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Abstract
The United Nations 2030 Agenda for Sustainable Development necessitates the expansion of green agriculture, which entails 
the adoption of low-carbon technologies. This study expands the understanding of technological progress by incorporating 
the consideration of undesirable outputs within the by-production model framework. Convex and nonconvex models are 
applied to calculate the distance function, from which the Luenberger productivity indicator is obtained and decomposed 
into economic and environmental efficiencies. Then, this study assesses the contribution of global and local innovation 
forces to technological progress, taking environmental factors into account. Additionally, it examines the beta-convergence 
of productivity and identifies some countries as innovators. Analyzing the technological changes in the agricultural sector 
across 53 Belt and Road nations, the findings indicate advancements in green productivity, efficiency changes, and techno-
logical progress, with technological progress in the environmental dimension contributing the most to efficiency improve-
ment. Moreover, 14 out of 53 sample countries experience both global and local technological progress, with global and 
local innovation forces contributing equally. However, agricultural green development in these countries does not converge. 
Therefore, the findings of this study suggest that the Belt and Road countries should prioritize environmental technological 
innovation and agricultural cooperation to foster sustainable development.

Keywords Global and local technological change · By-production model · Luenberger productivity indicator · Convex and 
nonconvex

1 Introduction

The Belt and Road Initiative (BRI) is an expansive infra-
structure and economic development project initiated by 
the Chinese government in 2013 with the aim of enhancing 
trade and investment connectivity between China and vari-
ous countries in Asia, Europe, and Africa. However, con-
cerns have been raised that certain BRI projects may exert 
adverse effects on the environment. In response, several 
developing countries have established the Green Belt and 
Road Initiative to mitigate these potential environmental 
impacts. This commitment is solidified through the sign-
ing of a Memorandum of Understanding in 2016, which 
also reaffirms these countries’ dedication to upholding 
the United Nations’ 2030 Agenda for Sustainable Devel-
opment. As a result, these countries are endeavoring to 
advance environmentally conscious and sustainable prac-
tices within the framework of BRI projects in alignment 
with the global Sustainable Development Goals (SDGs), 
which encompass reducing carbon emissions, safeguarding 
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ecosystems, and fostering clean energy. Given the pivotal 
role of agriculture within the BRI countries and its sub-
stantial contribution to global greenhouse gas emissions 
[11], there is a pressing need for a targeted examination of 
green agricultural development in these regions.

Agricultural practices employed within the Belt and 
Road countries are frequently confronted with substantial 
environmental impediments. For instance, the prevalent 
practice of puddling and transplanting in rice cultivation 
within South Asia necessitates an extensive consumption 
of irrigation water and energy [34], while simultaneously 
resulting in a decrease in rice yields by 8–10% [35]. Con-
sequently, there is a multifaceted endeavor underway to 
augment agricultural productivity in the Belt and Road 
countries.

Advancements in agricultural technology within the Belt 
and Road countries have markedly improved their environ-
mental credentials. On the one hand, global technological 
breakthroughs, propelled by numerous developing econo-
mies participating in the BRI, have significantly increased 
agricultural productivity. For instance, innovations in pest 
management have led to a 40.9% increase in crop yields 
while simultaneously reducing the application of pesti-
cides by 30.7% [40]. On the other hand, local technological 
advancements driven by local innovation efforts, such as 
the intensive agricultural practices in India, demonstrate the 
rapid progression towards sustainable agricultural practices 
[23].

Therefore, identifying the primary factors contributing 
to efficiency enhancement and technological advancement 
is pivotal for mapping a trajectory of sustainable agriculture 
within the Belt and Road countries. What are the main driv-
ers of changes in agricultural green productivity across the 
Belt and Road countries? Do global and local innovation 
forces drive technological progress in the same way? Are the 
levels of green development in agriculture in these countries 
convergent? Which country is the innovator? The answers to 
these questions offer empirical evidence and policy implica-
tions for promoting sustainable agricultural practices across 
the Belt and Road countries. Specifically, this study analyzes 
the impact of technical and environmental performance on 
changes in agricultural green productivity across the Belt 
and Road countries from 2000 to 2019 employing both con-
vex and nonconvex models. Furthermore, we distinguish 
between global and local technological transformations 
within the by-production model framework, incorporating 
a performance decomposition. We conclude with an exami-
nation of performance convergence and the identification of 
innovative countries. This study fills a gap in the literature 
by being the first to quantify the interplay of global and 
local technological progress in agriculture among the Belt 
and Road countries, while simultaneously accounting for 
undesirable output considerations.

2  Literature Review

2.1  Green Productivity Estimation

Numerous studies have contributed to the advancement of 
productivity measurement by incorporating environmen-
tal factors into both inputs and outputs. The Malmquist 
productivity index, for instance, has been employed to 
represent the co-production of beneficial and detrimental 
outcomes [26]. Nonetheless, its reliance on the weak dis-
posability assumption does not align with the conservation 
principles of matter [17]. Chambers [13] introduces the 
Luenberger productivity indicator (LPI) via the directional 
distance function (DDF), which has been further adapted 
to account for pollutants as undesirable outputs. Despite 
this extension, the LPI remains limited in its ability to 
decompose the economic and environmental contributions 
to green productivity improvements due to its lack of addi-
tive completeness [39].

To address these issues, Murty, Russell, and Levkoff 
[38] develop a by-production (BP) model that ensures pol-
lutants adhere to costly disposability while other outputs 
are subject to free disposability. This model breaks down 
performance into economic and environmental compo-
nents using two distinct sub-technologies. The integration 
of the LPI with the BP model results in a framework that 
possesses three desirable features: (i) it satisfies the mate-
rial balance conditions,(ii) it allows for the decomposi-
tion of economic and environmental changes; and (iii) it 
can relax the assumption of convexity. This methodology 
has been employed to assess economic and environmental 
production performance in various countries or regions, 
including the European Union [8] and China  [43, 48]. 
However, the application of this approach to assess the 
economic and environmental performance across the Belt 
and Road countries is not widespread [50, 52]. This study 
focuses on productivity analysis of the agricultural sec-
tor alone in these Belt and Road economies, providing a 
level of specificity that surpasses the broader focus of prior 
studies. Therefore, this study serves as a valuable comple-
ment to the existing research.

