 1 0.0298 2 0.0421 2 0.0335 7 0.0492 1 0.0387 4
TF-RA: MVc 0.0507 3 0.0376 12 0.0535 7 0.0451 12 0.0486 7 0.0380 13
TF-RA: MVSc 0.0436 4 0.0287 10 0.0436 4 0.0344 10 0.0482 4 0.0362 11
TF-RA: MVSKc 0.0436 1 0.0298 10 0.0271 5 0.0188 12 0.0270 5 0.0162 13
TF-RA: MVnc 0.0508 4 0.0365 15 0.0473 2 0.0350 14 0.0458 4 0.0354 13
TF-RA: MVSnc 0.0513 5 0.0375 13 0.0467 7 0.0322 12 0.0483 5 0.0385 12
TF-RA: MVSKnc  0.0481 5 0.0322 16 0.0497 3 0.0324 13 0.0455 4 0.0333 12
Table 6
Descriptive statistics of the values of shortage function computed by TF-RL models in MVSK frameworks.
Methods MEF(10) MF(20) MF(30)
TF-RL: MVSKc TF-RL: MVSKnc TF-RL: MVSKce TF-RL: MVSKnc TF-RL: MVSKc TF-RL: MVSKnc
Average  #Ef. Obs. Average  #Ef. Obs. Average  #Ef. Obs. Average  #Ef. Obs. Average  #Ef. Obs. Average  #Ef. Obs.
TF-RL: MVc 0.0682 1 0.0445 13 0.0914 5 0.0738 12 0.0949 6 0.0796 14
TF-RL: MVSc 0.0415 5 0.0299 14 0.0726 4 0.0503 10 0.0889 4 0.0741 9
TF-RL: MVSKc 0.0437 4 0.0342 11 0.0320 3 0.0251 9 0.0323 5 0.0250 11
TF-RL: MVnc 0.0418 4 0.0328 11 0.0521 3 0.0422 10 0.0597 3 0.0496 12
TF-RL: MVSnc 0.0443 7 0.0363 14 0.0537 7 0.0462 12 0.0479 5 0.0425 10
TF-RL: MVSKnc ~ 0.0568 6 0.0456 10 0.0514 3 0.0397 10 0.0436 3 0.0366 11
Table 7
Descriptive statistics of the values of shortage function computed by OF-RL models in MVSK frameworks.
Methods MF(10) MF(20) MF(30)
OF-RL: MVSKc OF-RL: MVSKnc OF-RL: MVSKc OF-RL: MVSKnc OF-RL: MVSKc OF-RL: MVSKnc
Average  #Ef. Obs. Average  #Ef. Obs. Average  #Ef. Obs. Average  #Ef. Obs. Average  #Ef. Obs. Average  #Ef. Obs.
OF-RL: MVc 0.2304 2 0.2098 3 0.2183 1 0.2165 2 0.2116 1 0.2095 3
OF-RL: MVSc 0.2317 1 0.2120 1 0.2131 0 0.2131 0 0.2111 0 0.2097 0
OF-RL: MVSKc 0.2317 1 0.2120 1 0.2135 0 0.2135 0 0.2111 0 0.2097 0
OF-RL: MVnc 0.2324 0 0.2106 0 0.2175 0 0.2172 0 0.2142 1 0.2137 1
OF-RL: MVSnc 0.2071 0 0.1850 0 0.2087 0 0.2073 0 0.2062 0 0.2047 0
OF-RL: MVSKnc ~ 0.1944 0 0.1710 0 0.2101 1 0.2093 1 0.2059 1 0.2046 1

strategies in Group 3. Combining average inefficiency scores and the
number of efficient units given in Table 7, we notice that in most cases
the buy-and-hold strategies based on the OF-RL frontier-based ratings
in the MVS and MVSK frameworks seem to do better than those in
the MV framework. This finding reveals the necessity for the addition
of higher-order moments in OF-RL frontier-based rating and in the
resulting selection of MFs. Again, for the comparison of the convex
and nonconvex OF-RL frontier-based ratings, the strategies based on a
selection of the best MFs using the nonconvex ratings outperform those
using the convex ratings on average, except for the case of MV ratings.
These results are again confirmed when buying the 10, 20 and 30 best
MFs.

From Tables 5 to 7, it is rather unclear how the buy-and-hold
backtesting strategies driven by the OF-RL frontier-based ratings lead
to the highest terminal wealth. We provide another sensitivity analysis
in Appendix C where the MVSK performance of the holding return
series for all 21 buy-and-hold strategies are compared jointly by using
the shortage functions computed by TF-RA, TF-RL and OF-RL models
combined (or, 756 (= 324 + 216 + 216) is the sum of the samples
above combined). The basic question remains. This issue requires some
further investigations, since no earlier evidence about the success of
OF-RL strategies is known to us.