2.2  Convex and Nonconvex Technologies

Productivity growth is often estimated through para-
metric specification methods. However, there is a grow-
ing trend among recent studies to employ nonparamet-
ric approaches. These methods enable dynamic analysis 
without the need for input and output price data, relying 
solely on technical information. Two prevalent nonpara-
metric techniques are data envelopment analysis (DEA), 
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which employs a convex production frontier, and free dis-
posal hull (FDH), which utilizes a nonconvex production 
frontier [15, 20, 22]. A convex production frontier is a 
piecewise linear curve constructed from actual decision-
making units (DMUs), and its outward extension requires 
a global shift in the production frontier. In contrast, a non-
convex production frontier is made up of actual DMUs 
without a stringent convexity constraint, allowing for local 
shifts in the production frontier to accommodate outward 
expansion.

The debate over the convexity of the production frontier 
has been a topic of significant discussion. The traditional 
view generally holds that production technology satisfies 
the convexity axiom. However, real-world production pro-
cesses introduce complexities like widespread setup costs 
and variable lead times, which can challenge the assump-
tion of convexity [19]. Furthermore, the indivisibility of 
production factors, the presence of increasing returns to 
scale, and the well-documented externalities of produc-
tion all contravene the axiom of convexity and necessitate 
careful consideration [7, 41, 42]. In response to these com-
plexities, researchers have developed a nonconvex variable 
return-to-scale model, which has been further refined to 
accommodate cases of constant, nonincreasing, and non-
decreasing returns to scale. These models aim to serve 
as a standard for assessing inefficiencies among DMUs 
[22, 29]. Despite this progress, there remains an ongo-
ing debate regarding the application of nonconvex tech-
nologies, particularly with regard to scale effects that may 
diverge under convexity and nonconvexity [12].

Nevertheless, a growing body of evidence supports the 
superiority of nonconvex models over convex models. For 
instance, Tone and Sahoo [47] argue that nonconvex tech-
niques embedded in FDH models can help reveal the insepara-
bility caused by task-specific processes. Balaguer-Coll, Prior, 
and Tortosa-Ausina [3] explain that the nonconvex production 
frontier contains more efficient observations. Copeland and 
Hall [18] show that per vehicle cost is 4.36% higher under 
a nonconvex model than that under a convex model in the 
car manufacturing case. Kerstens and Van de Woestyne [31] 
reveal that cost estimations under convexity are on average 
between 21 and 38% lower than those under nonconvexity.

All empirical evidence points to the necessity of 
reevaluating the convexity assumption in green produc-
tivity estimates. Given that land is generally indivisible in 
agricultural setting [33], performance evaluations under 
convexity may fall short in accuracy [1, 32]. Thus, this 
study aims to provide empirical analysis for the applica-
tion of nonconvex models in agriculture (e.g., Ang, Ker-
stens and Sadeghi [1] summarize evidence on nonconvexi-
ties in agriculture) as well as evidence in support for the 
further comparison of the convexity and nonconvexity 
assumptions.

2.3  Global and Local Technological Change

The concept of local technological change (LTC) originates 
in the pioneering work of Atkinson and Stiglitz [2]. Although 
these authors do not formally define LTC, they do contrast 
LTC with the idea of global technological change (GTC). 
GTC refers to shifts that affect the entire production function, 
whereas LTC refers to shifts that affect only part or different 
parts of the production function to varying degrees.

Following this foundational work, a series of empirical 
studies have emerged. Bernard, Cantner, and Westermann 
[9] use a nonparametric approach within a convex production 
technology framework to study innovators and technological 
change in the French machinery industry. They conclude that 
LTC has a significant impact on firm performance and that 
innovators play a key role in driving local technological change 
within their field. Timmer and Los [46] investigate labor pro-
ductivity growth in Asian countries and show that technologi-
cal innovation is localized in the agricultural and manufactur-
ing sectors. López-Pueyo and Mancebón [36] report that LTC 
significantly contributes to performance enhancements in the 
information and communication technology industry. How-
ever, despite these various empirical insights, the literature 
has not yet provided a clear method for operationalizing the 
identification of LTC.

Kerstens and Managi [30] make an initial effort to 
establish operational definitions for global technologi-
cal productivity change (GTP) and local technological 
productivity change (LTP) within the frameworks of both 
convex and nonconvex technologies. In their empirical 
investigation of oil field drilling in the Mexican Gulf, 
they find that there are approximately 62.8% more obser-
vations that met the criteria for LTP than for GTP. In 
contrast, Barros, Fujii, and Managi [6] study Chinese 
commercial banks and observe more instances of GTC 
than LTC. Fujii et al. [27] examine 16 sectors within the 
Japanese manufacturing industry and demonstrate that the 
prevalence of GTP and LTP differs across sectors and 
over time. These findings highlight the importance of 
considering the assumptions of convex and nonconvex 
technologies when distinguishing between global and 
local technological changes. However, the inclusion of 
undesirable outputs in the quantification of GTP and LTP 
has not been investigated, which underscores the need for 
further empirical research, particularly in the context of 
agricultural production.

3  Methodology

To begin, we develop a model of environmental technology 
that accommodates both convex and nonconvex specifica-
tions within the bounds of the BP model. This is followed by 
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a rough illustration of the model. We then proceed to decom-
pose the Luenberger Productivity Index (LPI) for more pre-
cise measurements. In the second stage, we delineate the 
difference between global and local technological changes 
as they pertain to green production performance, taking into 
account the presence of undesirable outputs. In the third 
stage, we explore whether green performance improvements 
exhibit beta-convergence, which is the phenomenon where 
less developed regions grow at a faster pace than more devel-
oped ones, enabling them to narrow the gap. Additionally, 
we aim to identify instances of innovation. Subsequently, 
we offer a comprehensive description of the data employed 
in our analysis.

3.1  Modeling Environmental Technology

We apply a by-production technology that can be illustrated 
by a dual frontier [38]. We assign K DMUs that correspond 
to the agricultural sectors in each developing country in our 
case. To account for environmental performance, we sepa-
rate inputs into two groups, namely the “clean” inputs xt

n
 , the 

consumption of which does not produce pollutants, and the 
“dirty” inputsxt

p
 , which generate pollution in production 

activities. The “dirty” inputs generate undesirable outputs 
zt
j
 , whereas both types of inputs produce desirable outputs 

yt
m

 . In brief, similar to Murty et al. (38: pp. 121–122), in 
period t, the desirable output production process is modeled 
by one subset of technology that describes the conventional 
technology, Tt

eco
 , whereas the polluting production process 

is defined by another subset of technology that focuses on 
the green environment, Tt

env
 . Production technology sets 

( Tt
BP

 ) in period t are defined as follows:

(1)

Tt
BP
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.

where f(.) and g(.) are used to model the sub-technologies 
related to economic and environmental inefficiency, respec-
tively. Thus, we conceive the BP model as the intersection of 
the two sub-technologies, both of which satisfy closedness, 
variable returns to scale, and strong disposability under the 
premise of continuous differentiability. We should note that 
no convexity axiom is imposed.

To distinguish these two output groups, we assume free 
disposability ( Aeco ) in Tt

eco
 that employs all inputs to obtain 

desirable outputs—the supplied inputs can yield fewer out-
puts. We also assume the costly disposability (Aenv) in Tt

env
 

associated with “dirty” inputs and undesirable outputs, sig-
nifying the difficulty in abandoning the undesirable outputs 
as easily as disposing of desirable outputs. The specific for-
mal requirements for Aeco and Aenv are as follows:

In our empirical application, we presume that the good 
agricultural outputs are generated by using “clean” inputs, 
such as labor and capital. Moreover, to assess the environ-
mental performance, we presume that the undesirable output 
at the national level of carbon equivalent emissions is gener-
ated by the “dirty” inputs, including land, energy, fertilizers, 
and pesticides.

We employ a non-radial directional distance func-
tion (DDF) for the nonparametric estimation to assess the 
potential for progress compared with the relevant produc-
tion frontier in period t. As in previous work [16, 24], one 

(2)
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can expand the desirable outputs and reduce the undesirable 
outputs simultaneously, i.e.:

where � and � are inefficiency scores: scalar � is a symbol 
of the potential expansion of desirable outputs, and scalar 
� refers to the possible reduction in pollutants along the 
direction indicated by the direction vector ( gt

y
,gt

z
 ). Thus, an 

evaluated country with scalar � = 0 or � = 0 at the optimum 
can be regarded as an efficient benchmark in a certain field.

(3)Dt(xt, yt, zt;gt
x
, gt

y
, gt

z
) = max

{
�, � ∈ R+ ∶ (xt, yt + �gt

y
, z − �gt

z
) ∈ Tt

BP

}
,

3.2  Productivity Measurement

The green LPI focuses on the distances between the frontier 
and each observation during the timeline from t to t + 1 such 
that changes in the environmental productivity gains can be 
measured [14]. The output-oriented green LPI formulation 
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comparing the base period t with the next period t + 1 and 
that keeps the input amounts the same is given by:

where Dt(.) denotes the DDF in the time period t and Dt+1(.) 
denotes the DDF in the time period t + 1. The terms in paren-
theses 

(
xt, yt, zt;0, gt

y
, gt

z

)
 and 

(
xt+1, yt+1, zt+1;0, gt+1

y
, gt+1

z

)
 in 

(4) represent the inputs and outputs of the evaluated unit, 
while Dt(.) and Dt+1(.) denote the time period of the produc-
tion technology (or frontier) with regard to which the evalu-
ated unit is projected. By using the evaluated units and pro-
duction frontiers from two different periods, a total of four 
different DDFs can be constructed to define the LPI: i.e., two 
own t ime per iod DDFs Dt

(
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y
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)
 . The details of the nonpara-

metric estimation strategies for the convex and nonconvex 
models appropriate for the BP model are presented in the 
Appendix.

This output-oriented green LPI can be decomposed to 
evaluate the disparity between efficiency change ( ECt,t+1 ) 
and technological change ( TPt,t+1 ) contributions. First, effi-
ciency change (or the catch-up effect) quantifies the change 
in distance between observations and their benchmark for 
a given period and evaluates the potential for improvement 
through more efficient resource utilization. Second, techno-
logical change measures a frontier shift over the period t to 
t + 1, which indicates higher productivity owing to techno-
logical innovations in the case of a positive frontier shift. 
Combining the four output-directional distance functions 
from (4), both of these additive components of the environ-
mental LPI can be formulated as follows:

where EC represents efficiency change and TP represents 
technological change. Efficiency change denotes the altera-
tion in the relative efficiency of a production unit over a spe-
cific period of time. Specifically, EC measures the improve-
ment or deterioration in the utilization of resources in the 
production process of this unit. If EC is positive, then it 
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indicates that the production unit has improved in relative 
efficiency and is utilizing resources more efficiently. If EC 

is negative, then the efficiency of the production unit is rela-
tively reduced, and resource utilization becomes less effi-
cient than before. Technological change represents a change 
in the production method or technical level of the produc-
tion unit during a specific period of time. If TP is positive, 
then it indicates that the production unit has adopted a more 
advanced technology and that it has increased the output 
level. If TP is negative, then it suggests that the technology 
or production method of the production unit has become less 
advanced than before, and the output level has decreased. 
By combining EC and TP, the LPI can be used to measure 
the overall productivity change of a production unit, taking 
into account relative efficiency and technological progress.

The LPI inefficiency scores can be further dissected into 
economic and environmental sub-scores ( �m and �j ) using 
a mix of DDFs and the BP technology [43]. Therefore, the 
economic and environmental decomposition of the LPI can 
be summarized as:

3.3  Global and Local Technological Productivity 
Change

To provide an identification strategy for distinguishing 
between GTP and LTP in a green productivity context, we 
follow Kerstens and Managi [30] who elaborate on the prop-
erties of technological progress using productivity estimates 

in connection with convex and nonconvex assumptions. 
Because the BP model distinguishes the contributions of 
economic and environmental progress separately, the defi-
nition of GTP or LTP is based on the analysis of efficiency 
scores relative to the corresponding sub-frontiers, which 
allows distinguishing between the origins of technological 

(6)
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progress. The BP model is suitable for convex and noncon-
vex technologies [37]. If we define global and local tech-
nological change in terms of economic and environmental 
efficiency as shifts towards the economic and environmental 
frontiers, then the definitions of Kerstens and Managi [30] 
can be extended to the BP setting where undesirable outputs 
are included.