5. Conclusions
The existing methods on MF ratings make the assumption that

investors are all -without any exception- RA, while the eventual RL pref-
erences (i.e., a preference for both increases in odd moments and even
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moments) of investors are completely ignored. In this contribution, a
first attempt is made to bridge the connection between the portfolio
evaluation and RL preferences. We now summarize the main contribu-
tions in terms of both methodologies and empirical investigations.

Theoretically, this contribution introduces a series of nonparametric
frontier-based methods for measuring MF performance under RA and
RL preferences by combining the shortage function with different types
of nonparametric frontier technologies. To the best of our knowledge,
we are the first to systematically discuss the shortage functions that
can account for the RL preferences in the multidimensional portfolio
appraisal. This makes the shortage function a general tool for gauging
MF performance in line with general investor preferences, allowing for
either RA preferences or RL preferences.

In particular, by extending the shortage function, we first propose
a general performance measure based on the nonparametric TF that
allows for evaluating the MF performance under RA and RL preferences
along a multitude of dimensions. Furthermore, we develop a new
performance measure that can be used with the nonparametric OF as
a benchmark for assessing MF performance under RL preferences. A
two dimensional MV plane has served to clarify the geometric intuition
behind these new performance measures with respect to different types
of benchmarking frontiers for handling the RL preference structure of
investors.

Empirically, we illustrate how the proposed nonparametric frontier-
based methods work in the ratings and selections of actual MFs in
the context of RA and RL preferences. Our empirical investigation is
devoted to making the following two issues clear. First, we identify
and discuss whether the risk attitude of investors and the benchmark-
ing frontiers have an impact on MF ratings. The results regarding
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MFs performance evaluation confirm that there exist clear differences
not only between TF MF ratings under RA and RL preferences, but
also between the RL MF ratings by applying the TF and the OF as
benchmarks. Moreover, analysing the inefficiency values calculated
by different frontier-based models, we find that the improvements in
efficiency of MFs are more substantial based on the OF-RL models than
those based on both TF-RL and TF-RA models on average. Second, we
test the potential benefits of the proposed frontier-based methods in
selecting promising investment opportunities by a buy-and-hold back-
testing analysis. In terms of the realized terminal wealth out of sample
used for evaluating all different ratings, it rather clearly turns out that
the frontier-based ratings under both RA and RL preferences generally
outperform most of the finance-based ratings. Moreover, the proposed
OF-RL frontier-based ratings always establish an overwhelming dom-
inance compared to both TF-RL and TF-RA frontier-based ratings to
select the best MFs. For the shortage function out of sample used
for the inter-group comparisons, we find that the considerations of
higher-order moments and nonconvexity makes a contribution to the
application of the proposed OF-RL frontier-based ratings in actual MF
selection.

To conclude, the proposed nonparametric frontier-based methodolo-
gies provide a new insight to evaluate MF performance accounting for
the general risk preferences of investors. An interesting perspective for
future research is to extend the RL preference to a dynamic evaluation
context by integrating the index theory of production (see, e.g., Bran-
douy, Briec, Kerstens, & Van de Woestyne, 2010). This would enable
analysing the performance evolutions of MFs over time and identifying
the attributions of performance changes. Instead of passive backtesting
strategy in the current work, it could also be intriguing to test the RL
preference of investors in an active backtesting setting. Furthermore, it
is worthwhile exploring the application of the methodologies regard-
ing the RL preference to the performance appraisal of different asset
classes, such as equities, bonds and ETFs.

It would also be intriguing to develop a general rating methodology
that can handle the presence of both RA and RL preferences in MFs
under evaluation. Future research could potentially deal with this issue
by attempting to cross the current framework with the proposal in Jin,
Basso, Funari, Kerstens, and Van de Woestyne (2024) that explores an
application of a nonparametric metatechnology in a context of ethical
and non-ethical funds performance assessment: one could attempt to
develop a metafrontier-based rating procedure for making performance
comparisons of MFs across heterogeneous risk preferences. But, this re-
quires a plausible classification method to separate the risk preferences
of MFs depending on the RA or RL of fund managers or individual
investors. Another promising line of further research is the robust
estimation of financial time series to come up with estimates describing
the moment distribution of MF (or asset) returns that are more robust
than the ordinary central moments adopted here, such as L-moments,
truncated L-moments and the like (see, e.g., Kerstens et al., 2011;
Yanou, 2013).
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