To begin with, we define global technological progress 
as efficient observations between time periods t and t + 1 
relative to the convex production frontier. In contrast, we 
define local technological progress as efficient observations 
between time periods t and t + 1 relative to a nonconvex 
production frontier, where these observations are inefficient 
relative to the convex production frontier but indeed exhibit 
positive technological changes relative to the nonconvex 
production frontier.

GTP is defined as arising from an outward shift of the 
convex frontier that occurs to efficient observations associ-
ated with the same frontier from year t to year t + 1. This puts 
forward three constraints on the observations: (i) technologi-
cal progress during the period, (ii) efficiency compared with 
the initial convex frontier, and (iii) efficiency compared with 
the final convex frontier. However, these constraints are so 
strict that only a few observations fit. Therefore, it is desira-
ble to apply a more relaxed definition. Given that progress is 
a relative concept, it is not necessary to require observations 
to remain efficient on a convex frontier with respect to the 
two time periods. Thus, if we relax one of the constraints on 
efficient observations and adhere to the constraint of positive 
technological change related to either the convex or noncon-
vex frontier, then more suitable observations can be obtained 
in the context of these relaxed definitions. Therefore, the 
three definitions of GTP are as follows:

where the subscript c indicates the convex frontier. TP1t,t+1
C

 
refers to the original definition of GTP with strict con-
straints. We now envisage two different definitions in which 
the requirements for efficiency are gradually relaxed dur-
ing these two periods. First, observations are required to be 
efficient in the second period t + 1, but not necessarily in 
the first period t, while obtaining a positive technological 
change relative to the nonconvex frontier between the two 
time periods, which leads to a slightly looser definition of 
global technological progress, TP2t,t+1

C
 . Second, observations 

are required to be efficient in the first period t, but not neces-
sarily in the second period t + 1, again requiring a positive 
technical progress between the two time periods relative to 
the nonconvex production frontier. This results in another 

(7)
TP1

t,t+1

C
= {(xt,t+1, yt,t+1) ∶ Dt

C
(xt, yt) = 0 ∧ Dt+1

C
(xt+1, yt+1) = 0 ∧ TP
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C
> 0}
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C
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(xt+1, yt+1) = 0 ∧ TP

t,t+1
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TP3
t,t+1

C
= {(xt,t+1, yt,t+1) ∶ Dt

C
(xt, yt) > 0 ∧ Dt+1

C
(xt+1, yt+1) > 0 ∧ TP

t,t+1

C
> 0}

slightly relaxed way to define global technological progress, 
TP3

t,t+1

C
.

LTP is introduced as the product of an outward shift of 
the nonconvex frontier, where observations are regarded as 
efficient relative to the nonconvex frontiers but inefficient for 
the convex frontiers throughout the year. Observations have 
three constraints as well: (i) technological progress during 
the period relative to the nonconvex frontier, (ii) having to 
remain on the nonconvex frontier over the years, and (iii) 
having to remain in the interior relative to the convex fron-
tiers over the years. We can define weaker versions of the 
same definitions, whereby an observation could only be effi-
cient in one of the two time periods considered. Therefore, 
the following three definitions of LTP are obtained:

where TP1t,t+1
NC

 refers to the original definition of LTP with 
strict constraints. TP2t,t+1

NC
 and TP3t,t+1

NC
 are two relaxed defini-

tions that gradually relax the requirements for efficiency in 
the same way that GTP does.

Figure 1A and B illustrate the difference between GTP 
and LTP in the “clean” input and desirable output space 
and in the “clean” input and undesirable output space, 
respectively. The broken line represents the convex tech-
nology, and the full line indicates the nonconvex technol-
ogy. The production possibility sets are given by the area 
inside these frontier curves.

Focusing on year t, the convex frontier has four 
DMUs—A, B, D, and F—for both technology specifica-
tions, reflected in the 0% inefficiency score. C and E fail to 
be efficient under the convex assumption, but are efficient 
under the nonconvex one. If their economic inefficiency 
scores are 1%, then they can increase their desirable out-
puts by 1% without increasing inputs. If their environmen-
tal scores are 1%, then they can decrease their undesirable 
outputs by 1% without decreasing inputs.

One year later, the position of DMU A stays the same, 
which means that no GTP and LTP have occurred. Pro-
ductivity is relatively stagnant during the period. By 
contrast, B, D, and F reach a higher convex frontier for 
both assumptions in the year t + 1: an indicator of global 

(8)
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technological progress. By contrast, C and E are inside the 
convex frontier in year t + 1, and such a shift is regarded as 
LTP, regardless of how perfect they are on the nonconvex 
frontier.

Here, we offer two other manifestations of local tech-
nological progress. In Fig. 1A, if a shift towards the upper 
left direction occurs to E in year t + 1, but the new position 

of E is still far from both convex and nonconvex frontiers, 
then E can be presumed to experience economic LTP. In 
Fig. 1B, if a shift towards the bottom right direction occurs 
to a DMU that was within the frontier in year t, and the 
later position is on the frontiers of year t + 1, then this 
change can be described as LTP.

Fig. 1  A Production frontier 
of T

eco
 . B Production frontier 

of T
env
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3.4  Growth Convergence and Innovator 
Identification

To gain deeper insight into green efficiency, we refer to 
Barro and Sala-i-Martin [5] in presenting estimates for the 
beta-convergence model. This model measures whether 
countries with low initial productivity experience faster 
growth, implying a convergence trend between efficient and 
inefficient countries. We establish a regression model using 
a simple unconditional convergence velocity equation [45]:

where � can be interpreted as convergence flexibility; 
Δlnyit(i) is a symbol of the indicator that covers a range of 
performance changes, such as average green productivity 
change, efficiency change (EC), and technological progress 
(TP) between these two time periods; and lnyi0 represents the 
initial level of the same indicators. Error terms are shown 
in ei . All the estimated results of the indicators relative to 
convex and nonconvex technologies are regressed in the 
formulation. In addition, average green productivity growth 
can be easily decomposed into economic and environmental 
changes in the context of the BP approach.

What we intend to do is to analyze whether the initial 
productivity level moves in the opposite direction to the 
productivity change level: if the � estimate is significantly 
negative, this indicates growth convergence in the sample 
of countries. Conversely, if the � estimates are significantly 
positive, then there is no convergence in GTFP changes for 
at least the sample countries over the studied period.

The LPI framework also contributes to identifying the 
most innovative countries. Innovative countries are defined 
as efficient observations that push the production frontier 
upward to a location with greater efficiency scores owing 
to technological progress during that period. We use three 
criteria to identify innovative countries [8, 25]:

where TI refers to technological innovators. Those countries 
who experience positive technological change and whose 
observations move from an inefficient to an efficient position 
are called technological innovators. For example, TPt,t+1 > 0 
suggests that technological progress appears between the 
periods t and t + 1, Dt+1(xt+1

k
, yt+1

k
, zt+1

k
;0, gt+1

y
, gt+1

z
) = 0 

implies that the evaluated DMU is efficient at period 
t + 1, and Dt(xt+1

k
, yt+1

k
, zt+1

k
;0, gt+1

y
, gt+1

z
) < 0 guarantees 

that the frontier at period t + 1 is above that at period t. 
Thus, the technological innovators inherit these specific 
characteristics.

(9)Δlnyit(i) = � + �lnyi0 + ei

(10)
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⎭

3.5  Data

Our data sample covers 53 developing countries engaged in 
the BRI, including Armenia, Azerbaijan, Bangladesh, Bela-
rus, Bhutan, Bosnia and Herzegovina, Brunei Darussalam, 
Bulgaria, Cambodia, China, Croatia, Cyprus, Czechia, 
Egypt, Estonia, Georgia, Greece, Hungary, India, Indonesia, 
Iran, Iraq, Israel, Jordan, Kazakhstan, Kuwait, Kyrgyzstan, 
Laos, Latvia, Lebanon, Lithuania, Malaysia, Maldives, Mon-
golia, Nepal, Oman, Pakistan, Palestine, the Philippines, 
Poland, Romania, Russia, Saudi Arabia, Slovakia, Slove-
nia, Sri Lanka, Tajikistan, Thailand, Turkey, Turkmenistan, 
Ukraine, Vietnam, and Yemen. The sample spans the years 
from 2000 to 2019.

Following Balezentis et al. [4] and Shen et al. [44], we 
characterize agricultural production activities by categorizing 
their outputs into two distinct classes: desirable output, rep-
resented by the gross output value at constant prices adjusted 
for purchasing power parity and undesirable output, which is 
embodied by carbon dioxide emissions. Similarly, the inputs 
into the agricultural production process are divided into 
two categories. The “clean” inputs encompass agricultural 
employment and the gross fixed formation of capital, while 
the “pollution-generating” inputs include agricultural land,1 
energy consumption, and the use of fertilizers and pesticides. 
It is important to note that undesirable outputs can only be 
generated through the use of pollution-generating inputs.

The data for this study are sourced from the databases 
of the Food and Agriculture Organization (FAO) database. 
The monetary variables of capital stock and gross output 
values used are in constant prices of 2015 and adjusted for 
purchasing power parity. Data on fertilizer use were obtained 
by aggregating the volume of the three main elements of 
nitrogen, phosphorus, and potassium, for a unified calcula-
tion. Table 1 provides a brief description of the input and 
output variables and offers descriptive statistics.

4  Results and Discussion

4.1  Productivity Growth and Its Decomposition

Figure 2 illustrates the cumulative LPI scores in terms 
of green productivity and technical and environmental 

1 Agricultural land is a contributor of total emissions. Note that dur-
ing the process of agricultural cultivation, both land tillage and post-
harvest activities can result in carbon emissions or greenhouse gas 
emissions. For instance, during the tillage process, methane produced 
from underground fermentation enters the atmosphere. After harvest, 
many farmers opt to burn crop residues or bury them underground, 
leading to fermentation and the generation of methane and other 
gases (see, e.g., West & Marland [49] or Yun et al. [51]).
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Table 1  Data description Variable Unit Mean Std. dev Min Max

Agricultural employment 1000 persons 11,904.7 42,237.7 1.1 307,213.1
Gross fixed capital formation million$ 4150.1 15,282.7 1.9 142,570.9
Agricultural land 1000 ha 35,849.8 86,266.4 5.6 529,038.6
Energy consumption Terajoule 88,054.1 242,716.8 91.2 1,940,192.5
Fertilizers use Tonnes 1,994,983.7 7,228,750.6 18.0 55,612,825.0
Pesticides use Tonnes 39,264.7 222,449.3 1.0 1,815,690.0
Gross output value Thousand$ 38,586.9 147,967.1 3.3 1,257,561.8
CO2 eq emissions Kilotonnes 75,747.9 194,553.2 46.8 1,439,537.3

Fig. 2  Cumulative LPI change. Note. NC stands for the nonconvex 
model, whereas C stands for the convex model. LPI refers to green 
Luenberger productivity indicator, EC refers to efficiency change, and 

TP refers to technological progress. Eco and Env stand for the eco-
nomic and environmental performance of LPI scores, respectively
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performance for a selected group of countries over the past 
two decades. We divide the changes into three components 
for both convex and nonconvex technologies: aggregated 
indicator scores, efficiency change, and technological 
change. The results show more variations in the aggregate 
green LPI, efficiency change, and technological change 
for nonconvex technologies compared to convex technolo-
gies. Moreover, the aggregate green LPI, efficiency change, 
and technological change by nonconvex techniques exhibit 
higher values than those linked to convex techniques.

In terms of environmental performance, the trends for 
LPI, efficiency change, and technological change mirror 
those of aggregate green productivity—there is more fluctu-
ation and generally higher values for LPI, EC, and TP when 
nonconvex technologies are considered. When examining 
economic productivity, the LPI and TC calculated using 
convexity are higher than those using nonconvexity. Con-
versely, the efficiency change calculated with convexity is 
lower than that with nonconvexity. These findings suggest 
that the cumulative LPI under nonconvex technologies is 
generally higher, and technological progress is a significant 
driver of green productivity improvements.

The scores of the green LPI and its TP component slowly 
increased during the initial period of 2000–2011. From 2012 
to 2019, they experience a striking increase of 160%. The 
turning point is 2011, which coincides with the proposal of 
the Belt and Road initiative. The growth pattern of TP is 
similar to that of green LPI. In addition, changes in overall 
productivity over the years are strongly due to pedoclimatic 
conditions.

The annual changes in the LPI scores, including over-
all change, efficiency change, and technological progress, 
among the 53 developing countries, are presented in Table 2. 
Notable differences emerge in the estimation outcomes for 
convex and nonconvex technologies. Specifically, agri-
cultural green productivity and its components EC and 
TP exhibit higher environmental performance under non-
convexity than under convexity, but in terms of technical 
performance, the values of all components are lower under 
nonconvexity. Furthermore, the majority of average change 

rates for all elements are positive. However, there are excep-
tions: the values for environmental efficiency change under 
convexity, and economic LPI and technological progress 
under nonconvexity are negative. The discrepancies in esti-
mates between the convex and nonconvex models may be 
attributed to differences in the characteristics of returns to 
scale inherent in each of the models. These variations could 
explain the conflicting findings, highlighting the importance 
of considering the distinct dynamics of returns to scale when 
analyzing productivity change [12].

4.2  Global and Local Technological Productivity 
Change

Due to the vast array of production units involved, the 
advancement of technological change typically manifests 
itself as a localized and spreading phenomenon. Techno-
logical progress is primarily manifested through shifts in 
the production frontier, which is constrained within a certain 
input space in the output-oriented by-production model. If 
the convexity assumption is imposed on technology, then 
the true technological progress can get masked. In other 
words, local technological progress is mistaken for global 
technological progress, and even major local technologi-
cal breakthroughs may be overlooked. The above empirical 
results suggest that a higher performance score under the 
assumption of a nonconvex technology indicates local tech-
nological change over time, rather than global technologi-
cal change. Conversely, a higher performance score under 
the assumption of a convex technology often corresponds to 
global technological progress, rather than local technologi-
cal progress.

Table 3 shows the annual frequency and distribution of 
GTP and LTP in developing countries over the past two 
decades as defined in Eqs. (7) and (8). Fourteen countries, 
or approximately 26% of the sample countries, experi-
ence some form of GTP or LTP. In particular, the inci-
dence of GTP does not exceed LTP based on any of the 
three definitions, indicating that the technological progress 
in developing countries is predominantly driven by a local 

Table 2  Descriptive statistics of green productivity change

Note LPI stands for green productivity, EC for efficiency improvement, and TP for technological development, Eco and Env stand for the eco-
nomic and environmental performance of LPI scores, respectively

Descriptive statistics Convex Nonconvex

LPI EC TP LPI EC TP

Eco Env Eco Env Eco Env Eco Env Eco Env Eco Env

Mean 0.005 0.001 0.001  − 0.001 0.004 0.003  − 0.003 0.846 0.001 1.545  − 0.004 1.235
Standard deviation 0.265 0.080 0.258 0.054 0.158 0.065 0.128 3.138 0.097 0.098 0.135 3.138
Minimum  − 2.484  − 0.493  − 2.938  − 0.285  − 1.892  − 0.493  − 0.789  − 8.842  − 1.545  − 0.729  − 0.842  − 8.842
Maximum 4.244 0.728 3.972 0.740 1.467 0.491 0.846 9.795 1.545 0.738 1.235 9.795
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technological progress. Moreover, the second identification 
strategy appears to capture a larger number of GTP and LTP 
signals. This is likely due to the fact that method TP2 relaxes 
the identification conditions.

As shown in Table 3, Armenia emerges as the leader in 
terms of the frequency of technological change, with its 
technological progress being entirely local. Throughout the 
early twenty-first century, Armenia’s agricultural sector has 
faced challenges due to subpar infrastructure and a lack of 
necessary facilities. To get out of the dilemma, local govern-
ments adopted a combination of incentive and support strate-
gies. Since 2011, the Armenian government has exempted 
agricultural technology products from value-added tax while 
importing agricultural machinery from neighboring coun-
tries, such as Belarus, for leasing (see Armenia Economic 
and Commercial Affairs Office2). These policies have served 
as a catalyst for individual farmers to innovate in agricultural 
production techniques. Consequently, Armenia has been 
able to become an explosive ground for local technological 
changes in agriculture among the Belt and Road countries.

India and Azerbaijan rank second and third in terms of 
the frequency of GTP and LTP. Over the past 20 years, India 
has made more global technological progress and fewer local 
technological changes. By contrast, Azerbaijan has experi-
enced more frequent local technological shifts in agricultural 

production, which are evidenced by improvements in its 
environmental productivity. This suggests that the techno-
logical dynamics in these countries differ somewhat, with 
India focusing more on global progress and Azerbaijan seek-
ing more localized advancements in its agricultural sector.

As the originator of the BRI, China has itself experienced 
GTP and LTP several times. Specifically, China’s agricul-
tural green production technology has undergone three local 
changes over the past 20 years, all of which are reflected 
in the improvement in environmental productivity. In con-
trast, countries such as Bulgaria, Georgia, and Pakistan 
show fewer overall and local technological advances. These 
countries have not experienced as frequent or significant 
technological changes in their agricultural green produc-
tion technologies. Additionally, a subset of countries such 
as Sri Lanka, Hungary, Cyprus, Malaysia, Oman, Russia, 
and Tajikistan has stagnated following one or two instances 
of GTP and LTP in agricultural green production technology 
during certain periods. This indicates that these countries 
have not seen further technological progress in this domain, 
suggesting potential challenges or limitations in fostering 
ongoing technological advancements in agricultural green 
production.

4.3  Convergence and Innovator Recognition

Table 4 reports the convergence results of our parameter 
estimation of the unconditional convergence velocity Eq. (9) 

Table 3  Frequency of global 
and local technological progress

TP1, TP2, and TP3 denote the first identification strategy with strict conditions, the second one with one 
form of relaxed conditions, and the third one with the other form of relaxed conditions of global and local 
technological progress separately (see (7)-(8)); Eco and Env designate technological progress presented in 
economic efficiency and environmental production, respectively

Country Global technological progress Local technological progress

TP1 TP2 TP3 TP1 TP2 TP3

Eco Env Eco Env Eco Env Eco Env Eco Env Eco Env

Armenia 0 0 0 0 0 0 0 2 2 1 1 2
India 4 0 0 1 0 0 0 0 0 2 0 0
Azerbaijan 0 0 0 1 0 0 0 2 0 1 0 1
China 0 2 0 0 0 0 0 0 0 3 0 0
Bulgaria 0 0 0 1 0 0 2 0 0 0 1 0
Georgia 0 0 1 1 0 0 1 0 1 0 0 0
Pakistan 0 0 1 0 0 0 0 0 1 1 0 1
Sri Lanka 0 0 1 1 0 0 0 0 1 0 1 0
Hungary 0 0 0 1 0 0 0 0 1 0 1 0
Cyprus 0 0 0 0 1 1 0 0 0 0 0 0
Malaysia 0 0 0 1 0 0 0 0 1 0 0 0
Oman 0 0 1 1 0 0 0 0 0 0 0 0
Russia 0 0 0 1 0 0 0 0 0 0 0 1
Tajikistan 0 0 1 1 0 0 0 0 0 0 0 0
In total 4 2 5 10 1 1 3 4 7 8 4 5

2 For more information, see http:// am. mofcom. gov. cn/ index. shtml.

http://am.mofcom.gov.cn/index.shtml
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in productivity changes, efficiency changes, and technolog-
ical progress across 53 developing countries. The results 
show that regardless of the convex and nonconvex models, 
the coefficients of agricultural green productivity and its two 
components in economic and environmental dimensions are 
all positive, with the majority of these coefficients being 
statistically significant at the 1% level. This indicates that 
there is no convergence in the performance of agricultural 
green productivity and its two components in economic and 
environmental dimensions. These developing countries are 
in different stages of agricultural development, and the ini-
tial level of agricultural green productivity is significantly 
different. Despite improvements in the agricultural green 
productivity across all countries in the past 20 years, the 
pace of growth in green agriculture has not been sufficient 
to offset the relatively low levels of agricultural green pro-
ductivity in lagging countries. Countries with higher agri-
cultural green productivity have maintained their good per-
formance through their effective allocation of resources and 
advanced technology.

Table 5 provides the detailed results for innovative coun-
tries from 2000 to 2019 according to definition (10). We 
also report the frequency of innovation for each country, 
as well as the initial and terminal years in which they were 
recognized as innovators. Azerbaijan stands out as the 
most consistently innovative country throughout the period 

2000–2019, emerging as an innovator in 2011 and main-
taining this status until 2019. Armenia and India follow 
closely behind, with Armenia being identified as an innova-
tor among developing nations for three consecutive years 
starting in 2008 and India achieving this status three times 
between 2001 and 2011. Other countries, such as Egypt and 
Pakistan, have also demonstrated one period of innovation in 
agricultural green production. Pakistan becomes an innova-
tive country during 2012–2013, which aligns with the wide-
spread adoption of biotechnology in the country. Biotechnol-
ogy has made a significant contribution to agricultural green 
development in Pakistan. Pakistan grew 2.8 million hectares 
of biotech cotton in 2013, which significantly reduced the 
use of pesticides [28].

5  Conclusions and Policy Implications

This study introduces undesirable outputs into the meas-
urement of global and local technological progress, while 
broadening its scope to include green productivity. First, we 
calculate the green performance of agriculture in the Belt 
and Road countries employing both the convex and noncon-
vex approaches within the by-production model. Second, we 
distinguish the sources of agricultural technological progress 
within these countries, utilizing expanded definitions to 
investigate the impact of global and local innovation drivers 
on agricultural advancements in developing countries. Third, 
we examine whether the agricultural green performance of 
countries within the Belt and Road region has converged 
and identify those countries that have acted as innovators.

The key findings are summarized as follows. First, the 
Belt and Road countries show improvements in their agri-
cultural green productivity, efficiency changes, and tech-
nological progress from 2000 to 2019. Notably, the period 
from 2011 to 2019 has witnessed a surge in the develop-
ment of green agriculture, with environmental technological 
progress playing a pivotal role in driving growth under the 

Table 4  Testing β-convergence of productivity changes

Note () means t-value. *Significant at the 10% level. **Significant at 5% level. ***Significant at 1% level. LPI stands for green productivity, EC 
for efficiency improvement, and TP for technological development; Eco and Env represent the development of economic and environmental per-
formance

LPI EC TP

Eco Env Eco Env Eco Env

Convex
Β 0.229*** (4.49) 0.175 (1.29) 3.221*** (4.37) 0.340*** (4.13) 0.427** (2.55) 0.444*** (8.71)
R2 0.100 0.017 0.124 0.013 0.072 0.197
Nonconvex
Β 0.443*** (7.21) 0.752*** (9.78) 11.884 (0.60) 0.309*** (3.85) 0.095 (1.56) 0.575*** (8.50)
R2 0.152 0.250 0.109 0.149 0.028 0.185

Table 5  Number of periods countries appeared as innovators, 2000–
2019

Country Number of 
periods

Initial period Last period

Azerbaijan 4 2011–2012 2018–2019
Armenia 3 2008–2009 2011–2012
India 3 2001–2002 2010–2011
Egypt 1 2007–2008 -
Pakistan 1 2012–2013 -
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nonconvex model. However, the nonconvex method yields a 
higher cumulative change rate for green productivity indica-
tors compared to the convex method. This finding provides 
agricultural evidence supporting previous literature that 
endorses the nonconvex FDH method (see, e.g., the survey 
in Ang, Kerstens and Sadeghi [1]). In the realm of agricul-
tural performance evaluation, it is often more feasible for 
each DMU to have a unique benchmark, rather than multiple 
benchmarks. For example, in our empirical analysis where 
countries serve as DMUs, it is more reasonable for one 
country to be benchmarked against another existing coun-
try. In this sense, the nonconvex frontier likely offers a better 
depiction of agricultural activities and the actual situation.

Second, out of the sample countries, 14 have exhibited 
GTP and LTP between 2000 and 2019, and these types of 
technological progress are thought to have occurred equally 
often in overall performance. Notably, when comparing 
environmental GTP along the Belt and Road with environ-
mental LTP, the latter is found to be less likely to occur 
independently in specific Belt and Road countries.

Third, the convergence coefficient is significantly posi-
tive, indicating that the gap in agricultural green productiv-
ity performance and its economic and environmental dimen-
sions is widening among the 53 Belt and Road countries. 
In fact, some countries continue to promote the upward 
movement of the production frontier within the Belt and 
Road region, with notable improvements in their agricultural 
green production performance. Furthermore, Azerbaijan 
stands out as the most innovative country.

The findings have several policy implications. To fur-
ther promote the sustainable development of global agri-
culture, more efforts should be invested in optimizing the 
agricultural green production performance of the Belt and 
Road countries. Firstly, strengthening agricultural technical 
cooperation among the Belt and Road countries is the key 
to the sustainable development of regional agriculture. This 
can be achieved by improving the allocation of resources 
and encouraging the expansion of large-scale farming initia-
tives. Such measures will facilitate the rapid development of 
high-quality crop varieties, boost research and development 
in production technologies, and establish a robust environ-
mental-friendly agricultural management framework. Sec-
ondly, the BRI should take into account the varying levels 
of agricultural development across countries. It is essential 
to execute more collaborative agricultural projects to bridge 
the gaps in sustainable agricultural development. Regional 
organizations have a vital role to play in spreading advanced 
technologies and best practices within the area. Moreover, 
innovative countries should be encouraged to support less 
developed nations in enhancing their agricultural green 
performance, thereby contributing to a more equitable and 
sustainable agricultural landscape along the Belt and Road 
countries.

This study has some limitations. First, more research 
is needed to examine the validity of convexity imposed on 
production technology in general, especially when the true 
empirically estimated technology may be nonconvex. Second, 
we only investigate the agricultural sector of 53 Belt and Road 
countries, and further research could be conducted with larger 
samples. Third, although pedoclimatic conditions (e.g., soil 
quality, sunshine, rainfall, and temperature) play a major role 
in agricultural production processes [21], we do not consider 
them in this study for the sake of brevity. These limitations of 
the current study should ideally be investigated in future work 
to assess the robustness of our empirical results.

An avenue for future research is to transpose these defini-
tions of GTP and LTP from a production context to a value 
function framework. Indeed, it is conceivable to define a cost 
or revenue function-based productivity index or indicator and 
perform a similar analysis, since the convex and nonconvex 
cost and revenue function are known to be different except 
under stringent conditions (see [10], [31]). For the profit func-
tion matters are more complicated since the convex and non-
convex long run profit function coincides: but this is not the 
case for any restricted (e.g., short run) profit function. Another 
avenue for future research is to try disaggregating the fertilizer 
use to have a clearer picture of the contribution of each input.

Appendix. Estimation strategy

A set of linear programs that involves comparing obser-
vations with their sample must be solved to compute the 
Luenberger productivity indicator (4) and its components. 
Provided that the production technology is convex, the out-
put-oriented DEA model can be applied. The specific direc-
tional distance function Dt(xt, yt, zt;0, gt

y
, gt

z
) with given input 

and output constraints specified in the BP model is given by:

where both �k and �k are weight variables. The former 
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left reflect the performance of the benchmark unit while the 
other side expressions reveal the real performance of each 
DMUs. In the current setting, we strike a balanced expansion 
whereby desirable outputs can be expanded and undesirable 
outputs can be contracted simultaneously. The alternative 
own period DDF Dt+1

(
xt+1, yt+1, zt+1;0, gt+1

y
, gt+1

z

)
 is 

obtained by replacing the time superscript t everywhere in 
(11) by the time superscript t + 1. The mixed period DDF 
Dt
(
xt+1, yt+1, zt+1;0, gt+1

y
, gt+1

z

)
 is obtained by replacing the 

evaluated observations on the RHS of the inequalities and 
equalities in (11) by the time superscript t + 1, while the 
observations defining the technology on the LHS of the 
inequalities and equalities in (11) maintain the time super-
scr ipt t .  Finally, the other mixed period DDF 
Dt+1

(
xt, yt, zt;0, gt

y
, gt

z

)
 is obtained by replacing the observa-

tions defining the technology on the LHS of the inequalities 
and equalities in (11) by the time superscript t + 1, while the 
evaluated observations on the RHS of the inequalities and 
equalities in (11) preserve the time superscript t.

In a similar manner, if we discard the convexity assump-
tion in favor of a nonconvex technology, then our FDH 
program for calculating the directional distance function is 
shown by:

where �k and �k have only two possible binary integer values, 
which ensures that the peer unit on the production frontier 
must be a real observation. The binary activity variables 
ensure that the benchmark is unique for each evaluated DMU 
in each sub-technology. We argue that the ongoing debate 
about convex and nonconvex technologies arises from the 
fact that the units on the curve connecting each vertex point 
in the convex frontier are not included in the nonconvex 
frontier. Since a nonconvex frontier consists only of a series 
of actual observations, the nonconvex model provides a 
more conservative evaluation of production possibility sets 
compared to the convex frontier. The definition of the alter-
native own period DDF as well as the definition of both 
mixed period DDFs can be derived in a way similar to the 
ones commented upon in the convex case (11) above.
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Dt(xt, yt, zt;0, gt
y
, gt

z
) = max

1

2

�∑M

m=1
�m∕M +

∑B

b=1
�j∕J

�

s.t.
∑K

k=1
�ky

t
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k�m
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∑K
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�kx

t
kn
≤ xt
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, n = 1, ...,N∑K
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t
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k�p
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∑K

k=1
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∑K
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t
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∑K
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